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Abstract
Background: We participated in the BioCreAtIvE Task 2, which addressed the annotation of
proteins into the Gene Ontology (GO) based on the text of a given document and the selection of
evidence text from the document justifying that annotation. We approached the task utilizing
several combinations of two distinct methods: an unsupervised algorithm for expanding words
associated with GO nodes, and an annotation methodology which treats annotation as
categorization of terms from a protein's document neighborhood into the GO.

Results: The evaluation results indicate that the method for expanding words associated with GO
nodes is quite powerful; we were able to successfully select appropriate evidence text for a given
annotation in 38% of Task 2.1 queries by building on this method. The term categorization
methodology achieved a precision of 16% for annotation within the correct extended family in Task
2.2, though we show through subsequent analysis that this can be improved with a different
parameter setting. Our architecture proved not to be very successful on the evidence text
component of the task, in the configuration used to generate the submitted results.

Conclusion: The initial results show promise for both of the methods we explored, and we are
planning to integrate the methods more closely to achieve better results overall.

Background
We participated in the BioCreAtIvE evaluation (Critical
Assessment of Information Extraction in Biology). We
addressed Task 2, the problem of annotation of a protein
with a node in the Gene Ontology (GO, http://www.gene
ontology.org) [1] based on the text of a given document,
and the selection of evidence text justifying the predicted
annotation. We approached the task utilizing various
combinations of two distinct methods. The first method is

an unsupervised algorithm for expanding words associ-
ated with GO nodes. The second method approaches
annotation as categorization of terms derived from the
sentential neighborhoods of the given protein in the given
document into nodes in the GO. This term categorization
draws on lexical overlaps with the terms in GO node
labels and terms additionally identified as related to those
nodes. The system also incorporates Natural Language
Processing (NLP) components such as a morphological
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normalizer, a named entity recognizer, and a statistical
term frequency analyzer. The unsupervised method for
expanding words associated with GO nodes is based on a
probability measure that captures word proximity from
co-occurrence data [2]. The categorization methodology
uses our novel Gene Ontology Categorizer (GOC) tech-
nology [3] to select GO nodes which cover the terms in
the input set, based on the structure of the GO.

BioCreAtIvE Task 2 had two subtasks for which we
received evaluated results:

Task 2.1 – Given a <protein, document, GO node identi-
fier> triple, return the evidence text from the document
supporting the annotation of the protein to that GO node.

Task 2.2 – Given a <protein, document> pair, return
annotations into the GO (in the form of GO node identi-
fiers) for the given protein based on the given document,
along with supporting evidence text from the document
for each annotation. The number of annotations expected
for the input pair, relative to each of the three branches of
the GO (biological process, molecular function, and cellu-
lar component) was also provided.

Methods
Corpus pre-processing
Some pre-processing was performed on the document
corpus. The original SGML documents were parsed to
extract the Title, Abstract, and Body components, to nor-
malize SGML character entities to corresponding ASCII
characters (for instance, converting "&prime;" to an apos-
trophe), and to remove all formatting tags apart from par-
agraph markers.

Morphological normalization
We morphologically normalized the documents using a
tool we developed, called BioMorpher. BioMorpher is a
morphological analysis tool built on the Morph tool orig-
inally developed at the University of Sheffield by Kevin
Humphreys and Hamish Cunningham for general Eng-
lish. The Morph tool was extended to include large excep-
tion lists for biological text as well as to handle some
morphological patterns not handled by the original tool.

Term frequency analysis
As a pre-processing step, we performed a frequency analy-
sis on the morphologically normalized documents to
establish baseline frequencies for terms in documents
throughout the corpus. In the dynamic processing of an
input document, we selected representative terms for the
document using a TFIDF filter (term frequency inverse
document frequency, [4]). The TFIDF metric can be
thought of as providing a measurement of the salience of
a term in the document, relative to its general importance

in the corpus. An extremely common domain term such
as "protein" would have a low TFIDF score despite its
prevalence in a particular document, while we would
expect a term such as "necrosis" occurring in a document
to have a higher TFIDF score since it is a term which will
only appear in a small subset of the documents in the
corpus.

Protein recognition and context term selection
Swiss-Prot and TrEMBL identifiers were provided as input
identifiers for the protein, so we needed to establish a set
of names by which that protein (indicated by a Swiss-Prot
identifier) could be referenced in the text. We made use of
both the gene name and protein names that are in Swiss-
Prot itself, when available, and a proprietary collection of
protein name synonyms constructed by Procter & Gamble
Company. The fallback case was to use the name filled in
from the EBI TrEMBL human data. A script was applied to
the TrEMBL names that generated variants of strings con-
taining mismatched punctuation and parentheticals such
as "(precursor)" or "(fragment)" which were felt not to be
likely to occur directly in the text. The resulting database
tables were used to construct a list which was dynamically
loaded from the database into a GATE (General Architec-
ture for Text Engineering, [5]) gazetteer processing mod-
ule. This is a module which compiles the list of names
into a finite state recognizer for the set of names, so that
when a document is analyzed by the module each occur-
rence of a name in the list is identified in the document.

