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Abstract
Background: The multitude of motif detection algorithms developed to date have largely focused
on the detection of patterns in primary sequence. Since sequence-dependent DNA structure and
flexibility may also play a role in protein-DNA interactions, the simultaneous exploration of
sequence- and structure-based hypotheses about the composition of binding sites and the ordering
of features in a regulatory region should be considered as well. The consideration of structural
features requires the development of new detection tools that can deal with data types other than
primary sequence.

Results: GANN (available at http://bioinformatics.org.au/gann) is a machine learning tool for the
detection of conserved features in DNA. The software suite contains programs to extract different
regions of genomic DNA from flat files and convert these sequences to indices that reflect
sequence and structural composition or the presence of specific protein binding sites. The machine
learning component allows the classification of different types of sequences based on subsamples
of these indices, and can identify the best combinations of indices and machine learning architecture
for sequence discrimination. Another key feature of GANN is the replicated splitting of data into
training and test sets, and the implementation of negative controls. In validation experiments,
GANN successfully merged important sequence and structural features to yield good predictive
models for synthetic and real regulatory regions.

Conclusion: GANN is a flexible tool that can search through large sets of sequence and structural
feature combinations to identify those that best characterize a set of sequences.

Background
The minimal requirement for transcriptional activation is
recruitment of an RNA polymerase complex to a promoter
sequence of DNA upstream of an open reading frame
(ORF). Most genes are also potentially under the control
of DNA-binding regulatory proteins or transcription factors
that can activate or silence transcription. In bacteria, acti-

vator and repressor proteins bind to operator sequences
that are typically found near the promoter, and promoter
specificity is typically conferred through the sigma subu-
nit of RNA polymerase, which binds the promoter directly
[1]. Eukaryotic transcription factors interact with DNA
within the promoter, and are responsible for recruitment
of the RNA polymerase complex [2]. Regulatory proteins
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also bind to conserved sites near the promoter region, as
well as to enhancers that can be far (> 10 000 nucleotides)
upstream or downstream of the promoter. In all domains
of life, transcription factors that bind near the promoter
are typically involved in either stabilizing or disrupting
the initiation of transcription, while distal enhancer
sequences are needed to destabilize the nucleosomes that
usually prevent the initiation of transcription in eukaryo-
tes [3].

The identity and spacing of these protein binding sites are
key contributors to the responsiveness of a gene to chang-
ing cellular conditions, and sets of genes or operons that
are expressed under similar conditions often have similar
sets of regulatory elements in their 5' upstream regions.
Recent programs such as ClusterBuster [4] and
Promoter2.0 [5] recognize the need to detect combina-
tions of binding sites in order to characterize promoters or
whole regulatory regions. An additional challenge is the
possibility of multiple cluster types within a class of genes
that respond to the same regulatory stimulus. Artificial
neural networks (ANNs) are suited to the task of discover-
ing complex interactions within a set of features, and
identifying multiple alternative solutions that yield the
same type of response. This type of problem is not linearly
separable [6], and would apply to classification problems
such as the regulatory cascade of genes that is induced by
lipopolysaccharide in mammals, where the entire set of
genes is upregulated in response to a stimulus, but time or
subresponse specificity is conferred by one of a set of reg-
ulatory modules [7,8].

Another issue in the detection and modelling of regula-
tory regions is the assumption of additivity in DNA-pro-
tein interactions when position-specific scoring matrices
(PSSMs) are used to model binding sites. In fact, binding
affinity has been shown in some cases to depend on inter-
actions between sites [9-11], which suggests that more-
sophisticated modelling schemes may be necessary to
build accurate models of binding site affinity. PSSMs are a
useful and versatile tool and may be adequate for binding
site modelling in many cases (see for instance [12]), but
the additional flexibility of ANNs may be useful in repre-
senting non-additive relationships among components of
a binding site.

