
BioMed CentralBMC Bioinformatics

ss
Open AcceReport
Learning Statistical Models for Annotating Proteins with Function
Information using Biomedical Text
Soumya Ray*1,2 and Mark Craven*2,1

Address: 1Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA and 2Department of Biostatistics and
Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706, USA

Email: Soumya Ray* - sray@cs.wisc.edu; Mark Craven* - craven@biostat.wisc.edu

* Corresponding authors

Abstract
Background: The BioCreative text mining evaluation investigated the application of text mining
methods to the task of automatically extracting information from text in biomedical research
articles. We participated in Task 2 of the evaluation. For this task, we built a system to automatically
annotate a given protein with codes from the Gene Ontology (GO) using the text of an article from
the biomedical literature as evidence.

Methods: Our system relies on simple statistical analyses of the full text article provided. We learn
n-gram models for each GO code using statistical methods and use these models to hypothesize
annotations. We also learn a set of Naïve Bayes models that identify textual clues of possible
connections between the given protein and a hypothesized annotation. These models are used to
filter and rank the predictions of the n-gram models.

Results: We report experiments evaluating the utility of various components of our system on a
set of data held out during development, and experiments evaluating the utility of external data
sources that we used to learn our models. Finally, we report our evaluation results from the
BioCreative organizers.

Conclusion: We observe that, on the test data, our system performs quite well relative to the
other systems submitted to the evaluation. From other experiments on the held-out data, we
observe that (i) the Naïve Bayes models were effective in filtering and ranking the initially
hypothesized annotations, and (ii) our learned models were significantly more accurate when
external data sources were used during learning.

Introduction
We participated in the first two subtasks of Task 2 of the
BioCreative text mining evaluation. The overall task was
designed to evaluate methods for automatically annotat-
ing proteins with codes from the Gene Ontology (GO) [1]
using articles from the scientific literature. In the first sub-
task (2.1), a system is given a document, an associated
protein and a GO code, and is asked to return a segment

of text from the document that supports the annotation of
the text with the GO code (the evidence text). In the second
subtask (2.2), a system is given a document and an asso-
ciated protein, and is asked to return all GO codes that the
pair should be annotated with, along with the associated
evidence text for each GO code.

from A critical assessment of text mining methods in molecular biology

Published: 24 May 2005

BMC Bioinformatics 2005, 6(Suppl 1):S18 doi:10.1186/1471-2105-6-S1-S18

<supplement> <title> <p>A critical assessment of text mining methods in molecular biology</p> </title> <editor>Christian Blaschke, Lynette Hirschman, Alfonso Valencia, Alexander Yeh</editor> <note>Report</note> </supplement>
Page 1 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:S18
Our approach to the annotation task is based on a statis-
tical machine learning perspective. It is fairly straightfor-
ward and incorporates little in the way of linguistic and
biological knowledge. It does, however, leverage several
existing on-line biological resources, including the MeSH
dictionary of biological terms, and databases providing
protein-name aliases and GO annotations for proteins.
We believe that our approach serves as a useful "baseline"
approach, whose performance in the annotation task can
likely be improved by the addition of expert biological
and linguistic knowledge.

Several key issues need to be addressed to effectively solve
Task 2. First, it is unlikely that the exact strings of many
GO codes occur in the text that is used to annotate query
proteins. It is more likely that the relevance of particular
GO codes must be inferred from indirect descriptions that
we see in the text. Therefore, for most GO codes, we learn
models that infer their relevance by looking for related
terms. Learning these models, however, calls for more text
associated with each GO code than what is available in the
Task 2 training set. To address this issue, we collect data
from several publicly available databases that describe GO
annotations of protein-document pairs for other non-
human organisms, such as yeast and Drosophila. A sec-
ond issue is that even when our GO code models suggest
that a GO code might be inferred from a passage of text,
we need to evaluate whether this GO code is related to the
protein of interest. To do this, we learn statistical models
to discriminate between passages of text that relate pro-
teins to GO codes from those that do not. A third key issue
is that the relevant passages of text are not marked in the
training set. In our approach, we simply assume that all
passages that mention the protein and a GO code in a

training document do in fact relate the protein to the GO
code.

