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Abstract
Background: One important application of microarray experiments is to identify differentially
expressed genes. Often, small and negative expression levels were clipped-off to be equal to an
arbitrarily chosen cutoff value before a statistical test is carried out. Then, there are two types of
data: truncated values and original observations. The truncated values are not just another point
on the continuum of possible values and, therefore, it is appropriate to combine two statistical tests
in a two-part model rather than using standard statistical methods. A similar situation occurs when
DNA methylation data are investigated. In that case, there are null values (undetectable
methylation) and observed positive values. For these data, we propose a two-part permutation
test.

Results: The proposed permutation test leads to smaller p-values in comparison to the original
two-part test. We found this for both DNA methylation data and microarray data. With a
simulation study we confirmed this result and could show that the two-part permutation test is, on
average, more powerful. The new test also reduces, without any loss of power, to a standard test
when there are no null or truncated values.

Conclusion: The two-part permutation test can be used in routine analyses since it reduces to a
standard test when there are positive values only. Further advantages of the new test are that it
opens the possibility to use other test statistics to construct the two-part test and that it avoids
the use of any asymptotic distribution. The latter advantage is particularly important for the analysis
of microarrays since sample sizes are usually small.

Background
The addition of a methyl group at the carbon-5 position
of cytosine is a modification of DNA called DNA methyl-
ation. In mammalian cells, DNA methylation is essential
for proper development [1]. The methylation patterns of
tumor cells are altered compared to those of normal cells,
moreover, there are also differences between different
types of cancer as shown for subtypes of leukemia [2] and

lung cancer [3]. Thus, DNA methylation analysis promises
to become a powerful tool in cancer diagnosis [4].

DNA methylation data can be obtained using the Methy-
Light technology [5]. When the tested region is not or only
partially methylated the result is negative (undetectable
methylation, null values). In contrast, samples that show
methylation will have a value greater than 0 [4]. Thus,
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DNA methylation data obtained with MethyLight have a
clump of zero observations and a continuous nonzero
part. For such a data structure, two-part models as pro-
posed by Lachenbruch [6-8] are applicable. In that
approach, the test statistic is the sum of two squared sta-
tistics, one comparing the proportions of zeros and one
comparing the positive values. For example, one can use
the binomial test and the Wilcoxon rank sum test. The
asymptotic null distribution of the sum of the squares of
the two test statistics is χ2 with two degrees of freedom (df
= 2).

In microarray data it is relatively common that small and
negative expression levels were clipped-off to be equal to
an arbitrarily chosen cutoff value. Recent examples used
different cutoff values: 1, 20, and 50, respectively [9-11].
Aside from the fact that negative values make no biologi-
cal sense, there are, with regard to oligonucleotide arrays
from Affymetrix, two primary reasons for truncating the
values [12]. First, spots at the low intensity range are gen-
erally more vulnerable to noise, thus, it is thought that the
technology produces a poor discrimination at low levels
of expression [13]. Second, the focus is on expression of
identified genes and expressed sequence tags. Differences
at negative or low values may result from differences in
binding to the mismatch probes. Since it is generally not
known what binds to the mismatch probes, the differ-
ences at negative or low values cannot be attributed to tar-
get genes.

Due to the truncation there are two different types of data:
truncated values and original observations. Since the trun-
cated values are not just another point on the continuum
of possible values, it would be inappropriate to use a
standard statistical method that would treat all values
equally [14]. The two different types of data should be
analyzed separately. Therefore, the two-part model, com-
paring the proportions of truncated values and the distri-
bution of positive values, is applicable. Note that negative
expression levels are not possible when the Affymetrix
Microarray Suite (MAS) 5.0 software is used. However,
small values are possible and may be truncated.