The genetic algorithm (GA) is a powerful tool for combi-
natorial problems of model optimization and feature
selection when the 'model space' is complex and has
many local optima. Genetic algorithms carry out a
number of simultaneous searches in model space, with
one or more recombination operators to periodically
combine the results of two or more searches, permitting
large scale 'jumps' out of locally optimal regions. GAs
have been applied to several tasks in computational biol-

ogy, including sequence alignment (SAGA: [13]) and phy-
logenetic inference (MetaPIGA: [14]). ModuleSearcher
[15] is a recent application of genetic algorithms to the
problem of cis-regulatory module detection, with the sto-
chastic GA approach shown to yield similar outcomes to
an exact search method in substantially less time. Cluster-
Scan [16] is another recent approach that uses genetic
algorithms to detect optimal combinations of binding
sites from the TRANSFAC database [17].

Another important question in modelling regulatory
regions involves the representation of binding sites. While
position-specific scoring matrices (PSSMs) are a popular
and effective way of representing conserved sites [18],
other strategies such as consensus sequences, sequence
composition and structural features [19] can be consid-
ered as well. Structural features should be of particular
interest, since DNA deformability appears to play a role in
at least some regulatory interactions such as the binding
of Escherichia coli integration host factor (IHF) to its target
sequence [20], the correct orientation of both halves of
bacterial promoter sequences [21] and the dynamics of
histone/DNA interactions [22]. DNA structural properties
have been derived from crystal and nuclear magnetic res-
onance experiments and from theoretical simulations,
and different oligonucleotides have different propensities
toward unwinding, wrapping around other molecules,
and deformation in response to ligand binding (reviewed
in [23]). While there is still considerable controversy in
the structural field about issues such as A-tract curvature
[24], and there have been questions about the role of
experimental conditions in determining results [25-27],
carefully selected parameters can permit the testing of spe-
cific structural hypotheses pertaining to regulatory pro-
tein-DNA interactions.

We have developed GANN, a software suite that uses
machine learning methods to identify combinations of
the features listed above that best distinguish between a
positive set (containing, for instance, a set of regulatory
regions from co-expressed genes) and a negative set.
GANN implements all of the binding site representations
described above, allowing examination of models of dif-
ferent complexity as warranted by the type of binding site
modelled and the amount of training data that is
available.

Implementation
GANN contains a set of programs for sequence extraction,
retrieval and grouping of requested patterns, neural net-
work analysis of these patterns and collection of results.
Each program in the suite can accept either the output of
the previous program, or an appropriate set of data gener-
ated from an external method. The components of GANN
and the flow of data through the system are shown in
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Programs and data flow for GANNFigure 1
Programs and data flow for GANN.
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Figure 1. 'Indices' and the core machine learning compo-
nent are implemented in C++, while the other programs
that read, interpret and combine text files are written in
Perl.

Sequence extraction
The first program (GetSeq) reads in either a GenBank file
of annotated genome sequence, or raw sequence and a list
of open reading frames (ORFs) of interest generated with
the NeuroGadgets Inc. Bioinformatics Web Service [28].
GetSeq identifies and extracts upstream intergenic regions
of a specified length and labels them as the positive set,
and can also extract negative set sequences from intergenic
regions that are not immediately upstream of ORFs, or
directly from the protein-coding regions.

Generation of sequence and structure indices
The Indices program takes as input a set of positive and
negative set sequences (such as those generated by Get-
Seq), and can compute various properties of the
sequences. The input sequences can be subdivided into
overlapping windows of any size prior to the calculation
of index values. The following indices can be calculated:

- Oligonucleotide frequencies are computed by counting
the number of instances of a given k-mer within a win-
dow, then dividing by the length of that window. The pro-
gram can determine the frequency of all k-mers of a
specific length, or can assess any user-specified set of k-
mers, which may include IUPAC notation to represent
degenerate nucleotides.

- User-specified PSSMs can be counted for each sequence
window. The user provides a set of scores for each type of
nucleotide at each position within a PSSM, and a thresh-
old score. The program will then count and record the
number of sequence instances within each window that
yield a PSSM score greater than the specified threshold.

