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Abstract
Background: There are currently a number of competing techniques for low-level processing of
oligonucleotide array data. The choice of technique has a profound effect on subsequent statistical
analyses, but there is no method to assess whether a particular technique is appropriate for a
specific data set, without reference to external data.

Results: We analyzed coregulation between genes in order to detect insufficient normalization
between arrays, where coregulation is measured in terms of statistical correlation. In a large
collection of genes, a random pair of genes should have on average zero correlation, hence allowing
a correlation test. For all data sets that we evaluated, and the three most commonly used low-level
processing procedures including MAS5, RMA and MBEI, the housekeeping-gene normalization
failed the test. For a real clinical data set, RMA and MBEI showed significant correlation for absent
genes. We also found that a second round of normalization on the probe set level improved
normalization significantly throughout.

Conclusion: Previous evaluation of low-level processing in the literature has been limited to
artificial spike-in and mixture data sets. In the absence of a known gold-standard, the correlation
criterion allows us to assess the appropriateness of low-level processing of a specific data set and
the success of normalization for subsets of genes.

Background
The spread of microarray technology has made possible
the routine and simultaneous measurement of expression
profiles for tens of thousands of genes. In the case of pho-
tolithographically synthesized high-density oligonucle-
otide arrays as described in [1], the technology for
hybridizing RNA on chips and quantitating fluoresence-
intensity data has been highly standardized and auto-

mated. The results are then related to the biology of inter-
est, both through exploratory methods (e.g. [2]) and a
large and growing number of sophisticated prediction and
classification algorithms (e.g. [3]). Yet the very first step
on which these procedures rely is still open to discussion:
the derivation of a numerical summary value that is both
representative of a gene's relative expression level and

Published: 31 March 2005

BMC Bioinformatics 2005, 6:80 doi:10.1186/1471-2105-6-80

Received: 08 December 2004
Accepted: 31 March 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/80

© 2005 Ploner et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 20
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/6/80
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15799785
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2005, 6:80 http://www.biomedcentral.com/1471-2105/6/80
reasonably free of technical variation, summarily referred
to as low-level analysis.

The need for a summary function is due to the setup of
high-density oligonucleotide arrays, where each gene is
probed by a set of paired oligonucleotides: one of each
pair matches the target sequence on the probed gene per-
fectly (perfect match or PM oligo), the other has one
altered central base-pair (mismatch or MM oligo), where
the MMs serve to establish a reference for non-specific
hybridisation. While the full set of PMs has been used suc-
cessfully for detecting differential expression [4], there is
usually a strong interest in having one number that repre-
sents the relative abundance of a gene on a chip. The most
common summary measures use a non-model-based
robust averaging of measurements in a probe set, such as
Affymetrix's MAS5 expression value [5], or a model-based
expression index (MBEI [6]) or a log-additive robust-mul-
tichip-average (RMA [7]) across chips.

The second crucial aspect of low-level analysis is the con-
trol of technical variation between chips, which is intro-
duced by the measurement process during sample
preparation, labelling, hybridization, and scanning. Tech-
nical variation of this kind and the need for a corrective
normalization procedure are not specific to high-density
oligonucleotide arrays, but are a general feature of mRNA
measurement, e.g. for cDNA microarrays [8], northern-
blot analysis or RT-PCR [9]. Numerous procedures have
been suggested, differing in their assumptions on what
feature of the data remains constant across chips and can
therefore be used for normalization [10].

Comparative evaluation of different approaches to low-
level analysis has so far been limited to artificial data sets,
where differential expression is due to spiked-in RNA or
mixtures and dilutions of RNA from different sources
[4,10,11]. This has the obvious advantage that the true
expression ratios are known (up to experimental error).
Consequently, different approaches can be compared in
regard to bias (when estimating fold change) and variance
(when testing for differential expression). Results so far
indicate that there is generally a trade-off between the two,
and it seems fair to say that no current method is optimal
under all circumstances.

The choice of low-level analysis and especially the choice
of normalization have severe impact on the subsequent
analysis of the expression data [12]. Given the wide range
of methods available, it would be useful to have a method
for assessing their relative merits for a concrete data set,
without reference to an external spike-in or dilution data
set. This is especially true if we have to assume that our
data set is not as well behaved as artificial data, either in
terms of the percentage of differentially expressed genes or

in terms of RNA quality, or both, as for the clinical data set
on breast cancer described in the Methods section. In this
paper, we propose that by studying coregulation or corre-
lations between random pairs of genes, we can compare
different summary measures and assess the effect of differ-
ent normalization procedures. Our underlying hypothesis
is that given a modern large-scale chip covering a large
percentage of a species' genome, randomly selected pairs
of genes will be on average uncorrelated. Note that we do
not claim the absence of all biological correlation
between genes, but rather that the number of connections
between genes in regulatory pathways is small compared
to the number of all possible combinations of genes; this
argument is given more detail in the Discussion. Conse-
quently, a low-level analysis strategy will be deemed suit-
able for a given data set, if the resulting normalized
expression values are on average uncorrelated for ran-
domly chosen pairs of genes. Lack of correlation is not
assessed via formal tests, but by easily adaptable graphical
tools that do not rely on stringent conditions for validity.