System description
Processing document-protein queries in our system
involves several key steps:

• The documents are pre-processed into a standardized
representation.

• The documents are then scanned for occurrences of
query proteins. This step involves the use of a protein-alias
database and a set of heuristic rules for protein-name
matching.

• Selected passages of the documents are then scanned for
matches against GO codes. This step employs statistical
models of GO codes that are learned from training-set
documents.

• Text passages containing putative matches against the
query protein and against GO codes are filtered and
ranked by a learned statistical model. These models are
trained to discriminate between passages that relate GO
codes to proteins and passages that do not.

In the following sections, we describe each step in detail.
Figure 1 shows a block diagram representation of the over-
all system.

Standardizing documents
The first step performed by our system is to transform a
given document into a standardized token-based repre-
sentation. We first strip all XML tags from the document,
while retaining the paragraph structure. We also remove

System block diagram for Task 2.2Figure 1
System block diagram for Task 2.2. There is one Informative Term model for every GO code with sufficient training data.
There are six Naïve Bayes models: one for each ontology and for each method of GO code prediction.

Document

passages with

Input Protein

Standardization

Term Models

Reg Exp
Extraction

Feature
Extraction

Feature

Naive Bayes
Models

Naive Bayes
Models

annotations

Term Model

Informative

Input

Document

GO codes

GO codes
Heuristic Rules

Recognition
Protein Name

passages
with

with

Database

of predicted GO code
ranked list

passages

protein name

Protein alias
Page 2 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S18
all text outside the abstract and main body of the docu-
ment. All HTML ampersand codes are transformed to
their ASCII equivalents. Next, we remove extraneous
whitespace and stem all words using the Porter stemmer
[2]. We then transform species names into a common
expanded format using a hand-built dictionary of such
names. We also split common hyphenated compound
words into their constituents using a dictionary of suf-
fixes. Finally, we use a dictionary of biomedical terms
from MeSH [3] to represent technical compound terms
when they occur in a given document. Figure 2 shows an
example of the input text before and after standardization.

Recognizing protein names
In order to annotate document-protein pairs with GO
codes, we must first find references to a given protein in
the document. We do this by searching for the given pro-
tein name as well as aliases gathered from SwissPROT [4]
and HuGO [5]. When matching an alias (including the
given name) to a piece of text, we use a simple regular-
expression representation of the alias as well as the literal
string. These regular expressions allow for variations in
punctuation and special characters in the matched text.

If we do not find any matches to the given protein name
or its aliases, then we search using a set of "approximate
aliases" that are generated by applying a set of simple heu-
ristics to the given aliases. Some examples of these heuris-
tics are rules that strip off trailing words (e.g., protein and
fragment), and rules that attempt to reduce a specific pro-
tein name to a family name (e.g., by dropping a one-char-
acter token at the end of a given name).

Recognizing GO codes
In addition to finding references to proteins, our system
must also find references to Gene Ontology codes. In
many cases, however, we expect that relevant GO code
names will not appear verbatim in the articles being proc-
essed. Therefore, we construct statistical models to predict
whether each GO code is associated with a protein-docu-
ment pair. In particular, we learn a model for each GO

code for which we have sufficient training documents.
Since the provided training set is very small and represents
relatively few GO codes, we use databases from the GO
Consortium website to gather more data. The databases
we use include SGD (yeast) [6], FlyBase (Drosophila) [7],
WormBase (C. elegans) [8] and TAIR (Arabidopsis) [9].
They are similar to the GOA database [10] given to us in
that they list protein, GO code and document identifier
triplets for many proteins belonging to the respective
organisms. We extract those triplets from these databases
in cases where the associated documents have PubMed
identifiers attached to them. Then, we obtain the abstracts
for these documents from MEDLINE. We consider this
text to be "weakly labeled" with GO codes because it is
possible that the evidence associating a GO code of inter-
est to the protein might not be mentioned in the abstract.
However, we hypothesize that if we collect significant
numbers of documents for any GO code, a large enough
fraction will contain this type of evidence, thereby allow-
ing us to learn an accurate model for that GO code. We
refer to our models for GO codes as Informative Term
models.