- Structure and flexibility rules are implemented via a text
file, by assigning floating-point values to each k-mer of a
given length. The average score for a given sequence win-
dow is then computed by adding the scores for each over-
lapping k-mer within the sequence, and dividing by the
total number of k-mers considered. Any numeric encod-
ing of a complete set of k-mers can be specified: features
sampled from publications such as [29-31] are available
at the GANN website (see below).

After the extraction of indices, the Combine program
merges the different index files into a single large file that
is used as the input for the machine-learning software.
Combine also allows the computation of Z-scores, thus
representing each index value in terms of the number of
standard deviations from the mean, and can identify peak

values for a given index across a set of windows. Combine
randomly subdivides the positive and negative index sets
into training and test sets, and can also generate a negative
control by randomly reassigning some positive and nega-
tive set members to the opposite category, yielding a dis-
ruption of patterns that were previously consistent within
a single set. This type of control sets a 'baseline' for classi-
fication accuracy that can be compared to real experimen-
tal results.

Pattern classification
The core of GANN is the neural network classification sys-
tem. The indices generated from 'Indices' and 'Combine'
are presented as input to an artificial neural network,
which is trained with either backpropagation or a genetic
algorithm to maximize the discrimination between the
positive and negative sets. Since the number of indices
associated with each sequence is potentially very large, the
Outer Genetic Algorithm (OGA) presents random subsets
from the pool of indices to a series of neural networks. The
unit of selection for the OGA is a 'Chromosome' that con-
tains a predetermined number of indices sampled from
the larger pool, and a set of parameters that define the
architecture and connectivity of the ANN. The constitu-
tion of a population of OGA Chromosomes is determined
randomly in the first generation, with random sampling
of indices from the pool and ANN parameters sampled
randomly from within a set of ranges specified by the user.
Each OGA Chromosome is used to construct an ANN,
which is then trained to yield optimal predictive accuracy
on the training set defined by the Combine program
above. At the end of training, performance on the test set
is evaluated, and the fitness of the OGA Chromosome is
equal to its predictive accuracy on the test set samples. The
predictive accuracy is defined as follows:

Where TP and TN are the number of correctly classified
positive and negative test set examples, and ||Pos|| and
||Neg|| the size of the positive and negative test sets,
respectively. This formula assigns equal weight to the pos-
itive and negative sets regardless of their size, so the ANN
cannot achieve an artificially high score by predicting
every case as a member of the larger (training or test) set.

The OGA Chromosomes with highest fitness are then per-
mitted to 'recombine', yielding new subsets of indices that
are trained in the same manner, while less successful indi-
ces are gradually lost from the population. The classifica-
tion potential of indices can be evaluated by examining
the scores of neural networks that include these indices in
their input set, and through a 'population genetics'

A
TP Pos TN Neg

=
+( / / )

2
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approach that traces the frequency of indices through sev-
eral rounds of OGA recombination and selection.

Training of the neural networks is performed using either
backpropagation of errors [32] or with an 'inner' genetic
algorithm (IGA). An IGA Chromosome consists of a set of
floating-point values, each representing a connection
weight within the ANN that is being trained. The fitness of
each IGA Chromosome within a population is equal to
the predictive accuracy of the specified ANN as defined in
the equation above, but on the training set. IGA Chromo-
somes with relatively high fitness are then subjected to
stochastic recombination and mutation of parameters to
yield a new population of Chromosomes that are used in
the next round of training. While gradient-descent train-
ing methods for ANNs (such as backpropagation) can eas-
ily get trapped in local optima of the solution space, the
recombination option of genetic algorithms permits a
search to 'jump' through the solution space and escape
local optima. The optimisation of network architecture
and connection weights is similar to the 'structure evolu-
tion' method of [33], which has been applied to problems
of biological pattern detection [34,35], but our method
differs in the partitioning of the connection weight and
architecture components of the optimisation.