We proceed as follows: first, we establish relationships
between lack of normalization and correlations between
randomly selected genes for three important summary
measures; then we show that the default normalization
schemes associated with these summary measures do
remove the correlations to a large degree, but not com-
pletely, with varying amounts of residual correlation. We
also show that where available, housekeeping gene nor-
malization is inferior to default normalization in remov-
ing random correlation, and we relate random correlation
to the number of unexpressed genes in the data. We con-
clude by discussing the results and the underlying
assumption of our approach as well as considerations for
its practical implementation, and point out both limita-
tions and possible extensions.

Results
Lack of normalization is associated with random 
correlation
We first calculated raw unnormalized MAS5, RMA, and
MBEI expression values for the breast cancer, dilution,
and spike-in data sets as described in the Methods section.
The breast cancer data set is an example of a clinical data
set from a real patient population, which is expected to
have greater biological variation than the dilution and
spike-in data sets. We then computed the Pearson correla-
tion coefficients for 5000 random pairs of probes for each
data set.

As shown in the upper part of Figure 1, the distributions
of the correlation coefficients are centered far away from
zero for each data set and expression measure. There is
clearly a large amount of excess correlation that is unre-
lated to biological relationships between genes. The
Page 2 of 20
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:80 http://www.biomedcentral.com/1471-2105/6/80
Correlations between the unnormalized expression values of 5000 randomly selected pairs of genesFigure 1
Correlations between the unnormalized expression values of 5000 randomly selected pairs of genes. Top: The distribution of 
the correlation coefficients is centered far away from zero for all expression measures and data sets. Bottom: Scatterplots of 
the correlations versus the product of the standard deviations of the genes for the randomly selected pairs. Local mean corre-
lations are shown in blue and indicate that correlations decrease with variability. Shown in red is a simple model for lack of 
normalization that was fitted to the data.
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similarity of expression between random pairs of genes
across chips is due to technical differences between chips
which have not been normalized out. This is a striking
example of statistical confounding, where genes are
apparently correlated for some underlying non-biological
reason.

We have also found that the technical correlation between
genes is inversely related to the variability of the genes
involved. This can be seen in the lower part of Figure 1,
where the correlations between the random pairs are plot-
ted against the product of their standard deviations: the
average correlation (shown in blue) is highest for genes
with small standard deviations and decreases with
increasing variability. This fits well with what we would
expect from assuming a simple additive chip effect as the
source of chip-to-chip variation; even though this is cer-
tainly an oversimplification, the corresponding model fits
the general shape of the data well enough (shown as red
line in Figure 1; see Methods).

Default normalization removes excess correlation
We calculated the same expression measures for the same
data sets as above, but applied the default normalization
procedure suggested for each expression measure: for
MAS5 expression values, we normalized to the global
mean within each array, for RMA values, we applied the
quantile normalization, for MBEI we applied the invariant
set normalization, see Methods. The upper part of Figure
2 shows that in all cases, the default normalization step
was sufficient to remove excess correlation and center the
distribution of the correlation coefficients at zero.

In the following, we will refer to unwanted correlation
artifacts after normalization as residual correlation.
Although we observed no residual correlation for the
whole set of genes, there was no guarantee that this would
hold for certain subsets of genes: an ideal normalization
should remove the residual correlation for any sufficiently
large subset of genes. Therefore, we investigated the pat-
tern of correlations for pairs of genes with different inten-
sity and variability across chips.

Genes with low variability are poorly normalized by RMA 
and MBEI
We previously described the systematic inverse relation-
ship between correlation and variability. Although the
default normalizations strongly reduced the scale of this
correlation for all three expression measures, we still
found a significant relationship between correlations and
variability for RMA and MBEI, especially for the breast
cancer data. The lower part of Figure 2 shows the average
correlations between genes grouped by the product of
their standard deviations; this is the same summary line as
in Figure 1, but without plotting the individual points

contributing to it. The residual correlations were smaller
than before normalization, but the approximate confi-
dence intervals show them to be highly significant. The
shape of the relationship also changed and did no longer
follow any simple model.

We found that the residual correlations were both abso-
lutely larger and more significant for RMA than for MAS5.
For MAS5, only the subset of genes with the lowest varia-
bility showed significant correlation, all of it positive and
less than 0.05. In contrast, for RMA and MBEI, several of
the low-variability classes showed significant positive cor-
relation, up to 0.2 for the breast cancer data set. In addi-
tion, we observed small but significant negative
correlations for genes in the middle range of variability for
the breast cancer and dilution data.

Thus the analysis shows that RMA and MBEI do not pro-
vide properly normalized expression values for genes with
low variability, particularly for the clinical data. We will
explain this pattern later in terms of absence and intensity
of genes.

Normalization on housekeeping genes fails to remove 
excess correlation
The HGU133A chips that were used for the breast cancer
study contain 100 probes for generic housekeeping genes,
whose expression is assumed to be constant on average for
most or all experimental conditions. Consequently, it has
been suggested to use these housekeeping genes for nor-
malization, by adjusting the expression level on each chip
so that the average expression of the housekeeping genes
is constant across chips (see Methods). To date, there is no
convincing evidence whether this method actually works
or not, and it seems that some research groups are using it.