We chose this list-based strategy as it was straightforward
to implement, and because protein reference identifica-
tion was being addressed in BioCreAtIvE Task 1. The train-
ing data for Task 2 supported this strategy – a large
majority (about 70%) of the training queries contained
proteins that had names in our database.

The identification of occurrences of any known variant of
a protein name facilitates identifying terms in the contex-
tual neighborhood of the protein. Using another GATE
module to identify sentence boundaries in combination
with the gazetteer processor, we identify all sentences in
the given document containing a reference to the protein
given in the input query. This set of sentences is consid-
ered to be the contextual neighborhood of the protein,
and all (morphologically normalized) terms are extracted
from these sentences to establish a set of document-
derived context terms for the protein. These terms are in
turn associated with TFIDF weights calculated for each
term in the document, and filtered to select the highest-
ranked terms according to these weights.
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Unsupervised methodology for expanding words 
associated with GO nodes
Each node in the Gene Ontology (GO) is associated with
a textual label, in addition to its numeric identifier. This
label is intended to capture the meaning of the node, i.e.
to reflect the underlying concept that the node represents.
However, these labels tend to be relatively short (e.g.
"membrane fusion" or "regulation of viral life cycle") and
often the terms in a given label occur in many other labels
(in particular terms such as "regulator/regulation" and
"activity") throughout the GO. As such, the occurrence of
an individual term that is part of a GO node label in a doc-
ument may not be a sufficiently reliable indicator of the
relevance of that GO node to the document. To address
this, we utilized a method for expanding the set of terms
associated with a given GO node. This method is based on
the idea that the presence of words that are strongly asso-
ciated with a GO node label are good indicators of that
GO node, in addition to the terms that occur in the node
label itself.

.
The <protein, document, GO node identifier> triples pro-
vided for training purposes, as well as those given as que-
ries for Task 2.1, were used to determine sets of words
related to GO nodes following a methodology developed
for the Active Recommendation Project at Los Alamos [6].
After document pre-processing, we divided each docu-
ment into paragraphs and calculated for each document a
matrix of word occurrence in the paragraphs: R: P × W,
where P is the set of all m paragraphs in a document, and
W is the set of all n words. This is a Boolean matrix (ri,j ∈
{0, 1}) that specifies if a given word occurred at least once
in a given paragraph.

From the R matrices, we calculated a word in paragraph
proximity matrix, WPP, for each document, using the co-
occurrence probability measure below, as defined in [2]:

WPP denotes the association strength between pairs of
words (wi, wj), based on how often they co-occur in the
paragraphs of a given document. A value of wpp (wi, wj) =
0.3, means that words wi and wj co-occur in the same par-
agraphs 30% of the time that either one of them occurs.
To avoid artificially high values of WPP, we computed this
value only if the total number of paragraphs in which
either of the words occurs (the denominator of the for-
mula) is at least 3. Ideally, this value should be derived
from the occurrence and co-occurrence distributions of

words in a document's paragraphs, to prevent randomly
co-occurring words from receiving high values of WPP.
We did not compute such distributions for the BioCrea-
tive data, but rather used our results from other datasets
used by the Active Recommendation Project, where, typi-
cally, a value of 3 dramatically reduces the chances of arti-
ficially high values of WPP.

We can think of WPP as an associative network of words.
Indeed, the WPP matrix defines a fuzzy graph [7] where
the vertices are words wi, and the edges are probability
weights wpp (wi, wj). Such a graph can also be understood
as an associative knowledge structure that represents how
words co-occur in a given document, and therefore as an
associative model of the knowledge stored in each docu-
ment in terms of its constituent words [8]. As in any other
co-occurrence method, the assumption is that words that
frequently co-occur are associated with a common con-
cept. Building a graph of co-occurrence proximity allows
us to capture network associations rather than just pair-
wise co-occurrence. Therefore, we expect concepts or
themes (e.g. [9]) to be organized in more interconnected
sub-graphs, or clusters of words. Figure 1 depicts a sub-
graph of the WPP for one of the BioCreAtIvE documents
(JBC_1999/bc005868).

Next we set out to identify words associated with GO
nodes. Using the GO nodes in the provided triples we
retrieved the words from the GO node label. Let us refer
to this set of words as WGO (the red nodes in Figure 1, for
GO node 0007266). For each document, we then
retrieved a set of words highly associated with the words
in WGO in the relevant WPP network. Specifically, we
returned the top 5 to 10 additional words with largest
average value of WPP to all the words in WGO (the green
nodes in Figure 1). The additional words thus discovered
were used to expand WGO. Let us refer to the expanded set
of words as WGOProx; the additional words are not found in
the respective GO node label, but co-occur highly in a
given document with the words in the GO node label.
Given our assumption above, we can say that if a given
GO node is about a specific concept or theme, then we
expect the words in its label to co-occur with other words
in any given document which also refer to this concept.
Thus, the portion of text most appropriate as evidence text
for the GO node is the portion where we find most of the
words in the GO label plus the words that co-occur with
those in the document. This process is depicted in Figure
2.

