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Abstract
Background: In plants, RNA editing is a process that converts specific cytidines to uridines and
uridines to cytidines in transcripts from virtually all mitochondrial protein-coding genes. There are
thousands of plant mitochondrial genes in the sequence databases, but sites of RNA editing have
not been determined for most. Accurate methods of RNA editing site prediction will be important
in filling in this information gap and could reduce or even eliminate the need for experimental
determination of editing sites for many sequences. Because RNA editing tends to increase protein
conservation across species by "correcting" codons that specify unconserved amino acids, this
principle can be used to predict editing sites by identifying positions where an RNA editing event
would increase the conservation of a protein to homologues from other plants. PREP-Mt takes this
approach to predict editing sites for any protein-coding gene in plant mitochondria.

Results: To test the general applicability of the PREP-Mt methodology, RNA editing sites were
predicted for 370 full-length or nearly full-length DNA sequences and then compared to the known
sites of RNA editing for these sequences. Of 60,263 cytidines in this test set, PREP-Mt correctly
classified 58,994 as either an edited or unedited site (accuracy = 97.9%). PREP-Mt properly
identified 3,038 of the 3,698 known sites of RNA editing (sensitivity = 82.2%) and 55,956 of the
56,565 known unedited sites (specificity = 98.9%). Accuracy and sensitivity increased to 98.7% and
94.7%, respectively, after excluding the 489 silent editing sites (which have no effect on protein
sequence or function) from the test set.

Conclusion: These results indicate that PREP-Mt is effective at identifying C to U RNA editing
sites in plant mitochondrial protein-coding genes. Thus, PREP-Mt should be useful in predicting
protein sequences for use in molecular, biochemical, and phylogenetic analyses. In addition, PREP-
Mt could be used to determine functionality of a mitochondrial gene or to identify particular
sequences with unusual editing properties. The PREP-Mt methodology should be applicable to any
system where RNA editing increases protein conservation across species.

Background
RNA editing is a type of RNA processing (such as polyade-
nylation, intron splicing, and 5' end-capping) that inserts,
deletes, or modifies nucleotides in an RNA transcript,
thereby changing the information encoded by the

genome. First discovered in trypanosome mitochondria
[1], RNA editing has since been observed in a range of
eukaryotes, including slime molds, amoeboid protozo-
ans, plants, animals, and fungi, and also in viruses [2,3].
In plants, RNA editing converts cytidines to uridines and
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uridines to cytidines in mitochondrial and plastid, but not
nuclear, transcripts. The frequency and type of conversion
in each organelle is highly lineage-specific [4-7]. In
angiosperms, for example, approximately 400 editing
sites (all C to U) have been found in the 30 to 40 mito-
chondrial protein-coding genes [8-10], but only about 30
C to U sites were seen across over 100 plastid genes [11-
13]. In contrast, both types of conversion are found with
high abundance in mitochondrial and plastid transcripts
of ferns and hornworts [4-6,14,15].

In all plant lineages, RNA editing most often alters the
amino acid sequence encoded by protein-coding genes,
but it can occasionally generate new start codons, create or
remove stop codons, or cause silent changes that do not
affect the protein sequence. RNA editing has also been
observed in tRNA genes, untranslated regions, and introns
[2], although the frequency of editing in these regions
appears to be much lower. One feature observed immedi-
ately upon the discovery of RNA editing in plants is that
edited transcripts code for proteins that are more con-
served across species than proteins predicted from
genomic DNA [16-18]. In fact, this tendency for codon
"correction" was one of the clues that led to the discovery
of RNA editing, since proteins predicted from early plant
mitochondrial DNA sequences contained biochemically
distinct amino acids at positions that are otherwise con-
served throughout eukaryotes [16-18]. These initial obser-
vations have been repeatedly confirmed in almost all
subsequent studies of editing in plants, with the most
notable exceptions occurring in pseudogenes [19-21],
which presumably have no selective constraints on their
editing sites.

Because of the changes induced by RNA editing, the pro-
tein sequences encoded by mature mitochondrial tran-
scripts are often quite different from what is encoded by
the genomic DNA. In order to correctly analyze plant
mitochondrial sequences in phylogenetic, molecular, or
biochemical studies, RNA editing information must be
known. Experimental determination, via direct compari-
son of the RNA transcript sequence and genomic DNA
sequence, is the de facto standard for identification of sites
of RNA editing. Given that these experimental analyses
take time and cost money, however, two general
approaches have been used to predict sites of RNA editing.
The first relies on the possibility that the sequence context
of an edited site contains information that signals the
editing machinery or associated specificity factors. Indeed,
experimental analyses of the surrounding sequence con-
text indicate that nucleotides upstream and downstream
are important in specifying sites of editing [22,23]. Fur-
thermore, over 90% of editing sites have a pyrimidine at
the adjacent upstream nucleotide [8,24]. Unfortunately,
attempts at identifying consensus motifs beyond this one

important nucleotide have met with little success
[8,24,25]. The second predictive approach exploits the
tendency of RNA editing to increase protein conservation
across diverse taxa. Because of this "correcting" nature of
RNA editing, it is possible to scan a protein sequence
alignment for unconserved amino acids. Very often, when
these unconserved amino acids have the potential to be
corrected by RNA editing, they are actually edited. This
approach has been shown to be very successful in predict-
ing sites of RNA editing for several genes [6,25,26], and
has also been used to infer the absence of RNA editing in
the entire mitochondrial genomes of Marchantia polymor-
pha, a complex thalloid liverwort, and the green algae
Chara vulgaris and Chaetosphaeridium globosum [27-29].
Limited experimental evidence has so far corroborated the
lack of editing in these lineages [4-6,30].

In order to test the generality of the second predictive
approach for any plant mitochondrial protein-coding
gene, the PREP-Mt program was designed to predict edit-
ing sites using protein sequence comparisons and the cor-
recting nature of RNA editing. Because the test results
indicate that PREP-Mt is both fast and accurate, an online
tool was also developed [31]. This resource should be use-
ful now since editing sites have been experimentally deter-
mined for only a small percentage of plant mitochondrial
genes available in the sequence databases, and it will
become increasingly useful as more mitochondrial
genomes get sequenced in the near future. PREP-Mt may
also be effective in discriminating between functional
genes and pseudogenes, as well as in elucidating mecha-
nisms of RNA editing by exposing examples of genes that
do not conform to the normal editing patterns in plant
mitochondria.