The correlation test given in Figure 3 shows that for the
MAS5, RMA and MBEI methods of computing expression
values, the housekeeping gene normalization failed to
remove the excess correlation. There was nonzero average
correlation over all genes, indicating a general failure of
normalization. The systematic inverse relationship
between correlation and variability were at higher levels
throughout the range of variability compared to the
default normalizations. The failure of housekeeping gene
normalization was particularly severe for RMA.

Note that even if the amount of residual correlation
shown in Figure 3 for MAS5 housekeeping-genenormal-
ized values looks small, the impact on the subsequent
high-level analysis can be serious. Figure 4 shows the dis-
tribution of 22283 gene-wise t-statistics for the house-
keeping-normalized and the global-mean-normalized
breast cancer data. Each t-statistic compares the mean
expression level between (a) postmenopausal women
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Correlations between the normalized expression values of the 5000 randomly selected pairs of genesFigure 2
Correlations between the normalized expression values of the 5000 randomly selected pairs of genes. The most commonly 
used normalization procedure was chosen for each expression measure: global mean normalization for MAS5, quantile normal-
ization for RMA, and invariant set normlization for MBEI, see Methods. Top: The distributions of the correlation coefficients 
are now centered at zero for all expression measures and data sets. Bottom: Summary curves plotting mean correlations ver-
sus median product of standard deviations for pairs of genes in non-overlapping intervals along the horizontal axis; 95% confi-
dence intervals are shown as vertical bars. Normalization has removed most of the technical correlation (as seen in the 
reduced vertical scale compared to Figure 1), but there are still systematic relationships between correlations and standard 
deviations for RMA and MBEI, which are most pronounced for the Breast Cancer data set.
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Correlations for the Breast Cancer data set normalized using a predefined set of 100 houskeeping genesFigure 3
Correlations for the Breast Cancer data set normalized using a predefined set of 100 houskeeping genes. The MAS5 expres-
sion values were normalized both before and after taking the logarithm, corresponding to MAS5 (raw) and MAS5 (log). The 
RMA and MBEI expression values were normalized after caculating the logarithmized expression values, see Methods. Top left: 
The distributions of the correlation coeffcients are not centered at zero. Top right and bottom: Mean correlations versus 
median product of standard deviations are shown as in Figure 2, comparing the residual correlation for the housekeeping nor-
malization and the default procedure for each expression measure (as indicated in the legends). Housekeeping normalization 
does much worse than the default in removing the systematic relationships. In case of the MAS5 values, both variants do worse 
than the default, and the normalization of the raw (un-logged) values doing worse than that of the logarithmized values.
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Distributions of t-statistics calculated from differently normalized MAS5 expression values in the Breast Cancer dataFigure 4
Distributions of t-statistics calculated from differently normalized MAS5 expression values in the Breast Cancer data. The nor-
malization procedures applied were the same as in Figure 3: global mean as default and housekeeping normalization before and 
after taking logarithms (raw and log respectively in the legend.) The t-statistics compare expression values between users and 
non-users of hormone replacement therapy (HRT) in the sample. The density curves show the smoothed histograms of the 
test statistics for all 22283 probe sets on the chip. The default curve is centered at zero, indicating balanced up- and down-reg-
ulation in reaction to HRT, whereas the curves for the housekeeping-normalized data are shifted to the left, indicating a mas-
sive down-regulation of thousands of genes in HRT users, which is biologically much less plausible. This effect is more 
pronounced for the raw than for the logged normalization, same as with the residual correlations shown in Figure 3.
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who are users of hormone replacement therapy (HRT)
versus (b) those who are not; see (for personal communi-
cations see Hall P, Ploner A, Bjöhle J et al.). The t-statistics
for the housekeeping-normalized values are globally
shifted below zero, indicating a genome-wide down-regu-
lation of thousands of genes. In contrast, the t-statistics
based on global-mean-normalized values are centered
around zero, suggesting a much less pronounced differ-
ence between HRT users and non-users. In this example,
the global-mean-normalized results are biologically much
more plausible.

Absent genes are poorly normalized by RMA and MBEI
In each tissue, only a limited number of genes will be
expressed in quantities above the detection limit, usually
much fewer than the number of genes available on mod-
ern large-scale chips. The purpose of pairing PM and MM
probes is to detect which genes are reliably expressed
(present genes), and for which genes the observed inten-
sities are dominated by technical and biological noise
(absent genes). The most common method of classifying
genes as either present or absent is based a non-parametric
test for the PM/MM pairs (Affymetrix's detection calls
[13]).

There is currently no consensus on how to use these detec-
tion calls. All methods report expression values of all
genes including the absent genes, so in principle the ana-
lyst might ignore the issue of absent genes and treat all
genes as present. Intuitively the absent genes will be meas-
ured with a lot of noise, but will they be properly normal-
ized, i.e., will the measurements be unbiased?