Run 1 submitted for Task 2.1 yielded a comparatively very
good result (see Results presented below). In this run, for
each <protein, document, GO node identifier> triple, we
recommend a paragraph as evidence text for the respective
GO node -- without ever using the protein identifier
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Subnetwork of WPP with 34 words for document JBC_1999/bc005868Figure 1
Subnetwork of WPP with 34 words for document JBC_1999/bc005868. The red nodes denote the words retrieved 
from the given GO annotation (0007266: "Rho", "protein", "signal", "transduce"): WGO. The blue nodes denote the words that 
co-occur very frequently (wpp > 0.5) with at least one of the red nodes: the co-occurrence neighborhood of the GO words. 
The green nodes denote the additional words discovered by our algorithm as described in the text. Only edges with wpp > 0.3 
are shown.
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provided in the triplet. The recommended paragraph is
selected by comparing the WGOProx, with each column of
the document's word occurrence per  paragraph matrix R.
The comparison was implemented by a vector intersection
operation (step 4 in Figure 2). The columns of R are vec-

tors of words occurring in a paragraph. We choose as evi-
dence text for the GO node the paragraphs associated with
the columns of R that yield the largest intersection with
WGOProx. That is, paragraphs containing the largest number
of words also found in WGOProx are selected.

GO node Word Expansion via proximity measureFigure 2
GO node Word Expansion via proximity measure. (1) For each document, a Boolean matrix of word occurrence in 
paragraphs (R) is created. (2) Co-occurrence proximity network WPP is computed. (3) Words in GO node label (WGO) are 
expanded (WGOProx) using WPP. (4) Intersection of vector of expanded GO node words (WGOProx) with word vectors for each 
paragraph in the document (columns of R) : paragraph with largest intersection is returned.
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The Gene ontology categorizer
For Task 2.2, we were required to predict the appropriate
GO node(s) associated with a protein based on the infor-
mation in a given document. The methodology depicted
in Figure 2, based on word proximities, cannot be used for
this prediction as it depends on having the GO node label
relevant for the query as an input. We therefore decided to
pursue a strategy in which lexical overlaps between terms
in the document and terms in the set of GO node labels
were used to identify relevant GO nodes.

The GO, however, has a hierarchical structure such that
evidence for the relevance of a particular GO node is also
evidence for the relevance of its parent node. This is illus-
trated in the small portion of the GO shown in Figure 3
(reprinted with permission from [1]), where GO nodes, as

functional categories, are shown in black, and the gene
products annotated to those nodes are shown in color for
the different model organisms. So, for example, evidence
for "DNA ligation" is also evidence for "DNA repair",
since "DNA ligation" is recorded as a child of "DNA
repair". Thus DNA ligation is a specific kind of DNA
repair.

In order to take the structure of the GO into consideration
in this analysis, we employed a technology called the
Gene Ontology Categorizer (GOC, [3,10]). GOC was orig-
inally developed to address what we call the categorization
task in the GO: given a set of gene products, and annota-
tions of those gene products to nodes in the GO, where in
the GO do those genes appear? Are they all localized
together in the structure, or in multiple groups, or spread

A portion of the Molecular Function branch of the Gene OntologyFigure 3
A portion of the Molecular Function branch of the Gene Ontology. Reprinted with permission from Nature from [1].
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out over a wide area? This problem had not actually been
well defined or addressed previously, and presents novel
problems for computer science (see Appendix A below).

In the original GOC algorithm, a set of gene products acts
as a query. After identifying the set of nodes which are
annotated to that set, GOC traverses the structure of the
GO, percolating hits upwards, and calculating scores for
each GO node. GOC then returns a rank-ordered list of
GO nodes representing cluster heads. In the end, this pro-
vides an assessment of which nodes best cover the genes.

Note that we are not using "cluster" here in the sense of
traditional clustering, e.g. k-means, but rather to indicate
a set of nodes that are spatially close based on the struc-
ture of the ontology. A brief technical description and toy
example of the base GOC's operation is provided in
Appendix A, and see elsewhere [3].

Since GOC utilizes the structure of the GO to find the best
nodes to cover or categorize a given set of input nodes, it
was natural to extend it to address the question here,
which is given a set of terms, where do they appear in the
GO. Thus for BioCreAtIvE Task 2, GOC was extended in a
number of ways: first to accept weighted query items, then
to take terms as query items, and finally to provide data
on which of the input terms contributed to the selection
of each cluster head. Appendix A also includes technical
information on these extensions.

Input terms are mapped to GO nodes via one of three
mechanisms:

• Direct: The term occurs in the node label of GO node

• Definitional: The term occurs in the definition text asso-
ciated with GO node

• Proximity: The term is one of the WGOProx terms related
to a GO node through the proximity-based word expan-
sion described above [2]

Direct and indirect associations are counted as distinct
"hits" on a node and can be weighted differently.

GOC is run on the derived query consisting of the set of
GO nodes which the input terms map to, and its output
of ranked cluster heads is treated as an annotation of the
original input protein, which can be directly compared to
the correct answers provided by the organizers (see discus-
sion below).