Learning an Informative Term model involves identifying
terms that are characteristic of a given GO code. To do this
we separate our training set into two: a set of articles and
abstracts associated with the GO code (the "support" set),
and the remaining set of articles and abstracts (the "back-
ground"). Then we determine occurrence counts for each
unigram, bigram and trigram in our vocabulary in the
support text and in the background, and perform a χ2 test
on the table containing the counts, as illustrated in Figure
3. This test makes the null hypothesis that the distribu-
tions of a term in the two classes (the support and the
background) are identical, and returns a score that is pro-
portional to the strength of the alternative hypothesis.
Using the returned score, we rank the terms in our vocab-
ulary and pick those whose scores are above a threshold
parameter I as the Informative Terms for the GO code of
interest. After parameter tuning experiments on the train-
ing set, we set I to 200 and hold it constant for our

Example of document standardizationFigure 2
Example of document standardization. The input line is a sentence from an XML-formatted Journal of Biological Chemis-
try (JBC) document. The output line shows the result after standardization.

Input: Phospholipases A<INF>2</INF> (PLA<INF>2</INF>)<FNR RID=”FN1”> are a
rapidly growing family of diverse enzymes that hydrolyze fatty acids at the sn-2 position of phos-
pholipids (<BBR RID=”B1”>, <BBR RID=”B2”>).
Output: Phospholipas A2 (Pla2) are a rapidli grow famili of divers enzym that hydrolyz fatti acid
at the sn-2 posit of phospholipid .
Page 3 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S18
experiments. As an example of the output of this process,
for the GO code GO:0015370, sodium symporter activity,
some of the unigram Informative Terms returned by this
process are pantothenate, biotin, transporter, lipoate, smvt,
uptake and sodium-dependent. We observe that words such
as symporter are not significantly indicative of the presence
of this GO code, though they are part of the text of the
code itself. This may be because the activity in question is
generally described indirectly in the text (as we might
expect), by means of other words, rather than the words
used in the text of the GO code.

While learning the Informative Term model for a GO
code, we are able to take advantage of the hierarchical
nature of the Gene Ontology in the following way. We use
documents that support a GO code as support for its
ancestors in the ontology as well. For example, plasma
membrane is a direct ancestor of integral to plasma mem-
brane, so, documents that are associated with integral to
plasma membrane are used when collecting Informative
Terms for plasma membrane. However, we decrease the
weight of documents supporting each descendant GO
code proportional to its depth relative to the GO code
under consideration as follows. Let P be the GO code
under consideration and let C be a descendant of P. Since
each ontology is a directed acyclic graph, there may be
multiple paths from P to C. Let dP(C) be the average length
of a path from P to C. Then the weight wP(C) of any doc-
ument supporting C when calculating Informative Terms

for P is given by . Thus, documents sup-

porting integral to plasma membrane would count for only
half as much when calculating evidence for plasma mem-

brane, since dP(C) = 1. The weight wP(C) is factored into
our calculations during the χ2 test. To reliably calculate
statistics for the χ2 test for a GO code, we need a large
number of documents. In our system, we set the number
of documents required at 10. For many GO codes, how-
ever, even after collecting "weakly labeled" data, we are
unable to accumulate 10 documents. For such GO codes,
we rely on a simple Regular Expression model. Each regu-
lar expression is built from a given GO code name and its
aliases.