Since, in microarray experiments, the sample sizes, i.e. the
numbers of replications, are usually very small [15,16],
the use of the asymptotic distribution of Lachenbruch's
two-part test statistic may be questionable. Thus, we car-
ried out permutation tests with the two-part statistic. For
a permutation test all possible permutations under the
null hypothesis are generated. In our situation we per-
mute the group labels for the whole sample, i.e. for trun-
cated values (or the null values in case of methylation
data) and original observations. Then, the test statistic is
calculated for each permutation. The null hypothesis can
then be accepted or rejected using the permutation distri-

bution of the test statistic, the p-value being the probabil-
ity of the permutations giving a value of the test statistic as
supportive or more supportive of the alternative than the
observed value [17,18]. Thus, inference is based upon
how extreme the observed test statistic is relative to other
values that could have been obtained under the null
hypothesis.

We found that, in the case of a two-part model, the per-
mutation test is not only a way to avoid the use of an
asymptotic distribution, but also is a more powerful test,
i.e. a test that produces, on average, smaller p-values. In
addition, the permutation test reduces, without any loss
of power, to a single test if no truncated (or null) values
were present. Thus, the proposed test is applicable in rou-
tine use whether or not truncated (or null) values occur.
After the definition of the tests in the following section,
we present our findings for DNA methylation data and
microarray data. We then confirm the results using
simulations.

Two-part tests
As briefly mentioned above a two-part test statistic is the
sum of two squared statistics, one comparing the propor-
tions of truncated values and one comparing the positive
values. Let n1 and n2 be the numbers of independent
observations regarding one gene (or one region in case of
methylation data, respectively), for two groups to be com-
pared. The observed numbers of truncated values (or null
values in case of methylation data) in the two groups are
denoted by m1 and m2. To compare these numbers m1 and
m2 Lachenbruch [6] used the statistic

where , , and

. Under the null hypothesis the

proportions of truncated values are not different between
the two groups, and B2 is asymptotically χ2-distributed
with df = 1. B2 is always well defined, unless there are only
truncated values in both groups or no truncated values at
all. For these two extreme cases we set B2 = 0.

For the second part in Lachenbruch's two-part model one
can use different tests, Lachenbruch [6-8] considered the
Wilcoxon rank sum test, Student's t test, and the Kol-
mogorov-Smirnov test. The use of the latter test in a two-
part model, however, was too liberal, the type I error rate
was close to 0.065 (for a significance level of α = 0.05
[7,8]). Both other tests work well. Here, we apply the
Wilcoxon test for two reasons. This test was used in the
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original analyses of the data we use below [3,11]. Nonpar-
ametric tests based on ranks are more appropriate for non-
normally distributed data such as microarray data [19].

The standardized rank sum statistic based on the non-
truncated (or positive values in case of methylation data)
values is defined as

where RS is the rank sum, i.e. the sum of the ranks in
group 1. When there are ties within the non-truncated val-
ues the denominator slightly changes [[20], p. 109]. For
the extreme case that there are only truncated values in at
least one group we set W = 0.

The test statistic for the two-part test is X2 = B2 + W2. Under
the null hypothesis of no difference between the groups,
X2 is asymptotically χ2-distributed with df = 2 [6,7]. Alter-
natively, a permutation test can be performed with the sta-
tistic X2. This test, called two-part permutation test here, is
a permutation test based on the sum statistic X2. It is car-
ried out by permuting the group labels for the whole sam-
ple. Thus, all observations, truncated and non-truncated
values (or null and positive values in case of methylation
data) are reallocated to the groups. When performing this
two-part permutation test the exact permutation distribu-
tion of X2 is determined. This distribution, computed by
generating all possible permutations or, for the p-values
given below in Table 1, using a simple random sample of
20,000 permutations, is used to compute the p-value.
Since it is a permutation test based on the sum X2, it is nei-
ther necessary to determine the permutation distributions
of the summands B2 and W2 nor to calculate the p-values
of the univariate tests related to B2 and W2.

Application to actual methylation data
We use DNA methylation data from 7 regions and 87 lung
cancer cell lines, 41 lines are from small cell lung cancer
and 46 lines from non-small cell lung cancer [3,4]. The
proportion of positive values for the different regions
ranges from 39 to 100% for the small cell lung cancer and
from 65 to 98% for the non-small cell lung cancer. The
data are available at http://www-rcf.usc.edu/~kims/Sup
plementaryInfo.html. Siegmund et al. [4] transformed the
data by standardizing the positive values on the natural-
log scale. However, for the tests applied here, this transfor-
mation has no influence.