Evidence text selection
We make use of two mechanisms for evidence text selec-
tion. The first is a simple sentence selection algorithm

aimed at selecting one sentence out of the set of sentences
containing a relevant protein reference to serve as the evi-
dence text. The sentence selected is the sentence with the
maximal intersection of terms in the sentence and terms
reported by GOC to be used in the selection of the rele-
vant cluster head/GO node (which in turn is a subset of
the full set of context neighborhood input terms submit-
ted to GOC).

The second algorithm, referred to below as the paragraph
selection algortihm, draws on proximity measurement. In
this case, we again consider the terms reported by GOC to
be used in the selection of the relevant GO node. We eval-
uate the proximity of those terms to individual paragraphs
in the document, using the document matrix R. The clos-
est match using the vector intersection operation (Figure
2, step 4) is selected as the evidence.

System operation
The architecture of the complete system is shown in Figure
4. For BioCreAtIvE tasks 2.1 and 2.2, the document selec-
tion portion is not relevant, as the documents were man-
ually selected by the evaluators and provided in the input
queries. There was an additional task, 2.3, which
addressed selection of documents relevant to the annota-
tion of a given protein. However, this task was not rigor-
ously evaluated in BioCreAtIve, and so we do not report
here on this component of the system.

As mentioned previously, morphological normalization,
TFIDF-based term weighting, and proximity-based GO
node word expansion are performed during preprocessing
for each document. When executing a given query (for
most runs, as we will outline below), we also perform
context term selection in order to focus on terms that are
most likely to be directly relevant to annotating the pro-
tein. These sets of terms together, with each term weighted
by TFIDF to represent its significance, form the input
items for subsequent processing.

We employ the GOC term categorization method to pre-
dict GO annotations (up to the provided limit of n anno-
tations in a specific branch of the GO). The GOC output
is then further used to select the evidence text for the GO
assignment associated with each GO node annotation
(cluster head), as described in the previous section.

We submitted 3 runs for each of tasks 2.1 and 2.2 (as well
as a run for task 2.3 which was not scored). The runs con-
sisted of the following configurations of the system:

Task 2.1
Run 1: A configuration bypassing GOC, utilizing only the
GO label Word Expansion, based on proximity networks,
followed by vector intersection of the columns of R and
Page 7 of 15
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the expanded set of words associated with a GO node
identifier, WGOProx, to discover paragraphs (essentially, the
architecture of Figure 2).

Run 2: A configuration using the full system architecture
including GOC, in which GOC is constrained to search for
cluster heads only below the annotation given in the
input query. Evidence selection consisted of the simple
sentence selection algorithm.

Run 3: Same configuration as above for annotation por-
tion. Evidence selection used the paragraph selection
algorithm based on GOC results.

Task 2.2
Run 1: A configuration using the full system architecture.
Evidence selection consisting of the simple sentence selec-
tion algorithm.

Run 2: A configuration using the full standard system
architecture. Evidence selection consisting of the para-
graph selection algorithm based on GOC results.

Run 3: A configuration using the full system architecture,
minus the sentence-based context term selection compo-

nent, using instead the "fallback" scenario of selecting the
top TFIDF-ranked terms in the document as a whole as the
context terms for the protein. Evidence selection consisted
of the paragraph selection algorithm based on GOC
results.

Results
Results were evaluated by professional annotators from
the European Bioinformatics Institute (EBI) by consider-
ing the evidence text according to two criteria – whether
the evidence text included a reference to the correct pro-
tein, and whether the evidence text directly referenced the
GO node returned as the annotation. On each of these
two dimensions, the text was evaluated as "high" (cor-
rect), "generally" (generally correct, perhaps referencing
the correct family of proteins rather than the protein itself,
or the parent of the target GO annotation rather than the
target annotation itself), or "low" (incorrect). Overall, the
evidence text was judged as "perfect" if it scored "high" on
both of the criteria, and as "generally" when the protein
was correct but the GO reference was "generally". The GO
annotations were not evaluated independently from the
evidence text in the official evaluation results.

The results for the two tasks are shown in Tables 1 and 2.
We were user 7. On Task 2.1, run 1, we achieved a score of
either perfect or generally good for 413 of the results; this
corresponds to a good result for 38% of the 1076 queries.
Focusing just on perfect results, our result was 263 (24%).
In this configuration, we ignored the protein altogether
and focused on the GO node-paragraph relationship.
Nonetheless, we received a score of "high" on the protein
mention measurement for 638 of the 1050 (61%)
answers we submitted. This result reflects a high coher-
ence between GO nodes and given proteins in the given
documents, at least at the level of paragraphs.

Our results for the other runs we submitted for Task 2.1
were less good, achieving a perfect or generally good score
for 83/86 (runs 2/3, respectively) of the queries, or about
8%.