Implementation
Construction of the Aligned Sequence Database
395 full-length or nearly full-length plant mitochondrial
protein-coding genes, for which RNA editing sites have
been experimentally determined or from organisms
(Marchantia, Chara, and Chaetosphaeridium) inferred to
lack RNA editing capability, were collected from Gen-
bank. Gene sequences were extracted from each file and
then edited according to Genbank annotations or litera-
ture sources. The edited gene sequences were translated
into proteins according to the standard genetic code.
Homologous proteins were aligned using ClustalW ver-
sion 1.81 [32] and manually adjusted when necessary.
The Aligned Sequence Database (ASD) consisted of these
protein sequence alignments (see additional files 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42 for alignments).
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In some cases, editing site annotations in the Genbank
files were associated with nucleotides that were not a cyti-
dine. These incorrect annotations were usually the result
of obvious human errors and were corrected by referring
to the literature sources prior to inclusion in the database.
In addition, nine sequences from Marchantia (atp4, atp8,
ccmFc-A, ccmFc-B, ccmFn, rpl2, rps1, rps3, rps4), eight from
Chara (atp4, atp8, ccmF, rpl2, rpl5, rps1, rps3, rps4), and
seven from Chaetosphaeridium (atp4, atp8, rpl2, rpl5, rps1,
rps3, rps4) aligned poorly to the other ASD sequences.
Because the PREP-Mt program relies on accurate align-
ments to determine RNA editing sites, these divergent pro-
teins were not included. For the same reason, non-
homologous 5' and 3' extensions present in some mito-
chondrial proteins (e.g., atp6 and rps2) were trimmed
from the alignments. After removal of the divergent
sequences, 371 sequences remained in the final align-
ments, spanning all 42 known protein-coding genes vari-
ably present in land plant mitochondria [33]. There were
8.8 sequences in each alignment on average, with the
actual numbers ranging from 22 sequences for nad3 to
only a single Marchantia sequence for rps8.

Algorithm for RNA editing site prediction
Given a protein-coding DNA sequence and its gene iden-
tity, PREP-Mt predicts sites of C to U RNA editing [31].
The input sequence is translated using the standard
genetic code and then aligned to the homologous ASD
alignment with ClustalW using default parameters and
the quicktree option. Next, for each column in the protein
alignment, the corresponding codon from the input DNA
sequence is examined to determine whether editing is
possible. If the codon contains one or more cytidines,
then the set of all possible unedited and edited states for
that codon is determined. For example, if the input DNA
sequence contained the codon "CCG", then the set of pos-
sible states in the RNA transcript would be "CCG" (not
edited), "UCG" (edited at first position), "CUG" (edited
at second position), and "UUG" (edited at first and sec-
ond position). The amino acid, i, encoded by each of the
possible codon states is compared to the amino acid, j,
from all N database sequences. The score for each state, Si,
is then defined by the equation

where the match parameter, Mij, is determined by

Thus, the score for each possible state is a value that ranges
from 0 to 1 and is simply the percentage of matches to the
amino acids in the ASD sequences for that column. The

state with the highest score is reported as the predicted
state. In case of a tie, the state that requires the fewest
number of edits is chosen as the predicted state, since the
vast majority of cytidines in plant mitochondrial genes are
not actually edited. Based on this rule, silent editing sites
are always disfavored because, by definition, they do not
affect the encoded amino acid and would therefore always
tie a state that had fewer editing sites. If a tie occurs
between states that require an equal number of edits, the
state that is edited at the second codon position is chosen
as the predicted state, since approximately 50% of all edit-
ing sites in plants occur at the second position [8,24]. An
example of the scoring scheme is presented in Figure 1.

As an additional requirement, a cutoff value, C, can be
enforced. If a cutoff value is specified, Si for an edited state
must be greater than or equal to C in order to be reported
as the predicted state. Thus, PREP-Mt would predict an
unedited state for a particular codon if Si for the edited
state is less than C, even if the edited state has a higher Si
than the unedited state. C must be a value ranging from 0
to 1.

PREP-Mt performance analyses
To evaluate the predictive performance of PREP-Mt, each
sequence in the ASD was used as a test case. First, the pro-
tein sequence of the test case was removed from the ASD
so that it would not be tested against itself. Then, the full-
length protein-coding region for the test case was
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Score calculation and prediction of RNA editingFigure 1
Score calculation and prediction of RNA editing. The 
hypothetical alignment shows an input sequence aligned to 
three homologues from the Aligned Sequence Database. The 
predicted state is boxed. Column 1 shows a case where 
RNA editing is not possible. Column 2 presents a case where 
the editing state is more strongly supported. Column 3 dem-
onstrates the various rules placed on the algorithm. The 
CUG is taken as the correct state because it requires fewer 
edits than UUG and is edited at the second position, whereas 
UCG is edited at the first position.
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collected from its Genbank file and this unedited DNA
sequence was used as input into PREP-Mt. Sites of RNA
editing predicted by PREP-Mt were scored as either correct
(TP, true positive) or incorrect (FP, false positive) based
on comparison to the known edited sites. Similarly, sites
predicted to remain unedited were scored as either correct
(TN, true negative) or incorrect (FN, false negative) after
comparison to the known unedited sites. This process was
repeated for each sequence in the ASD, except for the sin-
gle rps8 sequence which could not be tested because there
were no other rps8 sequences to test against. Using the
above classification, several statistical measures of predic-
tive performance were calculated:

Because the number of known edited sites was propor-
tionately much lower than the number of known
unedited sites, the accuracy value was highly dependent
on the specificity value. To determine the expected accu-
racy if the number of known edited and unedited sites
were in equal proportion, a balanced accuracy statistic was
also calculated according to the formula

Finally, to evaluate the effect of the cutoff value on the
predictive performance of PREP-Mt, the performance
analysis described above was rerun with C values ranging
from 0.1 to 1.0 at all increments of 0.1.