Table 1 presents the p-values of the two tests. For most
regions the two-part permutation test gives a smaller p-
value than the original two-part test. The only exception is
the region APC. However, the original two-part test's p-
value for this region is 0.1684 and, for a p-value of this
size, a small change in the value is usually of no
importance.

Application to actual microarray data
Tschentscher et al. [11] performed an experiment with
HG-U95Av2 oligonucleotide arrays in order to compare
patients with uveal melanomas with and without mono-
somy 3. Expression values were calculated by use of the
MAS 4.0 software. The data are available at http://
www.uni-essen.de/humangenetik/download. The sample
size in this microarray experiment is 10 per group. As
mentioned above, expression levels below 50 were set to
50. This data truncation occurred in 2,215 (28%) out of
7,902 genes. First, we consider these 2,215 genes. Figure 1
displays the number of genes for the different number of
truncated values per gene.

Table 2 shows the frequencies of different size groups of
the p-values. Often, the two-part permutation test gives a
smaller p-value than the original two-part test. For
instance, for 19 genes the p-value is ≤ 0.001 when the lat-
ter test is applied. The permutation test gives a p-value ≤
0.001 for these 19 and for 39 additional genes. As usual,
the majority of genes do not show any indication of being
differentially expressed. For these genes a slight change in
the p-value is of no importance. Thus, in Table 3, we con-
sider the genes for which the p-value of the original two-
part test is ≤ 0.1. Out of the 2,215 genes 514 remain. As
shown in Table 3 the p-values of the two-part permutation
test are, on average, distinctly smaller than those of the
original two-part test.

For a large proportion of genes (72% in this data set) there
are no truncated values. In that case, the two-part statistic
reduces to the sum 0 plus the squared standardized rank
sum W2. Of course, one has to define a priori whether the
two-part test or the Wilcoxon test will be used to analyze

Table 1: p-values of the original two-part test and the two-part 
permutation test for seven regions in lung cancer cell lines; DNA 
methylation data from Siegmund et al. [4]

Region Original two-part test Two-part permutation test1

CALCA p = 0.0005 p = 0.0004
PTGS2 p = 0.0002 p = 0.0001
MTHFR p = 0.0007 p = 0.0002
MGMT-M1 p = 0.0860 p = 0.0857
APC p = 0.1684 p = 0.1712
MYOD1 p = 0.0132 p = 0.0111
ESR1 p = 0.0040 p = 0.0030

1performed based on simple random samples of 20,000 permutations 
(when using 20,000 permutations a 95%-confidence interval for the p-
value is the observed p-value ± 0.007 when p = 0.5, or ± 0.003 when 
p = 0.05).

W
RS n m n m n m

n m n m n m n m
=

− −( ) − + − +( ) 
−( ) −( ) − + −

1 1 1 1 2 2

1 2 2 2 1 1 2 2

1 2/

++( )1 12/
Page 3 of 7
(page number not for citation purposes)

http://www-rcf.usc.edu/~kims/SupplementaryInfo.html
http://www-rcf.usc.edu/~kims/SupplementaryInfo.html
http://www.uni-essen.de/humangenetik/download
http://www.uni-essen.de/humangenetik/download


BMC Bioinformatics 2005, 6:35 http://www.biomedcentral.com/1471-2105/6/35
Number of genes with the given number of truncations per gene (data from the microarray experiment of Tschentscher et al. [11], only genes with at least one truncation)Figure 1
Number of genes with the given number of truncations per gene (data from the microarray experiment of Tschentscher et al. 
[11], only genes with at least one truncation)