When given a novel document and protein, we use the
Informative Term model to calculate a score for each GO
code. The score is the sum of the χ2 scores of all the
Informative Terms that occurred in those paragraphs in
the document where the protein name also occurred. A
GO code is predicted to be relevant to the document if the
score for that code was above a threshold parameter S, and
further, at least k Informative Terms were matched. After
some parameter tuning experiments on our training set,
we set S to 4000 and k to 3 and held them constant for our
experiments. For GO codes without Informative Term
models, we use the Regular Expression model described
above. A term is predicted to occur if its regular expression
matches some piece of text in a paragraph where the pro-
tein name also occurs.

Linking proteins and GO terms
Given passages of text that apparently contain references
to the query protein and to Gene Ontology terms, we use
a statistical model to decide which of these GO codes (if
any) should be returned as annotations for the protein.

Contingency table for the χ2 testFigure 3
Contingency table for the χ2 test. A high score in the test indicates that it is unlikely that the term T is uncorrelated with
the GO code G.

#Occurrences of term
T in text associated
with GO code G

#Occurrences of term
T in background text

#Occurrences of other
terms in text associated
with GO code G

#Occurrences of other
terms in background
text

w CP d Cp
()

()
= +

1
1

Page 4 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S18
The Informative Term models do not take into account
the actual words in the document beyond the Informative
Terms. However, there may be words that are common to
many GO codes, or that are generally indicative of text
supporting the assignment of some GO code to some pro-
tein. For instance, words describing localization experi-
ments might be characteristic of text that supports GO
codes from the Component Ontology. In order to capture
this evidence, we learn two Naïve Bayes classifiers [11] for
each ontology. Given an attribute-value representation of
some piece of text containing a match to the query protein
and a GO code, these classifiers return the probability that
the piece of text supports the annotation of the protein
with the GO code. Therefore, they can be used to filter, or
re-rank, the outputs of the Informative Term and Regular
Expression models.

To learn such Naïve Bayes classifiers, we first extract fea-
tures from each paragraph of the documents supporting
the predictions made by the Informative Term models
and the Regular Expression model on our training set.
These features consist primarily of unigrams occurring in
the text. We also extract several other features which cap-
ture the nature of the protein-GO code interaction, which
are as follows:

1. the number of matches for the protein name,

2. the number of matches for the GO code name (or its
Informative Terms),

3. the length in words of the passage starting from the first
protein or Informative Term match and ending with the
last such match,

4. the smallest distance in words between an occurrence of
the protein and an occurrence of the GO code (or its
Informative Terms),

5. the average distance in words between occurrences of
the protein and the GO code (or its Informative Terms),
and

6. the score of the matched GO code, if the Informative
Terms model was used for this prediction.

To reduce overfitting problems, we restrict the set of uni-
grams used to the 200 that are most correlated with the
class variable, as measured by mutual information. Given
a class (supporting/not supporting), a paragraph is
described as a multinomial over the vocabulary features
and a product of Gaussian distributions over the numeri-
cal features:

where D is the paragraph, αi represents the conditional
probability, given the class, of the ithword from the set of
words used in D (Pr(wi|class)), ni represents the number of
times wi occurred, and µj and σj represent the Gaussian
parameters for the jth numeric feature in the given class.
The parameters αi, µj and σj are then learned from the
training data using Maximum Likelihood estimation. We
learn Naïve Bayes models for each ontology for GO code
predictions made by the Informative Term models, and
separate Naïve Bayes models for each ontology for predic-
tions made by the Regular Expression model.

Identifying evidence text
After the GO code predictions are made by either the
Informative Term model or the Regular Expression model,
the corresponding Naïve Bayes model is used to score the
likelihood of each paragraph of the text supporting some
protein-GO code association. The maximum score over all
paragraphs is used as a confidence measure for a protein-
GO code association, and used to re-rank the predictions
of the Informative Term and Regular Expression models.
The most highly ranked GO code predictions for that pro-
tein and document are then returned by the system.