In order to study the success of normalization of meas-
ured expression of absent genes, we classified all genes as
either present or absent based on Affymetrix's present calls
(see Methods). For all data sets, genes were most fre-
quently either completely absent or completely present
across all chips (Figure 5).

Consequently, the pairs of genes in our random samples
could naturally be divided into three classes: those averag-
ing few or no present calls between them, those averaging
almost a 100% present calls, and those averaging around
50% present calls (upper part of Figure 6). These classes
correspond naturally to pairs where both genes were
mostly absent, or both mostly present, or where one was
mostly absent and the other mostly present; by cutting at
33% and 67% average present calls as indicated in the his-
tograms in the upper part of Figure 6, we managed to sep-
arate these groups evenly.

To provide more information, the average correlation for
each subset was again plotted against variability; see lower
half of Figure 6. Generally, the average correlation was

highest for pairs of absent genes, indicating failure of nor-
malization of measured expression of absent genes. This
was most serious for RMA: excess correlations were
consistently and strongly positive for absent pairs and
negative for absent/present pairs for all data sets. Only for
present pairs, correlations were mostly non-significant
and small in absolute value. Correlations for MAS5 were
throughout smaller and less significant, with no clear pat-
tern between the three groups of pairs. MBEI showed the
same pattern as RMA, though somewhat weaker.

This result implies that, at least in case of RMA and MBEI,
measured expressions of absent genes were poorly nor-
malized, so analyses of absent genes should be avoided or
at least viewed with caution. This interpretation is sup-
ported by Figure 7, which shows the distribution of t-sta-
tistics comparing HRT-users and non-users as above, but
only for genes that were not detected (absent) on all 159
chips (n = 4371); the distributions for MBEI and espe-
cially RMA indicate strong and wide-spread regulatory
effects of HRT, which seems biologically implausible,
especially for genes measured at the detection limit
throughout the data set.

While the absence or presence of a gene could be assessed
via other potential quality control measures, the Affyme-
trix detection call seems to provide useful information for
gene filtering.

Note that the summary curves of mean correlation shown
in Figure 2 are the weighted means of the curves by pres-
ence status shown in Figure 6. We can, for example,
explain that the high correlations at low variability for
RMA in Figure 2 are mainly due to absent/absent pairs in
the expression data. The slight negative dip for genes at
the middle range of variability in Figure 2 is the effect of
an incomplete cancelation between the positive correla-
tions for absent/absent pairs and the negative correlations
for absent/present pairs in this range.

Residual correlation is only weakly related to the 
expression level of genes
Detection of a gene is trivially related to the relative abun-
dance of its mRNA in the sample. Thus, genes that are
expressed at the lower end of the detection range are much
more likely to be absent. This might indicate that the rela-
tionship between the absence/presence of genes and their
residual correlation is in fact due to their difference in
abundance, and that by focusing on genes with a mini-
mum expression level, we could avoid residual correlation
altogether.

Figure 8 shows that this is not the case: when plotting cor-
relations against standard deviations grouped by intensity
in the breast cancer data, we found that the pattern of
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Percentage of Affymetrix present calls across all chips for all three data setsFigure 5
Percentage of Affymetrix present calls across all chips for all three data sets. For each probe set, the percentage of present 
calls across all chips in its data set was calculated. The histograms show the frequencies of these percentages. For each data set, 
about 30% of all probes are absent on all chips, and between 20 and 30% are present on all chips, with the balance equally dis-
tributed between the extremes.
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Correlations of randomly sampled pairs of genes by percentage of Affymetrix present callsFigure 6
Correlations of randomly sampled pairs of genes by percentage of Affymetrix present calls. Top: Histograms of the average 
number of present calls for the 5000 pairs of genes, showing three peaks at the ends and in the middle of the range. The red 
lines seperate the peaks and indicate the grouping of the percentages used in the bottom part of the figure. Looking at Figure 5, 
we identify the groups with pairs of genes where both genes are mostly absent (left peak), where both genes are mostly 
present (right peak), and where one gene is mostly absent and the other mostly present (central peak). Bottom: Summary 
curves for the correlations as a function of the product of standard deviations. The different curves correspond to the three 
groups of pairs of genes as identified in the histograms above. Note how correlations are consistently positive for absent/
absent pairs and consistently negative for absent/present pairs in case of RMA and MBEI. Only the present/present pairs appear 
to be reasonably uncorrelated throughout.