There are many variables within GANN whose values can
be specified by the user. While most default settings will
be adequate in most situations, parameters such as the
number of feature combinations generated by the OGA
and the number of features in each combination should
be chosen carefully. The 'DefineVars' program provides a
set of menus that allow the user to set these parameters
and write them to a configuration file that is input to
GANN.

In addition to reporting the scores of trained artificial neu-
ral networks, GANN will save information about the
topology, connection weights and constituent indices of
each neural network instance that achieves a generaliza-
tion score above a specified minimum threshold. If
GANN is invoked with any of these saved neural networks
as input in addition to a table of indices, then it will use
the input neural network to classify the new table. This
process can yield functional predictions for sequences
whose true classification is unknown.

Results and discussion
Two sets of detection experiments, both based on DNA
sequences extracted from the Escherichia coli K12 genome,
are presented to illustrate the performance of GANN. Both
of these experiments included a set of 250 nucleotide
sequences, each 100 nucleotides (nt) in length, which
were extracted from between convergently transcribed
genes in the E. coli genome using the GetSeq program.

These sequences were chosen because they are intergenic
like upstream regulatory regions and not subject to the
evolutionary constraints of protein-coding sequences, but
are not expected to contain functional transcriptional reg-
ulatory features since they are exclusively 'downstream' of
one gene in each direction. In the first experiment, we cre-
ated an artificial positive set by inserting conserved
sequences into a subset of the 250 sequences, with the
remainder constituting the negative set. The entire set of
250 sequences was used as the negative set in the second
experiment, while the positive set consisted of 212
upstream regulatory regions containing experimentally
validated binding sites for the σ70 protein of E. coli.

Several run parameters were consistent across both exper-
iments. Each OGA Chromosome contained a total of 8
indices, to allow the simultaneous representation of sev-
eral sequence and structure properties. The population
size (= number of OGA Chromosomes) was determined
by multiplying the total number of indices by 10, then
dividing by the number of indices (8) per OGA Chromo-
some. This formula ensured that indices would be repre-
sented 10 times each on average in the initial randomly
generated population, and 99.9% of all indices should
occur at least 3 times in the population according to the
Poisson distribution. Thirty rounds of OGA Chromosome
evaluation and selection were performed in each run.
While GANN can evolve ANN architecture and learning
parameters as well as combinations of indices, we chose
reasonable ANN parameters (available at the GANN web-
site) and fixed them for the entire run.

The performance of different sets of indices was expressed
in terms of the predictive accuracy (= score on the test set
of sequences) described above. Differences in predictive
accuracy are expected across replicates, because random
partitioning of sequences into training and test sets is
likely to yield variation in the frequency of some features
that do not define the whole set. However, average predic-
tive accuracy can be estimated by taking the mean across
replicates. Indices that are retained in every replicate of an
experimental run are more likely to reflect true character-
istics of the sequences under consideration, though the
redundancy of many indices (different window sizes, dif-
ferent percentiles for PSSM scores, and correlated frequen-
cies of some k-mers) may yield multiple alternative
solutions that are equally good. A final indicator of index
performance is the composition of OGA Chromosomes
that yield high predictive accuracy: if a set of features is
important for characterization of a set of sequences, then
each of those features should be represented by at least
one index in the best OGA Chromosomes.
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Experiment 1 – Synthetic positive set
In the first experiment, the positive set was constructed by
adding conserved features to 76 of the 250 sequences
(~30%) described above. Each member of the positive set
was modified by adding a nucleotide decamer with high
conformational mobility (CM). Five thousand unique
decamers were generated randomly, and each of these was
assigned a CM score based on the dinucleotide table in
[30]. Decamers from this set that scored in the top 5% of
all CM values were selected at random to be added to
members of the positive set. One of two types of con-
served binding site was also added to each member of the
positive set. The set of experimentally validated binding
sites for cAMP receptor protein (CRP) and leucine-respon-
sive regulatory protein (Lrp) were extracted from Regu-
lonDB [36], and each positive set sequence gained a
binding site randomly selected from one list or the other.