Results
Classification of known editing sites
There were 60,263 cytidines present in the 370 tested pro-
tein-coding sequences (the single rps8 gene could not be
tested because there were no rps8 homologues to test
against). For sequences from the complete mitochondrial
genomes of Marchantia, Chara, and Chaetosphaeridium,
RNA editing capability was assumed to be absent, as indi-
cated by predictive and experimental analyses [4-6,27-
30]. For the remaining sequences, sites of RNA editing had
been determined experimentally and were reported in the
Genbank files and/or the literature. Based on these
sources, 3,698 (6.1%) of the cytidines were classified as
known sites of RNA editing, while the remaining 56,565
(93.9%) were classified as known unedited cytidines.

PREP-Mt performance analyses
PREP-Mt was used to predict editing sites for all 370
sequences in the test set. PREP-Mt's predictive perform-
ance was measured by comparing the predicted state of
each cytidine to its known state (Tables 1 and 2). Of the
3,698 known edited sites, PREP-Mt correctly identified
3,038 (TP) as edited sites and incorrectly predicted 660
(FN) as unedited sites (sensitivity = 82.2%). PREP-Mt also
correctly identified 55,956 (TN) out of the 56,565 known
unedited sites, while incorrectly predicting 609 (FP) to be
edited (specificity = 98.9%). Altogether, PREP-Mt cor-
rectly classified 58,994 of the 60,263 cytidines in the test
sequences as either an edited or unedited position (accu-
racy = 97.9%, balanced accuracy = 90.5%). Of the 660
false negatives, 489 occurred at first or third codon posi-
tions that did not change the amino acid encoded by the
codon. Excluding these silent editing positions, which
have no effect on protein sequence or function, sensitivity
increased to 94.7%, accuracy increased to 98.7%, and bal-
anced accuracy increased to 96.8%. Specificity was unaf-
fected by the silent site adjustment. The speed of
prediction was also very fast. For each of the 370 tested
sequences, editing site prediction took less than one sec-
ond on a 3.2 GHz Pentium IV computer running RedHat
Linux 9 with 1 GB of RAM (data not shown).

To evaluate the predictive performance of PREP-Mt in
more detail, the performance results were subdivided by
gene (Table 1) and by genus (Table 2). After doing so, it
was apparent that specificity remained very high for all
treatments, never falling below 95% for any gene or
genus. Accuracy was also consistently high, with only a
single case lower than 90%. In contrast, sensitivity was
dependent on the gene or genus analyzed. In particular,
several genes (sdh3, sdh4, atp8, rpl2, rps1, rps3, and rps19)
and genera (Gymnocladus, Nicotiana, Oxalis, Podophyllum,
and Secale) exhibited low sensitivity scores. In some cases,
the poor sensitivity scores were due to the fact that a large
portion of the known edited sites were at silent positions
and therefore could not be predicted by PREP-Mt. Calcu-
lating sensitivity after excluding the silent edited sites
helped to alleviate many of these low scores, and in gen-
eral greatly increased sensitivity scores for most genes and
genera. In addition, low sensitivity may be the result of
the small sample sizes found for most of the poorly per-
forming examples, if by chance the small set of genes or
genera sampled does not conform to the normal editing
patterns of plant mitochondrial genes. In this regard, it is
interesting to note that the editing data for Gymnocladus,
Oxalis, and Podophyllum came from sdh3 and sdh4. It is
possible that the low sensitivities seen for Gymnocladus,
Oxalis, and Podophyllum were the result of sampling from
these poorly performing genes, or, conversely, that the
low scores for sdh3 and sdh4 were due to the inclusion of
these poorly performing genera.
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Table 1: PREP-Mt performance results subdivided by gene

Gene No. of 
Species

TP TN FP FN Specificity Sensitivity Accuracy Balanced 
Accuracy

Complex I
nad1 10 135 1632 14 33 (2) 99.1 80.4 (98.5) 97.4 (99.1) 89.8 (98.8)
nad2 9 140 2337 22 42 (9) 99.1 76.9 (94.0) 97.5 (98.8) 88.0 (96.5)
nad3 22 274 1217 8 47 (4) 99.3 85.4 (98.6) 96.4 (99.2) 92.4 (99.0)
nad4 9 133 2358 19 12 (1) 99.2 91.7 (99.3) 98.8 (99.2) 95.5 (99.2)
nad4L 8 49 303 5 0 (0) 98.4 100.0 (100.0) 98.6 (98.6) 99.2 (99.2)
nad5 10 122 3647 29 10 (4) 99.2 92.4 (96.8) 99.0 (99.1) 95.8 (98.0)
nad6 10 70 995 16 15 (3) 98.4 82.4 (95.9) 97.2 (98.2) 90.4 (97.2)
nad7 8 117 1655 5 22 (1) 99.7 84.2 (99.2) 98.5 (99.7) 91.9 (99.4)
nad9 12 75 1236 7 5 (3) 99.4 93.8 (96.2) 99.1 (99.2) 96.6 (97.8)

Complex II
sdh3 7 6 391 12 11 (2) 97.0 35.3 (75.0) 94.5 (96.6) 66.2 (86.0)
sdh4 8 10 361 14 16 (3) 96.3 38.5 (76.9) 92.5 (95.6) 67.4 (86.6)

Complex III
cob 13 117 2834 19 25 (8) 99.3 82.4 (93.6) 98.5 (99.1) 90.9 (96.5)

Complex IV
cox1 9 38 2936 7 7 (5) 99.8 84.4 (88.4) 99.5 (99.6) 92.1 (94.1)
cox2 19 193 2644 22 33 (11) 99.2 85.4 (94.6) 98.1 (98.9) 92.3 (96.9)
cox3 12 80 1793 21 11 (2) 98.8 87.9 (97.6) 98.3 (98.8) 93.4 (98.2)

Complex V
atp1 10 21 2926 10 8 (1) 99.7 72.4 (95.5) 99.4 (99.6) 86.0 (97.6)
atp4 7 51 730 21 18 (8) 97.2 73.9 (86.4) 95.2 (96.4) 85.6 (91.8)
atp6 12 88 1893 11 10 (2) 99.4 89.8 (97.8) 99.0 (99.3) 94.6 (98.6)
atp8 8 16 757 10 10 (2) 98.7 61.5 (88.9) 97.5 (98.5) 80.1 (93.8)
atp9 19 91 792 1 17 (0) 99.9 84.3 (100.0) 98.0 (99.9) 92.1 (99.9)