Our system focuses on predicting a GO code based on the
full document given to it, rather than locating a contigu-
ous piece of evidence text for the code. Indeed, we feel that
it is a strength of our approach that we can aggregate evi-
dence from different regions of a large document in order
to make a prediction of a GO code. However, for the pur-
poses of Task 2.1 and 2.2, we were required to identify a
single piece of text that provides the best support for a pre-
dicted protein-GO code annotation. To do this, we use the
following algorithm. We always return a single paragraph
as evidence text. If the predicted GO code has an associ-
ated Informative Term model, we use that model to score
all the paragraphs in the document where the given pro-
tein name occurred. The highest scoring paragraph is then
returned. If the GO code is predicted by the Regular
Expression model (or did not have an Informative Term
model), we use the Naïve Bayes models described in the
previous section to rank the paragraphs associated with
the predictions, and we return the highest scoring one.
Note that, since the Informative Term models are specific
to individual GO codes, while the Naïve Bayes models are
not, we expect this algorithm to return better evidence text
than if we were to always use the Naïve Bayes models to
select the evidence text.

Pr()
() ()

D class ei
n

i vocab D j

x

j num D

i

j j

j=
∈

−
−









∈
∏ ∏α

π
1

2

2

σ

µ
σ

(()1
Page 5 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S18
Experiments and Discussion
In this section, we present experiments evaluating our sys-
tem on the initially provided training data as well as an
evaluation on the test set done by the BioCreative
organizers.

Evaluation of system components
We first present experiments to evaluate the contribution
of components of our system: the Informative Term mod-
els, the Regular Expression models and the Naïve Bayes
models. For evaluation purposes, we separate the set of
documents given to us into a training and a test set. Since
we have documents from the Journal of Biological Chemistry
(JBC) and Nature, there is a natural partition of the set of
documents. During development, we use the JBC docu-
ments as a training set for our Informative Term and Naïve
Bayes models. We use the Nature documents as a test set.
Thus, we learn Informative Term models from the known
GO code annotations associated with the JBC documents.
Then, we use these models and the Regular Expression
model to make predictions of GO codes on the JBC docu-
ments. We extract features from these predictions and
learn Naïve Bayes models using these extracted features.
For evaluation, we use the Informative Term models and
Regular Expression model to make predictions on the
documents from the Nature journals. We then use our
learned Naïve Bayes models to rank and filter predicted
GO annotations for given proteins and documents.

To evaluate the predictive accuracy of our models, we
measure the precision, recall and false positive rates of our
predictions. Precision is the fraction of predicted GO code
annotations that are correct. Recall (also referred to as the
"true positive rate") is defined as the fraction of correct
GO code annotations that are predicted by the system.
The false positive rate is defined as the fraction of negative
examples that were incorrectly predicted as positive.

First, we evaluate the performance of the Informative
Term and Regular Expression models. For this experiment,
we do not use the Naïve Bayes models. We use the Inform-
ative Term models and the Regular Expression model to
predict GO codes from the Nature articles, and measure
precision and recall. These results are shown in Table 1.
For the "Combined" experiment, we combine the two
models in the following way: we use the Informative Term
model for every GO code that has such a model, and use
the Regular Expression model for any GO code without an
Informative Term model. Note that this implies that the
recall of the "Combined" system will not be the sum of
the recall of the two systems used independently. From
the results, we observe that without the Naïve Bayes mod-
els, the system is biased towards recall at the expense of
precision. However, we expect to improve our precision
by re-ranking these initial predictions using the Naïve

Bayes models and thresholding the associated confidence.
Note that the recall shown for the "Combined" system in
Table 1 is the maximum recall achievable by the system.