The construction of synthetic conserved regions is sum-
marized in Figure 2. 'Type A' positive set sequences consist
of a high CM decamer beginning anywhere between posi-
tions 10 and 20, and a randomly chosen CRP binding site
of length 19 that starts between positions 65 and 70. The

order of patterns is inverted in the 'Type B' sequences, with
the 12 nt Lrp binding site beginning between positions 25
and 30, and the high CM decamer starting anywhere
between positions 75 and 80. A total of 34 Type A and 42
Type B sequences were generated.

Once the positive and negative set sequences were
obtained and assembled, the Indices program was used to
extract several different types of information from them,
with varying window sizes depending on the features
being examined. The overlap between adjacent windows
was chosen to be 50% of the window length, so if a win-
dow of size 10 covered sites 1–10 in a sequence, the next
window would cover sites 6–15.

- PSSMs for Lrp and CRP binding sites were constructed
from the set of binding sites in RegulonDB. Frequency
matrices for each site were constructed by dividing the
number of occurrences of each residue at each site by the
total number of sites (72 Lrp, 128 CRP). These frequencies
were then divided by the 'background' frequency of each
corresponding nucleotide in the set of intergenic
sequences. Since the background frequency of each

Construction of the synthetic positive set of sequences in Experiment 1Figure 2
Construction of the synthetic positive set of sequences in Experiment 1. The range of starting positions and length of each 
added feature are indicated (CM = conformational mobility, CRP = cAMP receptor protein, Lrp = leucine-responsive regula-
tory protein).
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nucleotide was within the range 0.250 ± 0.005, back-
ground frequencies of 0.25 were assigned to each nucle-
otide. The PSSM was then obtained by taking the natural
logarithm of each value in the corrected frequency matrix.
Threshold values for PSSM predictions were determined
by scoring 50 000 random sequences of the appropriate
length against the PSSM, and identifying the scores that
corresponded to the 99th, 95th, 90th, and 80th percentiles.
The number of sequence matches above each PSSM
threshold was computed for windows of size 20 and 40.

- The conformational mobility of sequence windows of
size 10 and 20 was computed according to the dinucle-
otide values in [30].

- Counts of all k-mers of size 1 (mononucleotides) and
size 2 (dinucleotides) were computed for windows of size
10 and 20.

The computations described above yielded a total of 450
indices: 360 describing k-mer counts, 64 describing the
counts of PSSM 'hits' at different thresholds, and 36
describing the conformational mobility of different win-
dows of sequence. These indices were then combined in
four different ways to yield separate tests of different sub-
sets. The k-mer frequencies were included in every set as a
'background' measure of predictive power with no explicit
hypothesis. Set 1.1 included only the k-mer frequencies,
while set 1.2 added the indices of conformational mobil-
ity, set 1.3 included the PSSM scores, and set 1.4 included
all three types of index. We initially performed runs where
index values were not standardized, but found that indi-
ces with values that were not close to zero, particularly the
CM indices which ranged between 40 and 70, did not per-
form well and were consistently eliminated from the pop-
ulation of OGA Chromosomes. In response to this, we
standardized all indices for the experiments described
below and in Experiment 2.

Set 1.4, with the full set of 450 indices, was used to define
the number of OGA Chromosomes. The formula at the
beginning of this section yielded a recommendation of
562.5 OGA Chromosomes per generation, which was
rounded up to 600 and applied to all four sets. 'Combine'
was used to randomly subdivide the positive and negative
set sequences into training and test sets with a ratio of 2:1.
This random reassignment was repeated five times, and
five corresponding negative control sets were generated as
described in Generation of Sequence and Structure Indices
above.