Cytochrome c biogenesis
ccmB 9 216 1013 14 63 (6) 98.6 77.4 (97.3) 94.1 (98.4) 88.0 (98.0)
ccmC 9 187 1212 24 26 (1) 98.1 87.8 (99.5) 96.5 (98.2) 92.9 (98.8)
ccmFc 6 84 1631 23 30 (10) 98.6 73.7 (89.4) 97.0 (98.1) 86.1 (94.0)
ccmFn 6 155 2249 39 38 (21) 98.3 80.3 (88.1) 96.9 (97.6) 89.3 (93.2)

Ribosomal proteins
rpl2 4 2 1057 14 6 (4) 98.7 25.0 (33.3) 98.1 (98.3) 61.8 (66.0)
rpl5 9 45 919 14 5 (3) 98.5 90.0 98.1 (98.3) 94.2 (96.1)
rpl6 3 0 138 3 0 (0) 97.9 - 97.9 (97.9) -
rpl16 9 33 692 6 13 (2) 99.1 71.7 (94.3) 97.4 (98.9) 85.4 (96.7)
rps1 3 2 295 4 5 (5) 98.7 28.6 (28.6) 97.1 (97.1) 63.6 (63.6)
rps2 7 25 1489 15 7 (5) 99.0 78.1 (83.3) 98.6 (98.7) 88.6 (91.2)
rps3 7 54 2183 19 33 (11) 99.1 62.1 (83.1) 97.7 (98.7) 80.6 (91.1)
rps4 6 83 1116 22 18 (6) 98.1 82.2 (93.3) 96.8 (97.7) 90.1 (95.7)
rps7 8 6 664 19 2 (1) 97.2 75.0 (85.7) 97.0 (97.1) 86.1 (91.5)
rps10 5 8 266 9 0 (0) 96.7 100.0 (100.0) 96.8 (96.8) 98.4 (98.4)
rps11 3 0 222 1 0 (0) 99.6 - 99.6 (99.6) -
rps12 17 87 1142 13 5 (1) 98.9 94.6 (98.9) 98.6 (98.9) 96.7 (98.9)
rps13 10 34 554 8 5 (2) 98.6 87.2 (94.4) 97.8 (98.3) 92.9 (96.5)
rps14 5 2 239 7 0 (0) 97.2 100.0 (100.0) (97.2) (97.2) 98.6 (98.6)
rps19 6 16 242 11 9 (3) 95.7 64.0 (84.2) 92.8 (94.9) 79.8 (89.9)

Other
matR 8 73 4109 30 20 (7) 99.3 78.5 (91.3) 98.8 (99.1) 88.9 (95.3)
mttB 8 100 1087 41 23 (12) 96.4 81.3 (89.3) 94.9 (95.7) 88.8 (92.8)

Overall 370 3,038 55,956 609 660 (171) 98.9 82.2 (94.7) 97.9 (98.7) 90.5 (96.8)

Values after exclusion of silent editing sites are shown in parentheses. In some cases (marked with a '-'), sensitivity and balanced accuracy could not 
be calculated because there were no known edited sites (i.e., TP + FN = 0).
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Table 2: PREP-Mt performance results subdivided by genus

Genus No. of Genes TP TN FP FN Specificity Sensitivity Accuracy Balanced 
Accuracy

Angiosperms
Eudicots

Amphicarpaea 1 13 143 0 0 (0) 100.0 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
Arabidopsis 31 344 5880 58 89 (24) 99.0 79.4 (93.5) 97.7 (98.7) 89.2 (96.3)
Beta 30 299 5406 52 50 (11) 99.0 85.7 (96.5) 98.2 (98.9) 92.4 (97.7)
Brassica 32 362 5874 53 55 (15) 99.1 86.8 (96.0) 98.3 (98.9) 93.0 (97.6)
Cologania 1 13 138 1 1 (0) 99.3 92.9 (100.0) 98.7 (99.3) 96.1 (99.6)
Cucumis 2 19 332 7 0 (0) 97.9 100.0 (100.0) 98.0 (98.0) 99.0 (99.0)
Daucus 5 42 820 4 9 (4) 99.5 82.4 (91.3) 98.5 (99.1) 90.9 (95.4)
Dumasia 1 14 141 0 1 (0) 100.0 93.3 (100.0) 99.4 (100.0) 96.7 (100.0)
Euphorbia 1 1 53 0 0 (0) 100.0 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
Glycine 2 14 566 2 2 (0) 99.6 87.5 (100.0) 99.3 (99.7) 93.6 (99.8)
Gymnocladus 2 1 108 4 2 (1) 96.4 33.3 (50.0) 94.8 (95.6) 64.9 (73.2)
Helianthus 4 39 362 1 3 (1) 99.7 92.9 (97.5) 99.0 (99.5) 96.3 (98.6)
Lactuca 1 16 282 1 0 (0) 99.6 100.0 (100.0) 99.7 (99.7) 99.8 (99.8)
Lespedeza 1 13 142 0 0 (0) 100.0 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
Lupinus 6 68 484 3 3 (0) 99.4 95.8 (100.0) 98.9 (99.5) 97.6 (99.7)
Lycopersicon 4 52 550 1 21 (3) 99.8 71.2 (94.5) 96.5 (99.3) 85.5 (97.2)
Malus 1 8 47 0 0 (0) 100.0 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
Nicotiana 2 17 258 1 12 (3) 99.6 58.6 (85.0) 95.5 (98.6) 79.1 (92.3)
Oenothera 23 283 4395 58 95 (34) 98.7 74.9 (89.3) 96.8 (98.1) 86.8 (94.0)
Olea 2 11 249 0 1 (0) 100.0 91.7 (100.0) 99.6 (100.0) 95.8 (100.0)
Oxalis 1 2 51 0 3 (1) 100.0 40.0 (66.7) 94.6 (98.1) 70.0 (83.3)
Petunia 9 84 1132 8 24 (5) 99.3 77.8 (94.4) 97.4 (98.9) 88.5 (96.8)
Pisum 4 53 487 4 8 (0) 99.2 86.9 (100.0) 97.8 (99.3) 93.0 (99.6)
Podophyllum 2 3 96 5 8 (0) 95.0 27.3 (100.0) 88.4 (95.2) 61.2 (97.5)
Raphanus 5 31 453 3 6 (1) 99.3 83.8 (96.9) 98.2 (99.2) 91.6 (98.1)
Solanum 8 58 1259 16 21 (9) 98.7 73.4 (86.6) 97.3 (98.1) 86.1 (92.7)
Vitis 1 20 224 1 1 (0) 99.6 95.2 (100.0) 99.2 (99.6) 97.4 (99.8)