Average % present calls per pair of genes

%
 P

ai
rs

0

5

10

15

20

0 20 40 60 80 100

Breast Cancer

0 20 40 60 80 100

Dilution

0 20 40 60 80 100

Spikein

Standard Deviation

C
or

re
la

tio
n

●
● ● ●

●
● ●

●

0.04 0.16 0.64

−0.2

−0.1

0.0

0.1

0.2

Breast Cancer
MAS5

●
● ● ●● ● ● ●

0.01 0.04 0.16 0.64 2.56

Dilution
MAS5

● ● ● ●●
● ●

●

0.04 0.16 0.64 2.56

Spikein
MAS5

●
●

●

●

●

●
●

●

0.01 0.04 0.16 0.64 2.56

Breast Cancer
RMA

●
● ●

●

● ● ●
●

0.01 0.04 0.16 0.64 2.56

Dilution
RMA

●

● ● ●

●

● ●

●

0.04 0.16 0.64 2.56

−0.2

−0.1

0.0

0.1

0.2

Spikein
RMA

●
●

●

●
●

● ●
●

0.01 0.04 0.16 0.64

−0.2

−0.1

0.0

0.1

0.2

Breast Cancer
MBEI

● ● ●

●
● ● ● ●

0.01 0.04 0.16 0.64 2.56

Dilution
MBEI

●
● ●

●

●

● ●

●

0.01 0.04 0.16 0.64 2.56

Spikein
MBEI

Absent/Absent Absent/Present Present/Present● ●
Page 10 of 20
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:80 http://www.biomedcentral.com/1471-2105/6/80
Distributions of t-statistics calculated from different expression measures for genes that are completely absent in the Breast Cancer dataFigure 7
Distributions of t-statistics calculated from different expression measures for genes that are completely absent in the Breast 
Cancer data. The same default normalization procedures as in Figure 2 were applied. The t-statistics compare expression val-
ues between users and non-users of hormone replacement therapy (HRT) in the sample as in Figure 4. The density curves 
show the smoothed histograms of the test statistics for 4371 probe sets that had absent calls on all 159 chips. The MAS5 curve 
is centered at zero and close to a standard normal distribution expected approximately if no gene is differentially expressed 
between HRT users and non-users. The RMA curve is strongly shifted to the left, indicating wide-spread down-regulation of 
numerous absent genes in non-users; the MBEI curve shows moderate asymmetry and heavy tails at both sides, indicating more 
moderate, but still common gene regulation. Given the low signal quality of these genes that were classified as absent through-
out the data set, small or no detectable regulation effects seem biologically most plausible.
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Correlations of the randomly sampled pairs of genes by percentage of present calls and mean intensityFigure 8
Correlations of the randomly sampled pairs of genes by percentage of present calls and mean intensity. The summary curves 
show the average correlation of the pairs of genes sampled from the breast cancer data. The differently colored curves corre-
spond to the groups of absent/absent, absent/present and present/present pairs that have been defined in the text and are 
shown in Figure 6. Additionally, the pairs of genes have been arranged by their average mean intensity across chips: the range 
of average intensities was split into three intervals with an equal number of pairs, from the lowest third on the left to the high-
est third on the right. Grouping the pairs by their absence/presence status yields distinctly different patterns of correlations for 
RMA and MBEI, these patterns are however highly consistent between the intensities.
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correlation depends more on the percentage of present
calls than on the intensity level. The pattern we saw previ-
ously in Figure 6 was observed at different levels of inten-
sity: (i) pairs where both genes are mostly absent tend to
be positively correlated, (ii) pairs with one gene mostly
absent and one gene mostly present tend to be negatively
correlated, and (iii) genes where both partners are mostly
present tend to be almost uncorrelated. This pattern is
most pronounced at low and medium intensities, and it is
stronger for RMA and MBEI, but it is consistently seen,
also at high intensities and for MAS5 values.

In summary it seems strongly preferable to define a gene
filter according to absent/present calls than according to
the gene intensity levels.

Note that correlation between the intensity and presence
of genes is reflected by the number of pairs that contribute
to each curve in Figure 8: there were relatively more
present/present gene pairs and less absent/absent pairs at
high intensities, and vice versa for low intensities; curves
with lower pair counts have correspondingly wider confi-
dence intervals.

Filtering out absent genes reduces residual correlation
Figure 9 demonstrates for the breast cancer data how the
filtering of genes with a large number of absent calls can
reduce residual correlation for normalized expression
values. In this case, the 5000 pairs of genes were randomly
sampled from subsets of genes with an increasing percent-
age of present calls. Already by excluding genes that are
always absent, the level of systematic correlation was
reduced below 0.04 for all expression measures, though
the pattern of positive correlations for genes with low var-
iability was still present; by considering only genes with at
least 20% present calls, we found that this pattern is
reversed for RMA and MBEI, but not for MAS5. Further
restrictions did not change this pattern, but increased the
absolute level of residual correlation.

Discussion
The assumption of zero correlation
As some genes are connected in biochemical pathways,
the hypothesis that random pairs of genes will be on aver-
age uncoregulated or uncorrelated seems counterintuitive,
but it is really a question of scale. For a moderately large
chip of 10000 probe sets, there are about 50 million pos-
sible pairwise correlations, the huge majority of which
will be extremely unlikely to be biological. Any random
sample of probe set pairs will contain only a small per-
centage of pairs representing an unequivocal biological
relationship, and additionally, negative and positive cor-
relations will tend to cancel each other out during averag-
ing. We can demonstrate this for the breast cancer data set.
On the Affymetrix HGU133A chip, we find represented

124 KEGG pathways, organising 3137 probe sets or 14%
of all probe sets on the chip ([14], build 2004/03). This
constitutes an as highly-organised subset of the genome as
we can currently hope to select, with numerous probe sets
appearing in multiple pathways, thereby establishing
numerous cross-correlations between pathways. Figure 10
shows the boxplots of correlations for 5000 randomly
selected pairs of genes from this subset, firmly centered at
zero for all three expression measures. So even for this
special subset of many coregulated genes, the average cor-
relation of a random pair of genes is zero.