The mean of the best generalization scores achieved in
each replicate over 30 rounds of OGA evaluation and
selection is shown in Figure 3. The 4 groups of negative
control runs corresponding to the four data sets all yielded

a mean best score between 0.78 and 0.79, and the range
of scores in each case did not overlap with the range of the
corresponding five experimental replicates. However, the
average generalization score of experimental set 1.1 was
only 5–6 % higher than the corresponding negative con-
trol runs. Set 1.2, which included CM as well as k-mer
counts, yielded a mean generalization score of 0.880, a
substantial improvement over set 1.1 with no overlap in
the range of maximum scores between the two sets. Set
1.3, which considered k-mer counts and PSSM scores at
several thresholds, yielded a mean best generalization
score of 0.883, which was substantially better than set 1.1
and indistinguishable from set 1.2. Finally, set 1.4 yielded
a small improvement over sets 1.2 and 1.3 in generaliza-
tion score, with a mean of 0.900. These results suggest that
the inclusion of PSSMs and flexibility indices yielded a
substantial increase in predictive accuracy over the back-
ground of k-mer counts, with the combination of the two
possibly producing a further slight increase.

Figure 4 shows the change in the mean, maximum and
minimum generalization scores for the 600 OGA
Chromosomes in each of 30 training rounds for set 1.4.
The mean over all five replicated runs is shown for both
the experimental and negative control runs. There is an
upward trend with all six values, which shows that
improvements in the mean performance are due to both
the creation of new, advantageous combinations of indi-
ces by the OGA as evidenced by the increase in the maxi-
mum score, and through the elimination of bad indices,
shown with the increase in the minimum score. The dif-
ference in mean generalization score between the experi-
mental and negative control runs is very low (< 0.025) in
the first OGA generation, but increases rapidly to 0.11 –
0.12 within the first ten generations of optimisation. This
trend is consistent with the idea that many indices in the
experimental runs are not good at distinguishing between
the positive and negative sequence sets, and their replace-
ment with more copies of good indices yields better pre-
dictive accuracy. However, poor indices are expected to
persist to some degree through the population, since they
can 'hitchhike' with good indices through many rounds of
OGA training and may even increase in frequency if they
are associated with an otherwise good combination of
indices. The low (< 0.7) predictive accuracy of some exper-
imental OGA Chromosomes in the last round of training
may be due to recombination events that merge sets of
hitchhiking indices.

If sets of indices that yield the best predictive accuracy are
preferentially selected for recombination by the OGA,
then good indices should increase in frequency with suc-
cessive rounds of testing and recombination. Only five
indices were present in the final population of all five rep-
licated experimental runs of set 1.4: one measuring the
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count of sites scoring in the 99th percentile of the CRP
matrix between positions 60 and 99, another measuring
the same quantity for Lrp sites between positions 20 and
59, an index describing the conformational mobility
between sites 80 and 90, and two indices representing the
count of GC dinucleotides and C mononucleotides
between positions 29 and 39. The first three indices are
easy to understand, as they correspond directly to features
(binding sites and a high CM region) that were deliber-
ately inserted into the positive sequence set. However, the
third index is less clear until the Lrp sites from RegulonDB
are examined in detail: these sites are G+C poor in general,
and of the 72 × 11 = 792 dinucleotides contained in the
full set of Lrp binding sites, only 20 of these are GC steps.

If all 16 possible dinucleotides were present with equal
frequencies, then the pair would be present 49 or 50
times, so GC is strongly underrepresented in this data set.
Thus, it appears that the GC content in this region is
included in many OGA Chromosomes because it is
another indicator of the presence or absence of the Lrp
binding site in this region.

Experiment 2 – σ70 positive set
The second experiment tested the ability of GANN to dis-
tinguish between the 250 unmodified intergenic
sequences described earlier, and a set of sequences con-
taining binding sites that are recognized by the 'house-
keeping' σ70 subunit of RNA polymerase in E. coli. The 212

Maximum predictive accuracy of OGA Chromosomes on the generalization set in Experiment 1Figure 3
Maximum predictive accuracy of OGA Chromosomes on the generalization set in Experiment 1. Mean ± standard deviations 
are shown for the five replicates of the experimental (E) and negative control (N) runs for the four data sets (1.1 to 1.4) used.
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promoter-containing sequences in the positive set were
extracted from a larger set defined in [37]. Where multiple
promoter sequences were identified in a single upstream
region, one of these sequences was chosen at random for
inclusion in the positive set. All sequences in this experi-
ment were 100 nt in length, and the positive set sequences
were aligned at the transcription start sites of the relevant
promoters. The -35 box (consensus 'TTGACA') was typi-
cally contained between positions 40 and 49 in the
sequence, while the Pribnow box (consensus 'TATAAT')
was located approximately between positions 65 and 70
in the positive sequences.