Magnoliids
Magnolia 5 79 527 2 12 (3) 99.6 86.8 (96.3) 97.7 (99.2) 93.2 (98.0)

Monocots
Acorus 1 8 143 2 0 (0) 98.6 100.0 (100.0) 98.7 (98.7) 99.3 (99.3)
Allium 2 24 131 2 0 (0) 98.5 100.0 (100.0) 98.7 (98.7) 99.2 (99.2)
Coix 2 23 121 0 3 (0) 100.0 88.5 (100.0) 98.0 (100.0) 94.2 (100.0)
Elymus 1 12 157 2 0 (0) 98.7 100.0 (100.0) 98.8 (98.8) 99.4 (99.4)
Hordeum 2 12 388 1 3 (1) 99.7 80.0 (92.3) 99.0 (99.5) 89.9 (96.0)
Oryza 34 395 5919 71 90 (28) 98.8 81.4 (93.4) 97.5 (98.5) 90.1 (96.1)
Ruscus 1 16 146 1 3 (2) 99.3 84.2 (88.9) 97.6 (98.2) 91.8 (94.1)
Secale 2 6 353 5 3 (0) 98.6 66.7 (100.0) 97.8 (98.6) 82.6 (99.3)
Sorghum 5 52 479 4 12 (1) 99.2 81.3 (98.1) 97.1 (99.1) 90.2 (98.6)
Triticum 26 360 4748 36 79 (13) 99.2 82.0 (96.5) 97.8 (99.0) 90.6 (97.9)
Zea 11 104 1933 16 23 (7) 99.2 81.9 (93.7) 98.1 (98.9) 90.5 (96.4)

Gymnosperms
Cycas 3 35 444 7 14 (4) 98.4 71.4 (89.7) 95.8 (97.8) 84.9 (94.1)
Pinus 2 32 123 5 3 (0) 96.1 91.4 (100.0) 95.1 (96.9) 93.8 (98.0)

Other
Chaetosphaeridium 29 0 3011 49 0 (0) 98.4 - 98.4 (98.4) -
Chara 30 0 3549 72 0 (0) 98.0 - 98.0 (98.0) -
Marchantia 32 0 3852 51 0 (0) 98.7 - 98.7 (98.7) -

Overall 370 3,03
8

55,95
6

60
9

660
(171)

98.9 82.2 (94.7) 97.9 (98.7) 90.5 (96.8)

Notes are the same as for Table 1.
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PREP-Mt predictive performance was also affected by the
inclusion of sequences with unusually poor predictive
results. 172 of the 609 false positives were found in genes
from the three organisms (Marchantia, Chara, and Chaet-
osphaeridium) assumed to lack the ability to edit their tran-
scripts (Table 2). The numbers of false positives across
these three genomes were similar to those from the four
complete genomes (Arabidopsis, Beta, Brassica, and Oryza)
that do edit their transcripts, which is most likely reflective
of an underlying rate of false positive prediction by PREP-
Mt. However, if the assumption that Marchantia, Chara,
and Chaetosphaeridium lack RNA editing is not correct,
then some of these false positives sites may be true sites of
editing. Further experimental analysis is needed to verify
that RNA editing is absent in these three species. Another
large portion of the false positives came from individual
sequences that demonstrated poor predictive results
(Table 3). Of the 58 predicted editing sites from 12 exam-
ples, 54 were false positives. On average, the false posi-
tives received moderately to very high predictive scores,
making it unlikely that these examples are a collection of
sequences that have a large number of spurious predic-
tions by chance. These examples could simply be the
result of incomplete experimental analysis, annotation
errors, or pseudogenization. More interestingly, they may
represent a small class of functional mitochondrial
sequences that exhibit unusual editing properties for as
yet undetermined reasons.

Effect of the cutoff score on editing site prediction
The predictive analyses presented above did not impose a
cutoff value (i.e., C = 0). To determine the effect of impos-
ing a minimum cutoff value on editing site prediction, the
predictive analyses were reevaluated using C values rang-
ing from 0.1 to 1.0 (Fig. 2). As expected, increasing the
cutoff value led to a decrease in the number of false posi-
tives and an increase in the number of false negatives. Up
to C = 0.6, this was a balanced trade-off, because the
number of false positives that decreased was approxi-
mately equal to the number of increased false negatives.
As C was increased from 0.6 to 1.0, however, false nega-
tives accumulated much faster than false positives dimin-
ished. Consequently, prediction accuracy remained
roughly constant as the C value was increased to 0.6, but
then sharply fell upon further increases of C. Because spe-
cificity is inversely related to the number of false positives
(and is not affected by the number of false negatives), the
specificity and false positive curves are also inversely
related. Likewise, the sensitivity and false negative curves
are inversely proportional to one another.

Discussion
PREP-Mt performance analysis
The PREP-Mt program is very accurate, correctly classify-
ing 98% of all cytidines as either an edited or unedited site

from 370 sequences spanning 41 functionally distinct
genes and 44 diverse genera. PREP-Mt is also extremely
specific and highly sensitive (at least for non-silent editing
sites), properly identifying 99% of the known unedited
sites and 95% of the known edited sites that change the
amino acid encoded by a codon. Because these results are
consistent for almost all genes and genera, the PREP-Mt
methodology appears to be generally applicable for plant
mitochondrial protein-coding genes. Furthermore, pre-
dictions are made exceptionally fast, which makes this
program appropriate as an online resource. The speed of
PREP-Mt is primarily due to the facts that the ASD homo-
logues are prealigned, the number of sequences in each
alignment is low, and mitochondrial genes are less than
1,000 nucleotides in length on average.