Our Task 2.2 results were in general not good, as shown in
Table 2 (user 7). However, it was discovered after the ini-
tial evaluation results were returned that there had been a
problem with the evaluation of our submissions, as well
as the submissions of user 17. We were allowed to select
one run for reevaluation by the EBI annotators; we
selected run 2. Table 2 shows the results after re-evalua-
tion; approximately 5% "perfect" and 2% "generally" cor-
rect. The numbers in brackets indicate the original
evaluation results for those runs. It is clear that the re-eval-
uation resulted in significantly more positive results, so
that we can assume that the reported numbers for the runs
1 and 3 are also lower than the actual (corrected) results

The Los Alamos System Architecture for BioCreAtIvE Task 2Figure 4
The Los Alamos System Architecture for BioCreAtIvE Task 
2.
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would indicate. We are also aware of a number of issues
which contributed to our poor results, and which we have
since addressed in part, and discuss below.

Discussion
There are several important general issues in the evalua-
tion that impacted our performance.

Unknown proteins
We discovered that the test data contained many protein
IDs that were not yet available in SwissProt, in stark con-
trast to the training data. Only 58 of the 286 (20%) pro-
teins referenced in Task 2 evaluation queries were named
in our database; 29/138 (21%) of Task 2.1 proteins and
19/138 (14%) of Task 2.2 proteins. With respect to que-
ries, only 153/1076 (14%) of Task 2.1 queries and 44/435
(10%) of Task 2.2 queries included proteins for which we
had names. We were able to fall back to the names in the
TrEMBL database, but these are of poor quality and usu-
ally there is only one name, not a full set of synonyms for
a protein; often we did not find any occurrences of these
names in the query document. This issue had a big impact
on our ability to focus in on text within documents that
was directly relevant to the protein of interest (see further
discussion of this problem, below). On the other hand,
post-hoc analysis of our (corrected) evaluation results for
Task 2.2, run 2 showed that 16 of the 19 "perfect" and 8
of the 9 "generally" results actually were achieved for pro-
teins not in our database. This suggests two possible prob-
lems. The first is that perhaps the names that we do have
in our database are inadequate for effective protein refer-
ence identification and we should explore more shopisti-
cated protein reference recognition techniques (such as
those explored in BioCreAtIvE Task 1). The second poten-
tial explanation for these results is that the use of a single
sentence as context for terms related to annotation of the
protein of interest is too narrow. We should therefore
experiment with the size of left and right context windows
around protein references to achieve better results.

Assessing annotation accuracy
The methodology followed by the evaluators of Task 2.2
focused on the evidence text selection, measuring whether
the selected evidence text for a given query mentioned
both the protein of interest, and the function/process/
component indicated by the target GO node. The predic-
tion of the GO node itself was not evaluated independ-
ently from the evidence text returned as justification for
the prediction.

Our interpretation of the task was that there were two
results: prediction of the GO node and selection of the evi-
dence text. While in some of the runs, our overall results
were not strong, our independent investigations show
that our overall performance is better when considering

Table 1: Results across all users for BioCreAtIvE Task 2.1. 

User, Run # results "perfect" "generally"

4, 1 1048 268 (25.57%) 74 (7.06%)
5, 1 1053 166 (15.76%) 77 (7.31%)
5, 2 1050 166 (15.81%) 90 (8.57%)
5, 3 1050 154 (14.67%) 86 (8.19%)
7, 1 1050 263 (25.05%) 150 (14.29%)
7, 2 1856 43 (2.32%) 40 (2.16%)
7, 3 1698 59 (3.47%) 27 (1.59%)
9, 1 251 125 (49.80%) 13 (5.18%)
9, 2 70 33 (47.14%) 5 (7.14%)
9, 3 89 41 (46.07%) 7 (7.87%)
10, 1 45 36 (80.00%) 3 (6.67%)
10, 2 59 45 (76.27%) 2 (3.39%)
10, 3 64 50 (78.12%) 4 (6.25%)
14, 1 1050 303 (28.86%) 69 (6.57%)
15, 1 524 59 (11.26%) 28 (5.34%)
15, 2 998 125 (12.53%) 69 (6.91%)
17, 1 412 0 (0.00%) 1 (0.24%)
17, 2 458 1 (0.22%) 0 (0.00%)
20, 1 1048 300 (28.63%) 57 (5.44%)
20, 2 1050 280 (26.72%) 60 (5.73%)
20, 3 1050 239 (22.76%) 59 (5.62%)

Evaluation results on the evidence text selected for Task 2.1. A 
"perfect" evaluation indicates that the evidence text refers to both the 
correct protein and the correct GO node. A "generally" evaluation 
indicates that it refers to the correct protein and that the reference to 
a GO node is somewhat too general. The Los Alamos team is user 7.

Table 2: Results across all users for BioCreAtIvE Task 2.2.