To measure the value of re-ranking predictions using the
Naïve Bayes models, we construct precision-recall (PR)
and receiver operating characteristic (ROC) graphs. ROC
graphs measure the change of the true-positive rate
(recall) of the model against its false-positive rate as a
threshold is moved across a measure of confidence in the
model's predictions. PR graphs measure the change in pre-
cision at different levels of recall. We assess the confidence
of a GO code annotation for a protein given a document
as the maximum of the probabilities defined by Equation
1 over the paragraphs of the document. In Figure 4, we
show PR and ROC graphs for these models for predictions
aggregated over the Component, Function and Process
ontologies. We show separate graphs for the cases when
the initial predictions were made by the Informative Term
models and when the initial predictions were made by the
Regular Expression model. In the ROC graphs, the true
positive rate (recall) values are scaled to reflect the fact
that the maximum recall achievable by the Naïve Bayes
system is limited by the predictions of the GO code mod-
els used in the first phase.

From Figure 4, we observe that the Naïve Bayes models are
quite effective at re-ranking the initially hypothesized
annotations, especially when the initial predictions are
made by the Informative Term models. Annotations with
higher Naïve Bayes scores are more likely to be correct.
Thus, these models are useful in discriminating between
passages of text that relate proteins to GO codes from
those that do not. We also observe that when the initial
predictions are made by the Regular Expression model,
the Naïve Bayes models do not achieve high precision,
even at high confidence thresholds. This indicates that (i)
there may not be much regularity to be captured in pas-
sages supporting these predictions, and/or (ii) our train-
ing assumption, that each paragraph in the supporting
text mentioning the protein and the GO code was actually
relating the protein to the GO code, was severely violated.
We note that, if we had sufficient training data for each
GO term, we would not need to use the Regular Expres-

Table 1: Precision and recall results for the system without the
Naïve Bayes models.

Experiment Precision(%) Recall(%)

Regular Expression 2.1 21.0
Informative Terms 6.1 27.7

Combined 2.9 45.7
Page 6 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S18
sion model at all. Thus, in the limit of sufficient training
data, the behavior of the system is predicted by the graphs
for the Informative Term models.

Utility of weakly labeled data sources
To learn models for GO codes, we collect "weakly labeled"
data from public databases for various other organisms,
such as SGD, FlyBase, WormBase and TAIR. This data is in
the form of PubMed abstracts of articles referred to by GO
annotations mentioned in these databases. It is "weakly
labeled" because an abstract may not mention the associ-
ation between a GO code and a protein of interest, or even
mention the protein. An interesting question to ask is
whether this data benefits our system by making it more
accurate. In this section, we describe an experiment to
answer this question.

In this experiment, we evaluate a version of our system
which is trained on the provided JBC journal articles only.
Thus, Informative Term models are built only for those
GO codes that have sufficient coverage in the JBC journal
articles. For our original system, the coverage threshold
was 10 documents, i.e. a GO code had to be annotated
with at least 10 documents (full text or abstract) in order
for us to build an Informative Term model for it. For this
experiment, we used a coverage threshold of 3 documents.
Even with a lower threshold, we could not build Informa-
tive Term models for over 200 GO codes for which we had
models in our original system.

The PR and ROC graphs for this system, tested on the
held-out Nature articles, are shown in Figure 5. Compar-
ing these results to Figure 4, we observe that the perform-
ance of the system has degraded significantly over the
original system. In fact, the Informative Term models now
have lower recall than the Regular Expression model! Not
only does the maximum recall drop to 18.1% as com-
pared to 45.7% previously, the system's end-point preci-
sion also decreases to 1.97% from 2.9%. The lower
performance can be attributed to two causes: first, fewer
GO codes have Informative Term models, so that the
lower-precision Regular Expression model is used more
often. Second, even for the GO codes that have Informa-
tive Term models, the informative terms are likely to be of
lower quality because the document coverage threshold is
lower. Because of these factors, the predictions used to
learn the Naïve Bayes models are also of lower quality.
This reduces the Naïve Bayes models' ability to effectively
re-rank the test set predictions.