Indices were constructed in a similar manner as in Exper-
iment 1. Separate PSSMs for the -10 and -35 boxes recog-
nized by σ70 were constructed from 250 promoter
sequences in the data set, again with background frequen-
cies of 25% for each nucleotide. As with CRP and Lrp

above, the 99th, 95th, 90th and 80th percentile scores were
generated for the -10 and -35 boxes from a set of random
sequences, though only 1000 random sequences were
generated for each case. Since the two halves of the σ70

consensus sequence are only six bases in length, indices
based on PSSM matches for a window size of 10 nt as well
as 20 nt and 40 nt were calculated. Indices of conforma-
tional mobility and k-mer frequency were calculated as in
Experiment 1 above. A total of 618 standardized indices
were generated in this experiment: 360 describing k-mer
counts, 222 describing the counts of matches to the -10
and -35 PSSMs at different thresholds, and 36 describing
the conformational mobility of different windows of
sequence. Five sets of experiments were performed, with
five experimental and five negative control runs in each.
All sets (2.1 to 2.5) included the k-mer count indices, and
these were the only indices considered in set 2.1. Sets 2.2
and 2.3 also included the -35 and -10 PSSMs respectively,

Change in the mean (squares), maximum (triangles) and minimum (circles) generalization scores for the 600 OGA Chromo-somes in each of 30 training rounds for set 1.4Figure 4
Change in the mean (squares), maximum (triangles) and minimum (circles) generalization scores for the 600 OGA Chromo-
somes in each of 30 training rounds for set 1.4. Plotted values represent the mean of each value across all 5 replicates of either 
the experimental (filled shapes, solid line) or negative control runs (empty shapes, dashed line).
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while set 2.4 included both. All 618 indices were consid-
ered by set 2.5.

Runs were performed as in Experiment 1 above, with the
exception of the OGA Chromosome population size.
With 618 indices in total, the formula described at the
beginning of this section yielded a recommendation of
772.5 OGA Chromosomes per generation, which was
rounded up to 800 and applied to all five sets.

The mean of the best generalization scores achieved in
each replicate over 30 rounds of OGA evaluation and
selection is shown in Figure 5. Remarkably, there was no
substantial difference between any of the experimental
sets, which yielded mean predictive accuracies between
0.828 for set 2.2 and 0.843 for set 2.5. This range was
smaller than that of the predictive accuracies of the five
negative control treatments, which ranged from 0.701 for
set 2.2 to 0.737 for set 2.4. No clear trend exists for either
the experimental or negative control sets, suggesting that

the CM and PSSM indices did not yield any improvement
in predictive accuracy over the k-mer counts alone, and
that the inclusion of the σ70 PSSMs did not yield a more-
precise model of the promoter sequence.

While the predictive accuracy did not change across mul-
tiple sets of experiments, the type of indices that were
selected by the OGA varied from set to set. The most suc-
cessful index overall described the frequency of the dinu-
cleotide 'TA' between positions 65 and 74, which
corresponded to the position of the Pribnow box in the
positive set sequences. This index was the only one
present in all five replicates of sets 2.1, 2.3 and 2.4 after 30
rounds of OGA training, and was one of only three such
indices for set 2.2. The other two indices that were
retained by all five replicates of set 2.2 described the fre-
quency of TA between positions 60 and 69, and the fre-
quency of CA between positions 55 and 64. No single
index was retained in all five replicate runs of set 2.5. In
all sets that included PSSM representations, the appropri-