The high specificity of PREP-Mt is not surprising, because
the methodology takes advantage of the extraordinary
conservation (with rare exception) of plant mitochondrial
sequences, which have the lowest known substitution
rates for any organism [[34,35]; but see ref. [36]], and the
limited range of amino acids possibly produced after RNA
editing of a specific codon, which is usually only one out
of 20. Thus, it is very unlikely that a column in a protein
alignment will lead to a spurious prediction by chance.
However, in poorly conserved regions of a protein align-
ment, one or two sequences in the ASD could by chance
have the specific amino acid encoded by the edited state
of an input sequence codon. As an example, initial analy-
ses of PREP-Mt performance did not trim the non-homol-
ogous 5' and 3' extensions found in several mitochondrial

Table 3: Examples of unusually poor predictive results

Gene Species TP FP FN Score

atp1 Secale cereale 0 5 1 (0) 0.96
cox3 Oryza sativa 1 13 0 (0) 0.93
rpl2 Arabidopsis thaliana 0 3 1 (0) 0.78
rpl2 Brassica napus 1 3 1 (0) 0.78
rpl2 Oenothera berteriana 1 5 3 (3) 0.67
rpl2 Oryza sativa 0 3 1 (1) 0.67
rps1 Oenothera berteriana 0 3 0 (0) 1.00
rps7 Arabidopsis thaliana 0 2 0 (0) 0.93
rps12 Oryza sativa 0 6 0 (0) 0.95
rps14 Brassica napus 0 3 0 (0) 0.67
sdh4 Gymnocladus dioica 0 4 0 (0) 0.68
sdh4 Podophyllum peltatum 1 4 4 (0) 0.68

Overall 4 54 11 (4) 0.83

Predicted score is averaged across all incorrectly predicted edited 
sites (FP). The numbers of FN after exclusion of silent editing sites are 
shown in parentheses.
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proteins. Because of this, numerous sites of RNA editing
were incorrectly inferred in these regions. Interestingly,
the actual number of true editing sites in these same
regions is extremely low, with less than one site observed
on average in extensions that can span up to 1,000 nucle-
otides in length. Therefore, these non-homologous exten-
sions can be removed from the ASD with almost no
negative consequences.

Accuracy is also consistently high, which is due to the
strong influence of specificity on the accuracy score. Accu-
racy is a measure of overall performance, combining the
individual performances of predicting the known
unedited sites (measured by specificity) and the known
edited sites (measured by sensitivity). However, since the
number of known unedited sites vastly outnumbers the
number of known edited sites regardless of gene or genus
examined, PREP-Mt's ability to identify the known
unedited sites is more heavily weighted in the accuracy
score. To get an unbiased measure of overall performance,
sensitivity and specificity can be averaged. This balanced
accuracy value represents the (biologically unrealistic)
scenario in which the numbers of known unedited and
edited sites are equal. Since specificity is relatively
constant across all treatments, the balanced accuracy
statistic correlates most strongly with the fluctuations in
sensitivity.

PREP-Mt is also very sensitive in identifying the known
editing sites that change the encoded amino acid, finding
95% of these non-silent editing sites. Some of the missed
non-silent editing sites are likely lineage-specific gains of
RNA editing that do not get predicted because the lineage
is underrepresented in the ASD. Others are probably due
to errors in the data that defines the known edited and
unedited sites (see below). Analysis of sensitivity reveals
that the main limitation of the PREP-Mt methodology is
its inability to identify silent editing sites. Currently, the
tie-breaking rules used by PREP-Mt always select the
codon state that requires the fewest number of edits. Since
any codon with the potential for silent editing produces
the same amino acid regardless of editing status, the
scores for the edited and unedited states will be identical
and the tie-breaking rule will always select the unedited
state. It would be possible to change this tie-breaking rule
so that the state with the most number of edits is prefer-
entially chosen, but doing so would lead to an over-
whelming number of false positives at these potential
silent editing sites, since the vast majority of these sites are
not actually edited. Aligning DNA sequences instead of
proteins would help to identify a number of these silent
editing sites, but the chances of identifying false positives
would be much greater here as well since there are only
four different nucleotides in DNA as opposed to 20 amino
acids in proteins. Determination of sequence motifs that

Effect of the cutoff score on PREP-Mt predictive performanceFigure 2
Effect of the cutoff score on PREP-Mt predictive per-
formance. Effect of the cutoff score as measured by (A) 
accuracy, (B) sensitivity, (C) specificity, and (D) the numbers 
of false positives (square), false negatives (triangle), and non-
silent false negatives which change the encoded amino acid 
(diamond). Accuracy and sensitivity were calculated using 
either all false negatives (triangle) or only the false negatives 
that change the encoded amino acid (diamond). Cutoff values 
used for testing ranged from 0 to 1.0 at all increments of 0.1.
Page 8 of 15
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:96 http://www.biomedcentral.com/1471-2105/6/96
unambiguously specify a particular cytidine as a site of
editing would also help to predict these problematic sites.
However, even if such motifs exist and are discovered,
silent editing sites may remain difficult to predict. Silent
editing sites are often found only occasionally edited in
experimental studies, suggesting that the putative motifs
are more weakly conserved for many silent editing sites.

Unlike the problem of silent editing site prediction, which
is due to a real limitation of the methodology, PREP-Mt
predictive performance is also negatively affected by errors
in the data used to define the known edited and unedited
sites, which causes some correctly predicted sites to be
incorrectly classified as false positives or false negatives. In
experimental determination of RNA editing sites, several
types of errors are produced. In some cases, edited sites are
not detected, either because a particular site is only occa-
sionally edited or because incompletely edited transcripts
are preferentially amplified during PCR. Thus, some pre-
dicted editing sites may in fact be true editing sites, but
since they were not detected in the experimental analysis
they are identified as false positives. In other cases, errors
introduced during reverse transcription or sequencing
lead to identification of C to U changes that are not actual
editing sites. Inclusion of these errors in the known set of
editing sites causes predicted unedited sites to be incor-
rectly identified as false negatives. Other noise in the
known editing data comes from the fact that the Genbank
annotations are subject to human error. Numerous exam-
ples of annotation mistakes were encountered while con-
structing the Aligned Sequence Database. Most were easily
corrected because they involved a nucleotide that was not
a cytidine. While three cases were known sites of the rare
U to C editing in angiosperms, the vast majority were
clearly mistakes. It is expected that about 25% of annota-
tion errors would by chance happen to annotate another
cytidine, and these are undetectable except by cross-refer-
encing every known edited site with the literature. Since
this was not done, a small increase in both false positives
and false negatives is expected. Including sequences from
Marchantia, Chara, and Chaetosphaeridium, which may
actually perform RNA editing to some extent, and from
Table 3, which may simply be the result of incomplete
experimental analysis, could also cause predicted editing
sites to be incorrectly classified as false positives.