Table 2: Frequencies of different size groups of the p-values of the original two-part test and the two-part permutation test for genes 
with at least one truncation; data from the microarray experiment of Tschentscher et al. [11]

p-value of the original 
two-part test

p-value of the two-part permutation test

≤ 0.001 > 0.001 and ≤ 0.01 > 0.01 and ≤ 0.05 > 0.05 and ≤ 0.1 > 0.1

≤ 0.001 19 0 0 0 0
> 0.001 and ≤ 0.01 39 56 0 0 0
> 0.01 and ≤ 0.05 0 50 164 8 0
> 0.05 and ≤ 0.1 0 0 49 112 17
> 0.1 0 0 0 53 1648

Table 3: Differences between the p-values of the original two-part test and the two-part permutation test for genes with at least one 
truncation and small p-values (i.e. the p-value of the original test must be as small as mentioned under condition), a positive difference 
means that the two-part permutation test has a smaller p-value than the original test; data from the microarray experiment of 
Tschentscher et al. [11]

Condition Number of remaining 
genes

Mean difference (± SD) Median difference Quartiles of the difference

p ≤ 0.1 514 0.0065 (± 0.0126) 0.0047 0.0012, 0.0124
p ≤ 0.05 336 0.0057 (± 0.0064) 0.0040 0.0018, 0.0095
p ≤ 0.01 114 0.0025 (± 0.0018) 0.0019 0.0010, 0.0035
p ≤ 0.001 19 0.0006 (± 0.0003) 0.0006 0.0003, 0.0009
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the data. If the original two-sided (asymptotic) Wilcoxon
test were chosen and applied, one could compare W2 with
critical values from a χ2 distribution with one degree of
freedom (df). If the two-part were chosen there is df = 2
and, in case of no truncated values, power is lost com-
pared to the original Wilcoxon test. For instance, the 95%
percentile of the χ2 distribution with df = 1 is 3.84, but it
is 5.99 for df = 2. The permutation test using the sum sta-
tistic X2 does not suffer from this power loss: When there
are no truncated values there is, of course, no difference in
the proportions of truncated values, and the test statistic
X2 is, for every permutation, the sum 0 + W2. Thus, the
two-part permutation test reduces to the exact two-sided
Wilcoxon rank sum test when there are no truncated val-
ues. Consequently, this permutation test does not only
give smaller p-values, but it is also applicable in routine
use whether or not truncated values are present.

Simulation study
The two different tests, the original two-part test and the
two-part permutation test, were compared in a Monte
Carlo simulation study performed using SAS version 8.2,
5,000 simulation runs were generated for each configura-
tion. The sample size of 10 per group was chosen as in the
microarray experiment presented above. In some configu-
rations some randomly chosen values were set to 0
according to binomial distributions with the probabilities
p1 and p2, and the remaining observations were generated
according to a lognormal distribution (with median 1 and
σ = 1). Then, the values of one group were shifted if appli-
cable. In some other configurations all observations were
generated according to the lognormal distribution and, in
one group, shifted. Then, values smaller than a cutoff
value were truncated.

The type I error rates of the two tests are very similar. With
e.g. p1 = p2 = 0.3 and a significance level of α = 0.05 the
simulated type I error rates were 0.049 for both the origi-
nal two-part test and the two-part permutation test.

Table 4 displays results for situations with a difference
between the two groups. As above, only those compari-
sons were regarded for which there is some indication of
a difference, i.e. a p-value ≤ 0.1 of the original two-part
test. In all considered configurations the median of the
difference between the p-values of the original two-part
test and the two-part permutation test is positive. The
finding that the p-values of the permutation test are
smaller corresponds to a higher power of this test. The
power is given in Table 5, as shown the power of the two-
part permutation test is at least as high as that of the orig-
inal two-part test. There is only one exception, the latter
test is slightly more powerful in one situation, i.e. when
the proportion of zeros is higher in group 1 and the posi-
tive values are larger in group 1.