Maximum predictive accuracy of OGA Chromosomes on the generalization set in Experiment 2Figure 5
Maximum predictive accuracy of OGA Chromosomes on the generalization set in Experiment 2. Mean ± standard deviations 
are shown for the five replicates of the experimental (E) and negative control (N) runs for the five data sets (2.1 to 2.5) used.
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ate PSSM component(s) were always retained in four out
of five replicated runs. While PSSMs with a very high score
threshold (99th percentile) were favoured in Experiment
1, the PSSMs most commonly retained in the σ70 experi-
ments favoured lower percentile thresholds, with a
roughly even distribution of indices representing the 95th,
90th and 80th percentiles. This effect may be due to greater
degeneracy of σ70 sites relative to the CRP and Lrp sites
modelled earlier. Finally, four out of five replicate
experimental runs of set 2.5 retained a CM index that cov-
ered positions 30–50 in the sequence. While no single
index was retained in all five replicate runs of set 2.5, the
OGA Chromosomes with the highest generalization
scores all contained at least one instance of a PSSM for
each of the two halves of the σ70 consensus and a flexibil-
ity feature. Thus, more-selective indices such as those
based on PSSMs were included in the majority of OGA
Chromosomes when they were present in the experimen-
tal set, even if the gain in predictive accuracy was
marginal.

Conclusion
We have explored several features of GANN, most notably
the ability to build classification rules for positive set
members that form natural subsets, and the capacity to
search through large sets of DNA sequence and structural
indices to find combinations that yield optimal predictive
accuracy. Our generalization accuracy of ~84% on the σ70

promoter set is similar to the sensitivity of 86% and
specificity of 85% reported by [38], though these results
may not be directly comparable due to differences in the
size of the data set and the definition of 'negative' exam-
ples. While our use of PSSMs in these experiments implies
acceptance of the statistical mechanical theory of binding
sites [39], GANN could also be used to build models that
take into account interactions between individual resi-
dues within a binding site. The model thus constructed
could then be compared against a traditional PSSM to see
if better predictive accuracy is obtained on a test set of
sequences. In focusing on the generation and testing of
combinations of indices, we have not examined the per-
formance of GANN when ANN architectural parameters
are optimised alongside index combinations. One
approach that avoids dealing with too many interactions
at once can be to first use GANN to screen a large set of
indices and generate a smaller list of indices with predic-
tive power, and to perform a subsequent run where this
smaller set of indices are examined in combination with
variable ANN parameters.

In Experiment 1, we found that indices with mean values
that are not close to zero should be standardized. A disad-
vantage of this approach is that standardization of a col-
umn of values is entirely sample dependent, since
different finite samples from the same population of val-

ues will typically have different means and standard devi-
ations, which may limit the accuracy of an ANN trained
on one sample that is used to classify other subsamples
from the same population. If standardization is to be
applied, then there should be sufficient values in each
index to yield a stable estimate of the population mean, as
indicated with a low standard error. This is of particular
concern since biological sequence samples often do not
represent a random sample of all possible sequences,
leading to biased estimates of sample mean and standard
deviation.

The two primary goals of GANN are to allow multiple
alternative representations of DNA features, and to permit
the discovery of important combinations of these features
through the hybrid genetic algorithm / neural network
approach. A long-term goal is to use GANN to identify
important combinations of motifs predicted from pro-
grams such as PatSer [40], which would permit the appli-
cation of GANN to the task of identifying complex
regulatory features in multicellular eukaryotes. The soft-
ware packages are released under the GNU GPL and have
been successfully tested and run on Win32 systems and
on several flavours of UNIX. Complete documentation for
GANN and the key files used in the experiments described
in this manuscript are available at the project Web site.

Availability and requirements
- Project name: GANN

- Project home page: http://bioinformatics.org.au/gann/

- Operating systems: Win32, UNIX

- Programming language: C++, Perl

- Other requirements: none

- License: GNU GPL

- Any restrictions to use by non-academics: none
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