The simple model of lack of normalization
The model described in the Methods section only assumes
differences in mean intensity between chips. This corre-
sponds to the simple global mean normalization
commonly used for the MAS5 expression values. Figure 1
confirms that this model (shown in red) describes the
average behavior of the correlations (shown in blue)
adequately for all data sets, suggesting that global mean
normalization is indeed suitable for MAS5 data.

Apart from MAS5, the model fits adequately only for the
RMA-based correlations in the breast cancer data, suggest-
ing that global mean normalization on the probe-set level
may be attempted in this case, but that it is not generally
suitable for RMA and MBEI data. Still, Figure 1 shows that
correlations decrease systematically with the variability of
the gene pairs for all expression measures, and it may be
possible to describe this relationship by extending the
simple model, e.g. by allowing the array effect θ in Equa-
tion 1 to be correlated with the gene effects ψi.

The bad performance of housekeeping genes
The use of housekeeping genes seems reasonable when
studying a small number of genes under controlled exper-
imental settings, or where the choice of one or several
housekeeping genes can be motivated biologically. For
the breast cancer data, which was collected in a real clini-
cal setting, where samples are both genetically heteroge-
nous and potentially genomically unstable, it is much
harder to believe in the common expression of house-
keeping genes. Therefore we argue that the failure of
housekeeping normalization in this example is not due to
the procedure per se, but to our inability to identify a suit-
able set of housekeeping genes, and the use of the generic
set of genes suggested by the chip manufacturer. Even for
northern-blot analysis and RT-PCR, where housekeeping
normalization is the default, an uncritical use of house-
keeping genes has been shown to lead to unacceptable
results [9].

Comparison of MAS5, RMA and MBEI
It has been suggested that the generally much lower varia-
bility of RMA and MBEI for low-intensity probe sets is a
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Correlations of pairs of genes sampled from subsets with an increasing minimum percentage of present calls for probe setsFigure 9
Correlations of pairs of genes sampled from subsets with an increasing minimum percentage of present calls for probe sets. 
From the breast cancer data, 5000 pairs of genes were randomly sampled from the subset of probe sets that were present on 
at least one of the chips, the subset of probe sets that were present on at least 20% of the chips etc., finally from the subset of 
probe sets present on all chips. The three curves represent the three expression measures. Excluding the probe sets that are 
always absent already reduces the residual correlation considerably, excluding the probe sets that are more than 80% absent 
breaks the pattern of highest correlation at smallest variability for RMA and MBEI seen in Figures 2, 3, 6, and 7. Using only 
probe sets that are always present however leads to a notable increase in residual correlation, especially for MAS5.
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clear advantage of these model-based expression meas-
ures over the simpler MAS5 [7,10]. Our results however
indicate that this low variability may well be misleading:
RMA and MBEI values for absent probe sets, which consti-

tute the vast majority of low-intensity probe sets, show the
strongest residual correlation. This indicates that RMA
and MBEI values for low-intensity probe sets that are
reported without regard for their absence/presence status

Correlations for 5000 random pairs of probe sets selected from KEGG pathwaysFigure 10
Correlations for 5000 random pairs of probe sets selected from KEGG pathways. Pairs were sampled from the subset of 
probe sets in the breast cancer data that appear in at least one KEGG pathway. Even for this smaller (n = 3137) and well-con-
nected subset, the correlations are centered around zero.
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will be compromised by lack of normalization (Figures 6
and 8). It seems therefore that RMA and MBEI estimate
expression of low-abundance genes in a biased, but very
precise manner. Minimizing variability as much as
possible only makes sense for unbiased estimato rs: if the
variability of the estimate becomes small relative to the
bias, we get a dangerous sense of confidence in an esti-
mate that is not quite what we think it is. In the same way,
the large variability of the MAS5 values at low intensities
may well hide an amount of bias comparable to that of
RMA and MBEI: as long as the variability of MAS5 is large
compared to the bias, we will not be lead to make inap-
propriate conclusions based on possibly biased estimates;
in that sense the MAS5 estimates for low-intensity genes
are more honest and better normalized than the corre-
sponding RMA and MBEI values. It is interesting to note
that Bolstad et al. have already described the choice
between different low-level approaches in terms of bias
(when estimating fold change between conditions) and
variance (when testing for differential expression between
conditions) [10]. Our results suggest that a) the same
trade-off applies when looking directly at the expression
values, instead of comparing aggregated fold changes and
test statistics between different biological conditions, and
b) the trade-off is more disadvantageous for the model-
based expression measures than generally thought.

The underlying lack of normalization of RMA and MBEI
for absent genes could be due to the computation of the
expression values, or the normalization step, or a combi-
nation thereof. Preliminary results (not shown) indicate
that the first step, the summarization of the individual
probe intensities through the expression measure, seems
to be responsible in both cases. If this can be confirmed, a
possible explanation would be that the models used (log-
linear for RMA and and multiplicative for MBEI) may not
be appropriate for absent genes (but see also below).