Thus, from this experiment, we conclude that using the
weakly labeled data as part of our training set is very
important in increasing both the precision and the recall
of our system.

Evaluation on test data
In this section, we discuss the performance of our system
relative to the other submitted systems on the test set data,
as evaluated by the BioCreative organizers. We should
note that because of technical difficulties during evalua-
tion, our complete submission for this task was not eval-

ROC and precision-recall graphs for predictions made by the systemFigure 4
ROC and precision-recall graphs for predictions made by the system. ROC and precision-recall graphs for GO code
predictions made by the system aggregated over the three ontologies. The solid line represents predictions made by the
Informative Term/Naïve Bayes path in Figure 1. The dashed line represents predictions made by the Regular Expression/Naïve
Bayes path in Figure 1.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

Informative Term
Regular Expression

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3

P
re

ci
si

on

Recall

Informative Term
Regular Expression
Page 7 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S18
uated. It is possible that our recall may have improved if
this evaluation were done. Accordingly, we have plotted a
"Projected Recall" point in Figure 6 which indicates the
estimated recall of our system had our full submission
been evaluated, assuming that our precision stays at the
reported level.

The results for the various systems are shown in Figure 6
for Tasks 2.1 and 2.2. We plot the precision of each system
against the number of true positive predictions made.
Unlike the training set, the total number of correct GO
code assignments is unknown for the test set. Therefore,
we do not use recall; however, the number of true positive

ROC and precision-recall graphs for predictions made without weakly-labeled dataFigure 5
ROC and precision-recall graphs for predictions made without weakly-labeled data. ROC and precision-recall
graphs for GO code predictions made by the system aggregated over the three ontologies, when Informative Term models
were learned without using any weakly labeled data. The solid line represents predictions made by the Informative Term/Naïve
Bayes path in Figure 1. The dashed line represents predictions made by the Regular Expression/Naïve Bayes path in Figure 1.

Scatterplots of predictions for various systems for Task 2.1 (left) and Task 2.2 (right)Figure 6
Scatterplots of predictions for various systems for Task 2.1 (left) and Task 2.2 (right). Scatterplots for GO code
predictions made by the various systems on the test set for Task 2.1 (left) and Task 2.2 (right). The graphs plot system preci-
sion against the number of true positive predictions (we do not plot recall because the total number of positive instances is
unknown).

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

Informative Term
Regular Expression

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3

P
re

ci
si

on

Recall

Informative Term
Regular Expression

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

P
re

ci
si

on

Number of True Positives

Other Groups
Measured
Projected

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

P
re

ci
si

on

Number of True Positives

Other Groups
Measured
Projected
Page 8 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:S18
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

predictions is proportional to recall. If multiple runs were
evaluated for a group, we plot the best result from that
group. It is clear that no system provides exceptional
results for the overall task, and there is much room for
improvement. We observe that for Task 2.2, our system is
able to achieve a reasonable compromise between preci-
sion and recall – it has the third best precision as well as
the third best recall. Further, our (estimated) projected
recall is the second highest among all the groups. For Task
2.1, the test set results for our system are not as good.
However, as we have already noted, this is likely because
our system concentrates on modeling the full text of the
article rather than any specific passage, and we were asked
to report a specific passage for this task.

Conclusion
We have built a system that uses learned statistical models
to automatically annotate proteins with codes from the
Gene Ontology based on articles from the scientific litera-
ture. Our experimental evaluation of the system indicates
that it has predictive value. In particular, our experiments
show that the use of weakly labeled data sources can sig-
nificantly improve the precision-recall characteristics of
systems for this annotation task. However, there is still
much room for improvement. In future work, we plan to
investigate several key issues including (i) learning edit-
distance based models for recognizing additional
instances of protein names, (ii) using models with linguis-
tically richer representations for the step of filtering and
ranking candidate annotations, and (iii) using a multiple-
instance based approach [12] when learning models for
filtering and ranking. The application of a multiple-
instance approach is motivated by the fact that, even in
the training data, the passages of text that support a given
annotation are not marked.