User, Run # results "perfect" "generally"

4, 1 661 78 (11.80%) 49 (7.41%)
7, 1 153 1 (0.65%) 1 (0.65%)
7, 2 384 19 (4.95%) [1] 9 (2.34%) [1]
7, 3 263 2 (0.76%) 10 (3.80%)
9, 1 28 9 (32.14%) 3 (10.71%)
9, 2 41 14 (34.15%) 1 (2.44%)
9, 3 41 14 (34.15%) 1 (2.44%)
10, 1 120 35 (29.17%) 8 (6.67%)
10, 2 86 24 (27.91%) 6 (6.98%)
10, 3 116 37 (31.90%) 11 (9.48%)
15, 1 502 3 (0.60%) 8 (1.59%)
15, 2 485 16 (3.30%) 26 (5.36%)
17, 1 247 52 (21.05%) [1] 23 (9.31%) [0]
17, 2 55 1 (1.82%) 0 (0.00%)
17, 3 99 1 (1.01%) 1 (1.01%)
20, 1 673 20 (2.97%) 30 (4.46%)
20, 2 672 38 (5.65%) 26 (3.87%)
20, 3 673 58 (8.62%) 27 (4.01%)

Evaluation results on the evidence text selected for Task 2.2. See 
legend for Table 1. In this task, evaluation of the GO node reference 
was done with respect to the predicted GO annotation provided by 
the system.
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annotation (GO node prediction) distinctly from evi-
dence text selection. We will show this in what follows.

Since completion of the formal BioCreAtIvE evaluation,
we have refined, improved, and measured our annotation
results in a number of ways. First, there is a free parameter
s to GOC called the specificity, which represents the extent
to which the user values results which are either "low" or
"high" in the GO hierarchy (see the Appendix and else-
where [3]). Succinctly, higher values of s will tend to give
higher scores to nodes which are lower in the GO, and
thus represent more specific or concrete concepts; lower
values of s will tend to give higher scores to nodes which
are higher in the GO, representing more general or
abstract concepts.

In practice, GOC tends to converge (in different direc-
tions) for values of s less than 2 or greater than 7, neither
of which produces optimal results. But because GOC is
itself a novel technique, at the time of the results  submis-
sion we had not yet refined our sense of the use of this
parameter, and hence set it to be much higher than appro-
priate (s = 7). We shall see that this was an improper
choice, with stronger results for moderate levels of
specificity.

For each query we were instructed to provide a certain
number n of annotations, and after the fact we were told
what those correct annotations were. GOC returns a rank-
ordered list usually longer then n, and so we cut this list
off at n nodes, even if a correct answer might have
occurred lower down in the list. Thus we end up with two
sets of n nodes from the GO – our n annotation predic-
tions and the n correct annotations.

To calculate our annotation accuracy, we can check how
many of our answers match the correct answer exactly, but
this doesn't account for "near misses", where we might
return a parent, child, or sibling of the correct answer, and
still wish to count this as some kind of correct response.
Ultimately, this problem becomes that of measuring the
amount of overlap between two sets of GO nodes, which
is actually a difficult mathematical problem, which we
[3,11] and others (e.g. [12]) are addressing. A detailed
treatment of this subject is beyond the scope of this paper,
but for our purposes, we measured "near misses" between
two nodes p and q using the following categories:

• Direct hit: p = q

• Nuclear family: a direct hit, or p is a child, parent, or sib-
ling of q.

• Extended family: a nuclear family hit, or p is grandpar-
ent, grandchild, cousin (grandchild of a grandparent or

grandparent of a grandchild), aunt/uncle (child of a
grandparent), or a niece/nephew (grandchild of a parent),
of q.

• Ancestor: p is any ancestor of q.

Precision vs. Recall for different values of Specificity, sFigure 5
Precision vs. Recall for different values of Specificity, 
s .Paired precision (P) and recall (R) results as a function of 
specificity broken out by inclusive "family groups" as men-
tioned in the text. Note that recall is bounded above by pre-
cision, due to the need to cut off the number of GOC cluster 
heads considered based on the number of requested results. 
The x axis indicates the value of specificity (s); the y axis rep-
resents the value of precision or recall, as a percentage.

Precision for different values of Specificity, sFigure 6
Precision for different values of Specificity, s .Log of 
precision as a function of s, broken out by the distinct (non-
cumulative) family relations. By constrast, the precision 
results for "nuclear family" in Fig. 5 is the sum of direct hits 
from Fig. 5 and parents, children, and siblings from this figure.
Page 10 of 15
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Precision and recall as a function of specificity s across
these different categories are shown in Figure 5. Results
are especially poor for direct hits and very high specificity.
A high specificity (s = 7) was used for all of the GOC-based
runs submitted. For Task 2.2, the submitted results were
therefore not as good as they might have been, with 6%
precision and 5.9% recall for direct hits, 10.8% precision
and 10.5% recall within the correct nuclear family, and
16.6% precision and 16.2% recall within the correct
extended family. For moderate levels of specificity at the
level of nuclear and extended families, our results
approach 50% precision.

Note that due to the list cutoff, recall is bounded above by
precision. Thus Figure 6 shows a more detailed analysis
for precision only, and furthermore breaks out the family
groups by their individual constituents (e.g. parents and
siblings). Results are shown on a log scale.

Some of the results appear impressive, for example
approaching 100% for all ancestors and low specificity.
This is misleading, since simply the topmost GO nodes
like "biological process" and "gene ontology" are identi-
fied. However, looking at moderately "tight" neighbor-
hoods like parents and grandparents, in family groups like
nuclear and extended, reveals a moderately successful
approach to automated functional annotation into the
GO.