Improving predictive performance
Because the current prediction scheme calculates the score
using all ASD homologues, lineage-specific gains or losses
of editing may be missed due to the skewed phylogenetic
distribution of sequences in the ASD (Fig. 3). Although
mitochondrial RNA editing is known to occur in almost
all major land plant lineages [4-6], 74% of the proteins in
the ASD were from the angiosperms, while almost all of
the other proteins came from organisms that most likely

do not perform RNA editing. In contrast, only five
sequences were available from the gymnosperms, and the
other major plant lineages were not represented at all. Par-
tial sequence data with editing information was available
for a number of genes from the underrepresented groups;
however, these sequences covered less than half of the
gene in almost all cases and were therefore not included
in the ASD.

One way to overcome the skewed sample of ASD
sequences would be to modify the scoring scheme so that
it approximates phylogenetic methods. Because RNA edit-
ing sites are heritable, more sites are shared between
closely related species than between distantly related
ones. Thus, instead of using all of the homologous ASD
sequences, a subset of sequences that are closely related to
the input sequence could be specified. Assigning sequence
weights to the database homologues based on their over-
all similarity to the input sequence would achieve compa-
rable results. The best solution to this problem would be
to use actual phylogenetic methods to identify the most
parsimonious or most likely state for a particular codon in
the input sequence; however, the speed of prediction
would certainly suffer if this strategy was implemented.
An alternative approach to overcome the skewed distribu-
tion of ASD sequences would be to expand the database
so that it consists of a more balanced diversity of species.
This approach would also help to reduce the negative

Skewed phylogenetic distribution of sequences in the Aligned Sequence DatabaseFigure 3
Skewed phylogenetic distribution of sequences in the 
Aligned Sequence Database. Shown are the number of 
sequences in the ASD for each lineage and the percentage of 
the total number of sequences. Editing information is availa-
ble for several genes from the underrepresented groups, but 
they were not included in the ASD because only portions of 
the genes were analyzed. The dotted lines indicate lack of 
RNA editing based on previous predictive and experimental 
analyses (see main text). The marchantiid liverworts are 
thought to have secondarily lost the ability to perform RNA 
editing. The relationship between plant lineages was taken 
from Knoop [33].

Angiosperms

Gymnosperms

Moniliformopses

Lycophytes

Hornworts

Mosses

Jungermanniid Liverworts

Marchantiid Liverworts

Charales

Coleochaetales

274 (74%)

5 (1%)

0

0

0

0

0

33 (9%)

30 (8%)

29 (8%)
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effects of small sample sizes on predictive performance. As
additional mitochondrial genome and transcriptome data
become available, it is expected that PREP-Mt perform-
ance will continue to increase.

The simplistic scoring scheme may also lead to spurious
predictions in poorly conserved protein regions. To
address this issue, a component that measures the conser-
vation in the database sequences for each column in the
alignment could be incorporated into the score. Regions
of high conservation between homologues are often func-
tionally important for that protein. Thus, the correcting
nature of RNA editing is expected to be most valuable in
these regions and the PREP-Mt prediction scores could be
weighted based on the level of alignment conservation.

Comparison to other prediction methods
A recent paper used sequence context and the estimated
folding energy of these regions to predict editing sites in
plant mitochondrial genes [24]. The authors constructed
a data set containing all of the known edited sites from the
complete genomes of Arabidopsis thaliana, Brassica napus,
and Oryza sativa and compared them to an equal number
of known unedited sites randomly selected from these
genomes. Using tree-based statistical models, the com-
bined data set was partitioned based on the variables that
showed the greatest ability to discriminate between edited
and unedited sites. Editing sites were predicted with
70.5% accuracy using a simple single-tree approach and
84.8% accuracy using a "random forest" method that ana-
lyzed thousands of trees. These values are directly compa-
rable to the balanced accuracy of 90.5% for PREP-Mt,
since the balanced accuracy statistic is the accuracy
expected for PREP-Mt if an equal number of known edited
and unedited sites were used. The speed of the tree-based
statistical models were not presented, but they are very
unlikely (especially the random forest model) to be com-
petitive with the nearly instantaneous predictive results
from PREP-Mt.

It should be noted that Cummings and Myers [24] also
calculated the sensitivity and specificity of their approach;
however, they classified false positives and false negatives
differently than what is reported for PREP-Mt. Cummings
and Myers classified false negatives as the unedited sites
that were incorrectly partitioned with the true positives
(the correctly classified edited sites) and false positives as
the edited sites that were incorrectly partitioned with the
true negatives (the correctly classified unedited sites). This
has no effect on the calculation of accuracy, but it has a
major effect on sensitivity and specificity scores. For their
single-tree approach, Cummings and Myers provided the
raw numbers of correctly and incorrectly classified edited
and unedited positions, making it possible to calculate
specificity and sensitivity in the same way as for PREP-Mt.

This method correctly classified 1,262 out of 1,347 known
editing sites (sensitivity = 93.7%), but only 637 out of
1,347 known unedited sites (specificity = 47.3%). Thus,
on the one hand, their approach is very good at identify-
ing RNA edited sites. However, approximately half of all
known unedited sites are also incorrectly classified as
edited sites. Because their model uses the unrealistic sce-
nario in which the numbers of edited sites and unedited
sites are equal, this problem would be increased signifi-
cantly when applied to biologically realistic situations.
For the 1,347 known edited sites that the authors exam-
ined from Arabidopsis, Brassica, and Oryza, there are actu-
ally about 17,900 cytidines that are not edited (TN + FP
from Table 2). Using their single-tree approach, over
9,000 of these unedited cytidines would be incorrectly
classified as editing sites. For the random forest model,
actual numbers of correctly and incorrectly classified sites
were not provided, so similar calculations cannot be
determined. However, because their value that incorpo-
rates the number of incorrectly partitioned unedited sites
is lowest for both approaches, it seems likely that the ran-
dom forest approach will also identify a substantial
number of false positives in biologically realistic
situations.