Acknowledgements
This research was supported in part by NIH grant 1R01 LM07050-01 and
NSF grant IIS-0093016. The authors also wish to thank the organizers of the
BioCreative Evaluation for their considerable efforts.

References
1. The Gene Ontology Consortium: Gene Ontology: tool for the

unification of biology. Nature Genetics 2000, 25:25-29.
2. Porter MF: An Algorithm for Suffix Stripping. Program 1980,

14(3):127-130.
3. National Library of Medicine: Unified Medical Language System.

1999 [http://www.nlm.nih.gov/research/umls/umlsmain.html].
4. Bairoch A, Apweiler R: The SWISS-PROT Protein Sequence

Data Bank and its Supplement TrEMBL. Nucleic Acids Research
1997, 25:31-36.

5. Wain HM, Bruford EA, Lovering RC, Lush MJ, Wright MW, Povey S:
Guidelines for Human Gene Nomenclature. Genomics 2002,
79:464-470.

6. Dolinski K, Balakrishnan R, Christie KR, Costanzo MC, Dwight SS,
Engel SR, Fisk DG, Hirschman JE, Hong EL, Issel-Tarver L, Sethuraman
A, Theesfeld CL, Binkley G, Lane C, Schroeder M, Dong S, Weng S,
Andrada R, Botstein D, Cherry JM: Saccharomyces Genome
Database. 2003 [http://yeastgenome.org].

7. The FlyBase Consortium: The FlyBase database of the Dro-
sophila genome projects and community literature. Nucleic
Acids Research 2003, 31:172-175 [Http://flybase.org/].

8. Harris TW, Chen N, Cunningham F, Tello-Ruiz M, Antoshechkin I,
Bastiani C, Bieri T, Blasiar D, Bradnam K, Chan J, Chen CK, Chen WJ,
Eimear Kenny PD, Kishore R, Lawson D, aymond Lee R, Muller HM,
Philip Ozersky CN, Petcherski A, Rogers A, Sabo A, Schwarz EM,
Qinghua Wang KVA, Durbin R, Spieth J, Sternberg PW, Stein LD:
WormBase: a multi-species resource for nematode biology
and genomics. Nucleic Acids Research 2004, 32:D411-D417.

9. Huala E, Dickerman A, Garcia-Hernandez M, Weems D, Reiser L,
LaFond F, Hanley D, Kiphart D, Zhuang J, Huang W, Mueller L, Bhat-
tacharyya D, Bhaya D, Sobral B, Beavis B, Somerville C, Rhee S: The
Arabidopsis Information Resource (TAIR): A comprehen-
sive database and web-based information retrieval, analysis,
and visualization system for a model plant. Nucleic Acids
Research 2001, 29:102-105.

10. Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D,
Harte N, Lopez R, Apweiler R: The Gene Ontology Annotation
(GOA) Database: sharing knowledge in Uniprot with Gene
Ontology. Nucleic Acids Research 2004, 32:D262-D266.

11. Mitchell TM: Machine Learning New York: McGraw-Hill; 1997.
12. Dietterich TG, Lathrop RH, Lozano-Perez T: Solving the Multiple

Instance Problem with Axis-Parallel Rectangles. Artificial
Intelligence 1997, 89(1–2):31-71.
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.nlm.nih.gov/research/umls/umlsmain.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9016499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9016499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11944974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11944974
http://yeastgenome.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519974
Http://flybase.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681408
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Introduction
	System description
	Standardizing documents
	Recognizing protein names
	Recognizing GO codes
	Linking proteins and GO terms
	Identifying evidence text

	Experiments and Discussion
	Evaluation of system components
	Utility of weakly labeled data sources
	Evaluation on test data

	Conclusion
	Acknowledgements
	References