Discussion, GOC-based runs
Due to the "unknown proteins" problem described above,
the protein neighborhood terms input to GOC were in
most instances the top TFIDF-ranked terms for the
document as a whole, rather than coming from a coherent
textual neighborhood around the protein. This had sev-
eral implications. First, GOC may have been "overseeded"
– since the input terms were derived from across the doc-
ument, they may have matched very dispersed nodes in
the GO. This would make it difficult for the GOC algo-
rithm to confidently select a covering node for the input
terms. Second, evidence text selection on the basis of over-
lap with or proximity to terms from across the document
is difficult; it is unlikely that any single sentence/para-
graph matches more than a few of these terms.

The overseeding may have worsened the impact of an
additional difficulty. The number of terms from the GOC
input set used to rank a GO node was typically very small
– normally 1–3 terms – and only this subset of terms was
passed on to the two evidence selection algorithms. The
motivation underlying this approach was to enable the
evidence text selection for a GO annotation to proceed on
the basis of only those document terms relevant to that
annotation. In practice, given the small and weakly coher-
ent sets of terms that were generated, this created great dif-

ficulty for reliably selecting a contiguous chunk of text
focused on that GO node. This would have impacted the
quality of the evidence text selected, and hence our overall
evaluation results. This problem could likely have been
ameliorated by incorporating the strategy from Task 2.1,
Run 1, utilizing all available information about the
selected GO node, rather than limiting ourselves to terms
from the context window.

Finally, we would like to explore the interaction between
TFIDF weights and the importance of a term in the GO.
Preliminary analysis suggests that there are very frequent
terms in the GO with relatively high TFIDF scores in the
corpus; this would unfairly value those terms in GOC and
exacerbate the overseeding problem. Some adjustment of
the weighting scheme to better take into consideration the
terminological structure of the GO is therefore warranted.

Discussion, proximity network-based word expansion and 
evidence text selection
While the proximity network-based word expansion
proved to be a very useful technique, giving us good
results on Task 2.1, the evaluator comments indicated that
they were often unhappy with paragraphs as the basic unit
for evidence text. To address this, we envision several
changes. We could apply the proximity measurements at
the sentence level, rather than the word level; we could
explore metrics for recognizing excessively long para-
graphs and splitting them at positions of subtle topic
change; or we could try to use more linguistic (structural)
analysis to focus in on the core information expressed and
narrow the text returned.

There are some additional ways to build on our results.
We could calculate a global word proximity matrix, rather
than one matrix per document, which should strengthen
our confidence in the relationships between words, as
well as relating any given word to more words due to con-
sideration of its occurrence across the document corpus.
We could also incorporate semi-metric analysis of the
word proximities [2] to find additional (indirectly)
related words, even if they do not directly co-occur in the
corpus.

Conclusion
There is still significant room for improvement on this
task. This is evidence of the complexities of automatic
annotation of GO nodes to proteins based on a single
document, where complexities arise both from the struc-
ture of the GO itself and the difficulties of annotating into
a large and extremely hierarchical structure, and from the
ambiguous nature of text. However, the initial results
show promise for both of the methods we explored, and
further analysis has helped us to better understand the
impact of the various parameters of the system. We are
Page 11 of 15
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planning to integrate the two methods explored in this
study more closely to achieve better results overall.
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Appendix A: The gene ontology categorizer 
(GOC) and its extensions
GOC is an algorithm for categorization in hierarchies rep-
resented as partially ordered sets (posets [13]). Posets are
distinguished from networks, which are represented as
directed graphs: while every poset is a directed graph, the
converse is not true. In particular, the GO is a collection of
posets, two each (is-a and has-part) for each of the three
branches Molecular Function, Cellular Component, and
Biological Process.

Space precludes a full explication of GOC, which would
furthermore be redundant with prior published work [3].
Therefore a synoptic account is provided here, focusing on
the extensions to GOC for this task. For full details about
the base GOC, see [3].

GOC begins by casting the nodes of the GO as a set P with
a partial order ≤ : a reflexive, symmetric, and anti-transi-
tive binary relation over the elements of P. Here ≤ is actu-
ally the union of all the is-a and has-part links, so that p ≤
q if either p is a kind of q or p is a part of q. Together P and
≤ yield a structure called a partially ordered set (or poset)
P = (P, ≤).

Two nodes p,q ∈ P are called comparable when there is a
unidirectional path, called a chain [13], in the GO
between them, so that, either p is a kind of q or p is a part
of q, with p ≤ q ; or vice versa, so that q ≤ p. Note that many
chains may connect two comparable nodes.

Then, features of GO nodes are cast as a set of labels X,
and can be, for example, the gene products annotated to
GO nodes, or in our case are the terms making up the

labels of each GO node. An annotation function F : X →
2P then assigns to each feature (term) x ∈ X the collection
of GO nodes F(x) ⊆ P with which they are associated.
Altogether, we construct a mathematical structure called a
POSet Ontology (POSO) O = (P,X, F).