A second recent paper used homologous protein align-
ments (as does PREP-Mt) to predict C insertion editing
sites in the slime mold Physarum polycephalum [37]. Bund-
schuh predicted RNA editing sites for six Physarum mito-
chondrial genes by determining their optimal states from
a modified hidden markov model (HMM) that allows for
cytidine insertions. Transition parameters in the HMM
were defined for each gene using the position-specific
scoring matrix (PSSM) from a PSI-BLAST alignment of all
homologous proteins in Genbank's non-redundant data-
base. Compared to PREP-Mt, the HMM approach was less
sensitive in finding editing sites (71% on average vs. 82%
for PREP-Mt) and less accurate in determining the correct
amino acid sequences (92% on average vs. 99% for PREP-
Mt [data not shown]). These comparisons of performance
should be taken with caution since the two methods were
used to predict different types of RNA editing in different
organismal lineages. To allow for a more direct compari-
son, both approaches could be easily modified to predict
the other type of editing. However, Bundschuh's use of all
homologous proteins to define the PSSM may be
problematic if applied to C to U editing in plant mito-
chondria. A significant percentage of homologues identi-
fied for a plant mitochondrial protein would be other
plant mitochondrial proteins, but almost all of these
sequences in Genbank are predictions based on genomic
DNA. In other words, RNA editing information is not
incorporated or not known and so the predicted protein
sequences are not correct. Prediction of editing will get
misled by inclusion of these incorrect proteins since many
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editing sites are shared between plants. Additionally,
inclusion of non-plant homologues to define the PSSM
will lead to more variable alignments, increasing the
chances of spurious prediction. It will also make the
beginning and end of genes more difficult to align, as
already observed for Bundschuh's method which could
not analyze approximately 10% of each Physarum gene.
The PREP-Mt method gets around these problems by lim-
iting the sequences to plants, so that the alignments are
highly conserved and the protein extremities are easily
aligned (except for atp6 and rps2 which have non-homol-
ogous 5' and 3' extensions for many species). Further-
more, only correct protein sequences are used in the
alignments, since PREP-Mt limits the plant sequences to
those with known editing information. Finally, because
these alignments are predefined for PREP-Mt, Bunds-
chuh's approach would need to use predefined HMMs for
each gene to be competitive in terms of speed.

Applications
The main use of PREP-Mt will be to identify RNA editing
sites in the thousands of plant mitochondrial gene
sequences available in the sequence databases, since edit-
ing information is only known for a small percentage of
these sequences. Furthermore, as many additional plant
mitochondrial genome sequencing projects are planned
or already underway, PREP-Mt could serve an important
role by quickly and accurately determining most sites of
RNA editing without the need for sequencing of mito-
chondrial transcripts.

Currently, RNA editing information for full-length plant
mitochondrial genes is limited mostly to the angiosperms
(Fig. 3), which almost always convert in the C to U direc-
tion. Because of this, the reverse U to C editing phenome-
non was not considered here. However, reverse editing
has been found to be much more common in fern and
hornwort mitochondria and was shown to increase pro-
tein conservation as well [4-6]. It is likely, therefore, that
modification of PREP-Mt to allow for U to C prediction
would be successful in the species that regularly perform
this type of editing. Similarly, the PREP-Mt methodology
could be applied to the problem of RNA editing in plant
chloroplasts, which also perform editing that leads to an
increase in protein conservation across species [7,11-15].
More generally, the PREP-Mt methodology should be
effective for any system where RNA editing increases pro-
tein conservation across species.

PREP-Mt could also be used as a biological tool beyond
simply identifying sites of RNA editing. For example,
PREP-Mt could be used as a determinant of gene function-
ality. Unlike animals and fungi, whose mitochondrial
gene content has remained stable for tens to hundreds of
millions of years, gene content in plant mitochondrial

genomes is much more variable [33]. The lineage-specific
differences in plant mitochondrial gene content are
mostly due to the proclivity of some genes to be relocated
to the nuclear genome [38]. Upon transfer to the nucleus,
the mitochondrial gene copy often degrades into a pseu-
dogene. Because these pseudogenes are often still tran-
scribed and edited [8,9,19-21], non-functionality is
ascribed based on the presence of internal stop codons or
frameshifts. This could be problematic since a mitochon-
drial gene, which has been functionally replaced by a
nuclear gene, may still be intact and in-frame. Using
PREP-Mt, pseudogenes could also be identified based on
the fact that their editing positions do not always lead to
the increased protein sequence conservation across spe-
cies that functional genes demonstrate [19-21]. Intact and
in-frame genes that demonstrate unusual editing proper-
ties, such as those listed in Table 3, may indicate loss of
functionality and the presence of a functional nuclear
copy, as already suggested for rps1 from Oenothera [39]
and rps14 from Brassica [10]. It is interesting to note that
10 of the 12 cases in Table 3 are from genes that are very
often found transferred to the nucleus in plants [38].

For atp1 and cox3, pseudogenization is not a likely
hypothesis because these genes have never been found
transferred to the nucleus in plants [38]. These two exam-
ples (as well as the 10 discussed above) could represent
bona fide cases of functional mitochondrial transcripts that
do not get edited properly for some reason. Identification
of genes with abnormal editing patterns and further anal-
ysis into the causes underlying these patterns could lead to
an understanding of the mechanism of RNA editing in
plants, which is still largely unknown [2,3].

Conclusion
PREP-Mt is available as an online resource that predicts
sites of C to U RNA editing in plant mitochondrial pro-
tein-coding genes. It was tested on a comprehensive set of
genes with known RNA editing information and was
shown to be highly sensitive, specific, and accurate in
most cases. The speed of prediction was also extremely
fast. Thus, PREP-Mt is a substantial improvement over
other RNA editing prediction methods, and its predictive
performance is expected to continue to improve as more
editing data become available. PREP-Mt may be useful for
predicting protein sequences, for determining gene
functionality, and for understanding the mechanism of
RNA editing. The PREP-Mt methodology could be used to
predict editing sites in any system where the effect of edit-
ing is to increase protein conservation across species, such
as for reverse U to C editing in plants and for plastid RNA
editing.
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Availability and requirements
PREP-Mt is an online tool that is freely available for use at
http://www.prep-mt.net/
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