Discussion
Previous research demonstrated that a two-part test is
appropriate and powerful in the presence of a clump of
zero observations (i.e. truncated or null values). In this
paper we propose a permutation test for such situations
with two types of data. Usually, nonparametric tests can
be performed based on an asymptotic distribution or
based on a permutation null distribution. The two
approaches often give similar results, especially when the
sample sizes are large. However, in the case of a two-part
test one cannot simply replace the asymptotic distribu-
tions of B2 and W2 by the exact permutation distributions.
If so, one would compute two exact p-values although the
aim of a two-part test is to receive one p-value that com-

Table 4: Results of the simulation study: Differences between the p-values of the original two-part test and the two-part permutation 
test for data sets with small p-values (i.e. p-value of the original test ≤ 0.1), a positive difference means that the two-part permutation 
test has a smaller p-value than the original test; p1 and p2 are the probabilities for zero values and the positive values in group 1 are 
shifted by µ; 5,000 data sets with n1 = n2 = 10 were generated for each configuration

Configuration Number of data sets Mean difference (± SD) Median difference Quartiles of the difference

p1 = p2 = 0, µ = 2.5 4538 0.0118 (± 0.0145) 0.0057 0.0013, 0.0161
p1 = p2 = 0.3, µ = 2.5 4038 0.0008 (± 0.0069) 0.0020 0.0008, 0.0033
p1 = 0.4, p2 = 0.2, µ = 2.5 4346 0.0010 (± 0.0059) 0.0019 0.0008, 0.0033
p1 = 0.2, p2 = 0.4, µ = 2.5 4270 0.0011 (± 0.0056) 0.0018 0.0006, 0.0030
p1 = 0, p2 = 0.3, µ = 2.5 4883 0.0039 (± 0.0055) 0.0020 0.0005, 0.0051
p1 = 0.3, p2 = 0, µ = 2.5 4893 0.0040 (± 0.0053) 0.0022 0.0007, 0.0049
p1 = 0, p2 = 0.4, µ = 0 3427 -0.0033 (± 0.0119) 0.0006 -0.0092, 0.0029
cutoff value = 0.5, µ = 2.5 4621 0.0059 (± 0.0081) 0.0034 0.0009, 0.0072
cutoff value = 1, µ = 2.5 4860 0.0017 (± 0.0052) 0.0013 0.0003, 0.0032
Page 5 of 7
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:35 http://www.biomedcentral.com/1471-2105/6/35
bines information from both parts. Therefore, the two-
part permutation test uses the exact permutation distribu-
tion of the sum statistic X2. That this permutation distri-
bution of the sum is generated rather than to simply
replace the asymptotic distributions of the summands by
their exact permutation distributions may be the reason
why the permutation test is more powerful.

A disadvantage of a permutation test is that it can be com-
puter-intensive. However, this issue is less relevant now
due to faster algorithms [[18], chap. 13] and the advent of
high-speed PCs. Furthermore, one can carry out a
permutation test based on a random sample out of the
possible permutations, as we did for the DNA methyla-
tion data (see Table 1).

In microarray experiments it is common to investigate
thousands of genes simultaneously. The approach pre-
sented here for the identification of differentially
expressed genes is to consider a univariate testing problem
for each gene. A correction for the multiplicity of genes is
a subsequent step, that is, like the previous step of nor-
malizing the data, outside the scope of this paper. A
common approach to the multiplicity problem is to con-
sider a procedure for testing the genes simultaneously for
differential expression with the test on an individual gene
being implied in the simultaneous test. For such a proce-
dure different proposals have been made recently. For
instance, there are methods based on the p-values of the
tests from individual genes [21-23]. In a similar manner,
the multiplicity of regions can be managed in DNA meth-
ylation data.

Conclusion
Aside from the shown improvement in power, the pro-
posed two-part permutation test has three important
advantages. First, it avoids the use of any asymptotic dis-

tribution and, therefore, can safely be applied in case of
small sample sizes that are common in microarray exper-
iments. Second, it reduces without any loss of power to
the exact Wilcoxon test if there were no truncated (or
zero) values. Thus, it can be used in routine analyses.
Third, the permutation test opens the possibility to use
other tests to construct the two-part test. Thus, tests with
unknown or non-standard null distributions can be used.
For instance, one could replace the Wilcoxon test by the
Baumgartner-Weiß-Schindler test [24] that was recently
recommended for the analysis of gene expression data
[19].
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