Between all pairs of comparable nodes p ≤ q we define a
pseudo-distance δ(p, q) to indicate how "high" q is above
p. While many pseudo-distances are possible, in practice
we use four: the length of the minimum chain between
them, denoted δm; the length of the maximal chain δx ; the
average of these δax = (δm + δx)/2 ; and the average of the
lengths of all the chains between p and q denoted δap.

We also use a normalized pseudo-distances  derived
by dividing δ by the height of P, which is the size of its
largest chain. Effectively, an absolute pseudo-distance
measures the number of "hops" between two comparable
nodes p ≤ q, while a normalized pseudo-distance meas-
ures what proportion of the height of the whole poset P is
taken up between p and q.

A toy example of a POSO is shown in Figure 7, where we
have P = { A, B, ..., K }, X = { a, b, ..., j }, the partial order
≤ is as indicated in the figure, and e.g. F(b) = { A, E, F }.

A toy example of a labeled posetFigure 7
A toy example of a labeled poset. GO nodes are mod-
eled by nodes with capital letters, with gene labels annotated 
to them in lower case. Note that the structure is neither a 
tree nor a lattice, but technically, the Hasse diagram of a 
poset P.
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The height of P is 4, and A ≤ B are comparable nodes con-
nected by three chains A ≤ F ≤ B, A ≤ G ≤ B, and A ≤ H ≤ I
≤ B, so that δm (A, B) = 3, δx (A, B) = 4, δax (A, B) = 2.5, δap

(A, B) = 2.33, and e.g. (A, B) = 3/4.

Given a pseudo-distance and a set of labels of interest Y ⊆
X, we then want to develop a scoring function SY(p)
which returns the score of a node p ∈ P based on the other
nodes in the GO which are annotated by the requested
labels Y, and the poset structure of the GO. We have an
unnormalized score SY: P → R+ which returns an "abso-
lute" number greater than or equal to zero, and a normal-

ized score  : P → [0,1] which returns a number,
between 0 and 1, indicating the score relative to a theoret-
ical maximal value. We also allow the user to choose the
relative value placed on coverage vs. specificity by intro-
ducing a parameter s ∈ {...,-1,0,1,2,3...}, where low s
emphasizes nodes higher in the GO which are more likely

to cover a label of interest, and high s emphasizes nodes
lower in the GO which are more likely to be very specific
annotations to a label of interest.

Since both the normalized and unnormalized scoring
function can use either the normalized or unnormalized
distances, there are four possible scoring functions used in
the original GOC [3], letting r = 2s, and thereby incorpo-
rating specificity as shown in table 4.

Output for the example in Fig 4 is shown in Table 3 for the
query Y = { c, e, i }, specificity values s = -1, 1, and 3, the

"doubly-normalized" score , and the normalized

pseudo-distance . In addition to scoring each node,
GOC identifies cluster heads, which are shown in bold;
and so-called "secondary cluster heads" which are cluster
heads which are ancestors of a primary cluster head, and
which are labelled with *.

δm

ŜY

Ŝ

δm

Table 3: Original GOC output in the toy example. GOC output for values of specificity s ∈ { -1,1,3}.

s = -1 s = 1 s = 3

Rank p p p

1 0.7672 C 0.5467 H 0.3893 H
2 0.6798 1* 0.3867 C* 0.3333 A;J
3 0.6315 H 0.3333 A;I;J
4 0.5563 I 0.0617 C*
5 0.5164 B 0.0615 I
6 0.3333 A;J 0.2400 B* 0.0559 F;G;K
7 0.2267 1*
8 0.2981 F;G;K 0.2133 F;G;K
9 0.0112 B
10 0.0060 1

Table 4: Original GOC scoring functions, letting r=2s
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Distance Unnormalized Normalized
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For the BioCreAtIvE Task 2 the following changes were
made to the base GOC algorithm described above:

• Label sets X were allowed to be terms as well as gene
products.

• Queries took the form of lists of terms weighted as
described above.

• Since each item of the list "hits" a collection of GO
nodes with its particular weight, the query as a whole
implicates a collection of GO nodes in a complex way.
When the weights are carried over from the query terms to
the list of nodes, the structure which results is called a
fuzzy bag of P, denoted here Q �  P.

So the fuzzy bag Q is an unordered collection of possibly
duplicated nodes p ∈ P equipped with weights w : Q →
[0,1]. As an example, a query could be

{ ("protein biosynthesis", 0.8), ("biosynthesis", 0.8),
("lipoprotein", 0.7) }

resulting in the fuzzy bag of nodes

Q = { (GO:0042157: lipoprotein metabolism, 0.7),

(GO:0006412: protein biosynthesis, 0.8),

(GO:0006412: protein biosynthesis, 0.8),

(GO:0042158: lipoprotein biosynthesis, 0.8),

(GO:0042158: lipoprotein biosynthesis, 0.7) }.

Note the duplicate items in the bag, in particular the node
GO:0006412 is present twice with weight 0.8, receiving
one contribution from the query term ("protein biosyn-

thesis", 0.8) and another from the query term ("biosyn-
thesis", 0.8).

The original scoring functions above are then modified as
shown in Table 5, again letting r = 2s.

where |Q| is the size of the query, taken as the cardinality

of the bag Q: 
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