Improving low-level analysis
In a recent paper, Choe et al. have evaluated the perform-
ance of a wide range of low-level analysis methods and
test procedures in detecting differential expression in a
carefully constructed spike-in data set [15]. They report
70% sensitivity at 10% false discovery rate for their top-
ranking combinations clearly there is still ample room for
improvement in current low-level methodology. We want
to outline here shortly how our approach could be used to
guide this effort.

The authors of [15] found that an additional second step
of normalization on the probe-set level improved the per-
formance of MAS5, RMA, and MBEI in detecting differen-
tial expression (indeed, MAS5 with the second round of
normalization was one of the top-ranking combinations).
We have applied the same renormalization to our data

sets (see Methods for details), the results are shown in Fig-
ure 11.

We found that renormalization reduced residual correla-
tion for all data sets and all expression measures. Indeed,
for MAS5 the correlations are not significantly different
from zero at any lag, indicating perfect normalization as
measured by our criterion. RMA and MBEI show strongly
reduced levels of residual correlation, but are still well
above the levels of the original MAS5 as seen in Figure 2.

It is interesting that the ranking of the original and renor-
malized expression measures in terms of normalization
quality (i.e. renormalized MAS5 is best, followed by the
original MAS5, followed by renormalized RMA and MBEI,
followed by the original RMA and MBEI) corresponds
closely to the ranking by performance in detecting differ-
ential expression found by Choe et al. ([15], Figure 7f).
This suggests that the lack of normalization that our
method is able to measure is indeed relevant for the abil-
ity to detect regulated genes.

Additionally, Figure 11 gives an indication of how the
newly renormalized expression measures may be further
improved. E.g. for the renormalized MAS5, there is clearly
little need to work on the normalization aspect; modifica-
tions of the expression measure could instead aim at
reducing the variability of MAS5 values, possibly by using
the information in the MM probes as weights in the sum-
mary measure.

Renormalized RMA and MBEI on the other hand still suf-
fer from insufficient normalization; as we perform already
normalization steps on both the probe and the probe set
level, it seems promising to focus on the intermediate
steps like the fitting of the multi-chip model and to study
whether these steps are prone to systematic biases.

Limitations
The only condition for using the correlation test is a fairly
large chip, with probes covering a wide range of the
genome under study. For chips that are designed to study
only a few related pathways or highly specialized tissues
with only a couple of hundred probe sets, the zero corre-
lation assumption may not hold, because the genes from
which we want to sample randomly have already been
pre-selected by the chip design. The example of the KEGG
probe sets on the U133A chip suggests though that several
thousand probe sets organized in a hundred and some
pathways is a safe size.

It should be pointed out that this approach is not limited
to high-density oligonucleotide chips. The same argument
for between-chip normalization holds in principle for
cDNA or any other two-color microarray system, although
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Correlations after renormalizing the expression measures using the pairwise loess normalization on the probe set levelFigure 11
Correlations after renormalizing the expression measures using the pairwise loess normalization on the probe set level. Except 
for the second normalization step, this is identical to the lower half of Figure 2, including the scaling of the axis to facilitate the 
comparison. The MAS5 values appear now well normalized throughout, whereas RMA and MBEI still show a similar pattern of 
residual correlation, although on a clearly reduced level.
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the usual intensity-based normalization between dye
channels on the same chip simplifies the situation some-
what [16].

Conclusion
We have presented a simple graphical method for assess-
ing the quality of low-level analysis of oligonucleotide
array expression data. The main advantage of our
approach lies in the fact that we do not make use of exter-
nal reference data, but instead exploit the internal correla-
tion structure of large expression data sets. This allows us
to select, evaluate, and modify low-level procedures for
specific data sets. In order to demonstrate the use of and
usefulness of our approach, we have applied it to three
large data sets and three widely used low-level methods
(MAS5, RMA, MBEI). We found a number of interesting
results: a) For a large breast cancer data set, normalizing to
housekeeping genes does not work at all, regardless of
expression measure; b) normalization quality for all three
data sets and all three expression measures is closer related
to the absence/presence status of a probe set than to its
intensity level; c) RMA and MBEI normalize absent probe
sets poorly for all three data sets; d) removing pre-domi-
nantly absent probe sets improves normalization for all
data sets and all expression measures. The cutoff percent-
age of absent calls for a probe set to be included in the
analysis can be chosen based on our graphical criterion.
We have also evaluated the effect of a second round of
normalization on the probe set level data. We found that
this improved normalization significantly for all three
data sets, in a manner consistent with the observed
improvements in the detection of gene regulation [15].

Methods
Data
We used three data sets, two of which are publicly availa-
ble from GeneLogic [17]. (1) The dilution data set is a col-
lection of 75 HGU95Av2 chips, on which RNA from two
different sources (liver and nervous system) was hybrid-
ized in different concentrations and mixture ratios. (2)
The spike-in data set consists of 94 HGU95Avl chips, for
which eleven bacterial cRNA fragments were added in dif-
ferent concentrations and combinations to a base sample
from an AML cell line. Both of these data sets have been
widely used for assessing normalization methods and
expression measures [4,7,10].

In contrast the RNA for the third data set was extracted
from tumor tissue collected from a population-based
breast cancer cohort at Karolinska Hospital, Stockholm.
After processing the RNA, several quality control steps,
and screening the patients on medical criteria resulted in
data from 159 HGU133A chips. Details on data
preparation, patient selection, and the definition of clini-
cal parameters like hormone replacement therapy are

given in [for personal communications see Hall P, Ploner
A, Bjöhle J et al.].

Expression measures and normalization methods
MAS5 expression values were computed as described in
[5]. We used global mean normalization for the logged
expression values as default, assuming that the mean
across the logged expression values of all probes should
be constant across all chips, and adjusting the level of each
chip by adding a corrective constant to all probes. This is
roughly equivalent to using the standard Affymetrix
scaling factors on the raw data, but estimation of the cor-
rective term on the log-scale has been found to be less var-
iable [18]. The corrected log values were used for the
analysis.

For RMA, the individual PM probe values were back-
ground-corrected and quantilenormalized before com-
puting the expression values, as described in [7].

The computation of MBEI expression values followed [6]:
PM and MM values were normalized separately to a base-
line array of average PM and MM intensities. The baseline
array was obtained via smoothing an empirically identi-
fied set of rank-invariant probes. A multiplicative model
was fitted to the difference between normalized PM and
MM values. Expression values were logged, with non-pos-
itive values set to missing.

Housekeeping gene normalization was based on the
probes with suffix 2000_ on the HGU133A chip. The
same principle as with the global mean normalization
was employed, except that the correction constant was
based on the average of the housekeeping genes. For the
MAS5 values, two variants were considered: a) multiplica-
tive correction (scaling factor) of the un-logarithmized
expression values, referred to as 'raw housekeeping' in the
legends for Figures 3 and 4b) additive correction of the
logarithmized expression values, as for the global mean
normalization, referred to as ' log housekeeping' in the fig-
ure legends. Housekeeping normalization for RMA and
MBEI was done additively for the logarithmized expres-
sion values calculated from the unnormalized probe data;
therefore, these are also addressed as 'log housekeeping'
values in Figure 3.

The renormalization of the expression measures described
in the Discussion was performed as in [15], using the iter-
ated pairwise intensity-based normalization via smooth-
ing loess curves described previously in [10]. The
renormalization was performed at the probe set level on
the expression measures computed and normalized as
described above; correspondingly, renormalized RMA
and MBE values have been normalized on both the probe
level (originally) and the probe set level (second round),
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whereas MAS5 has been normalized twice on the probe
set level.

All computations were done using the open source statis-
tical software package R [19] and the package affy of the
Bioconductor project [20].

Calculation of correlations and summary curves
For each data set, we randomly selected 5000 pairs of
probe sets from the collection of probe sets available on
the different chip types. For each pair, we computed the
Pearson correlation coefficient between the two probe sets
across all chips in the underlying data set, resulting in a
random sample of 5000 correlation coefficients. At the
same time, we calculated for each pair of probe sets the
product of the two standard deviations across all chips in
the data set; the scatter plots in the lower part of Figure 1
show the resulting 5000 pairs of (product of standard
deviation, correlation).

The summary curves shown on top (like in Figure 1) or
instead (all other Figures) of the point scatter describe the
average behaviour of the scattered cloud. They were pro-
duced by taking the range of values for the product of the
standard deviations in the sample and splitting it into
intervals containing an equal number of observations,
typically around 500. For each interval, the mean of the
correlations was plotted against the median of the product
of standard deviations. The 95% confidence intervals of
the means shown from Figure 2 onwards were computed
based on normal approximation.

A simple model for lack of normalization
We assume as experimental unit one microarray chip with
the associated samples from the biological population
under study. Each chip yields observations yi for i = 1 ... n
genes specified by the array design. We can write this as a
random variable

Yi = θ + ψi + εi  (1)

where θ is a random array effect, ψi is a random gene
effect, and εi is the gene-specific measurement error. Note
that this assumes random gene effects only in so far as we
sample from the population, and we do not specify any
treatment or experimental structure.

We assume that the random components are independ-
ent, and that the errors have expectation zero. The covari-
ance between the observable expression values for two
genes then simplifies to

i.e. the covariance between the unobservable 'real' gene
expressions plus the variance of the array effect. Let's des-

ignate the variance of any Yi as . Now the correlations
between the observable expression values for two genes
can be written as

The first term is the contribution of the array effect to the
correlation, which is the source of the correlation artifact.
The second term varies across all possible pairs of genes,
and we expect it to have zero average. Thus we get the
inverse relationship

We can investigate this empirically. Given a set of micro-
arrays, we can take a sample of random pairs of genes (i,
j), then calculate their correlations rij and standard devia-
tions si and sj. Under our hypothesis of zero average corre-
lation and assuming that our simple model holds, the
underlying pattern in the plot of (sisj, rij) should follow
this inverse relationship.
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