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Abstract

Background: Good automatic information extraction tools offer hope for automatic processing
of the exploding biomedical literature, and successful named entity recognition is a key component

for such tools.

Methods: We present a maximum-entropy based system incorporating a diverse set of features
for identifying gene and protein names in biomedical abstracts.

Results: This system was entered in the BioCreative comparative evaluation and achieved a
precision of 0.83 and recall of 0.84 in the "open" evaluation and a precision of 0.78 and recall of

0.85 in the "closed" evaluation.

Conclusion: Central contributions are rich use of features derived from the training data at
multiple levels of granularity, a focus on correctly identifying entity boundaries, and the innovative
use of several external knowledge sources including full MEDLINE abstracts and web searches.

Background

The explosion of information in the biomedical domain
and particularly in genetics has highlighted the need for
automated text information extraction techniques.
MEDLINE, the primary research database serving the bio-
medical community, currently contains over 14 million
abstracts, with 60,000 new abstracts appearing each
month. There is also an impressive number of molecular
biological databases covering an array of information on
genes, proteins, nucleotide and amino acid sequences,
both generally (GenBank, Swiss-Prot) and for particular
species (FlyBase, Mouse Genome Informatics, WormBase,
Saccharomyces Genome Database), each containing
entries numbering from the thousands to the millions
and multiplying rapidly. All of these resources are largely

curated by hand by expert annotators at enormous
expense and the amount of information often prohibits
updating previously annotated material to conform to
changing annotation guidelines. This situation has natu-
rally led to an interest in automated techniques for prob-
lems such as topic classification, word sense
disambiguation, and tokenization in the biomedical
domain (cf. MEDLINE's Indexing Initiative [1]).

In this paper we focus on the particular problem of
Named Entity Recognition (NER) which requires the
identification of names corresponding to shallow seman-
tic categories. As posed by the BioCreative evaluation in
Task 1A, this task required participants to identify a single
entity "NEWGENE" corresponding roughly to gene and
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protein names in medical abstracts. NER is an important
component for more complex information extraction
tasks such as automatic extraction of protein-protein
interaction information. We present a system based on a
maximum-entropy sequence tagger which achieved state-
of-the-art performance in the BioCreative comparative
evaluation. Below, we first describe the system, then
present its performance on the BioCreative Task 1A devel-
opment and evaluation data along with an analysis of
errors, and finally close with a more general discussion of
the task and our conclusions.

Implementation

Our entry was a machine learning system using a discrim-
inatively trained sequence tagger. We devoted most of our
efforts to finding useful features. The final system makes
exhaustive use of clues within the sentence, as well as
using various external resources, and pre- and post-
processing. Below, we describe our system in greater
detail. We outline the machine learning model, our pre-
processing phase, and then we detail our full feature set,
starting with the features used in the closed section of the
BioCreative evaluation (where gazetteers were not
allowed) and moving on to the features used in the open
section (where all external resources were allowed). Then
we give implementation details of our training procedure,
and finally we describe tagging and a postprocessing
phase aimed at improving boundary detection.

Model

The model used was a conditional Markov model
sequence tagger, implemented in Java and based on the
tagger used in [2]. The system essentially uses a logistic
regression model to put a probability distribution over the

set of classes C = {NEWGENE, O} for each word. That is,
for deciding the probability of class ¢ at a certain word
position, one employs a loglinear model that uses features

f; of the input data X and previous classifications ¢ _ to
define the probability of the class as follows:

exp(zjljfj(?c,ﬁ_,c))
zc’e ceXp(szjfj (‘TC’E—’C’))

Py(c|xc_)=

This calculation is then overlaid with a Viterbi-style
dynamic programming algorithm [3] to find the best
sequence of classifications. Such models are commonly
referred to as maximum entropy models in the NLP liter-
ature [4,5] and are also known as maximum entropy
Markov models or MEMMs [6]. Maximum entropy mod-
els have been used with much success in NER tasks and are
known for their ability to incorporate a large number of
overlapping features. The features used in our model are
all binary indicator functions that pick out particular data
contexts and pair them with each class. This restriction is

not required by the model form, but gives the model a
particularly simple semantics: in the model above one is
simply summing the 4; weights for the features that
"matched" (that is, have value 1) in a particular instance).
For example, the matching features of the data context
might be something like {prev. word = murine, curr. word
= CD4, prev. class = O} - though in practice our model
would typically have several dozen features matching at
any position. As is common for NLP models using many
features, we employ equal-scale quadratic regularization
of the parameter weights to prevent parameters rarely
present in the data having high weights, which leads to
model overfitting. Modulo this penalization, the model
parameters A; are set to maximize the conditional likeli-

j
hood of the class sequence on the training data.

Preprocessing

During both training and testing we used the tokenization
supplied by the task organizers. This tokenization was of
quite poor quality. For instance, periods were always sep-
arated off as tokens, and so a text string like [increased] by

1.7-fold. was tokenized as (by) (1) (.) (7-fold) {.). How-
ever, we kept with this tokenization for practical reasons:
since evaluation was to be done with respect to this
tokenization, introducing a pair of processes that mapped
back and forth between this representation and another
tokenization scheme seemed a potentially error-prone
step that was unlikely to help final results.

We normalized names of months and days of the week to
lowercase, and mapped the British spellings of a few com-
mon medical terms to their American versions. We looked
up all tokens in the gazetteer and in the English dictionary
CELEX and calculated the frequency of each token in the
corpus. We then identified abbreviations and long forms
using the method of [7]. We tagged the data for part-of-
speech (POS) using the TnT POS tagger [8] trained on the
GENIA corpus [9], which provides a gold standard for
POS tags in biomedical text. The TnT POS tagger is an
HMM-based tagger; perhaps due to greater robustness, we
found that it outperformed the maximum entropy POS
tagger that was available to us. Testing showed that a
GENIA-trained POS tagger performed much better than
one trained on Wall Street Journal text, due to the special-
ized nature of biomedical text. The task essentially
required only picking out whether words were genes or
not, but to allow recognition of adjacent but different
named entities, the data made a NEWGENE versus
NEWGENE1 distinction (in which the second of two adja-
cent but separate entities was labelled as NEWGENE1).
We removed this distinction and mapped all entities to
NEWGENE. Cases of adjacent named entities are suffi-
ciently rare that it is hard to do well on them; we maxi-
mized performance by making the system unable to
represent this situation.
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Table I: Features Used Description of the Full Feature Set Used
In the Closed Section Submission.

Word Features w;
Wil
Wit
Last "real" word
Next "real" word
Disjunction of 4 previous words

Disjunction of 4 next words

Bigrams w;t+ w,
Wit Wi

TnT POS POS;
POS;,
POS,,

Character Substrings Up to a length of 6

Abbreviations abbr;
abbr; | + abbr;
abbr; + abbr;,,
abbr,| + abbr; + abbr;,

Word Shape shape;

shape; |

shape,.,

shape, | + shape;

shape, + shape;,,

shape, | + shape; + shape;,,
Previous NE NE,

NE,, + NE,
Previous NE + Word NE,, + w;

Previous NE + POS NE,, + POS,, + POS;

NE,, + NE,, + POS,, + POS_, + POS,

Previous NE + Shape NE,, + shape;
NE, + shape;,
NE, | + shape; | + shape;

NE;, + NE., + shape;, + shape; | + shape;

Paren-Matching A feature that signals when one
parentheses in a pair has been assigned a
different tag than the other in a window of

4 words

Features — closed section

The features described here were used in both the closed
and open sections. The basic feature types were words,
character substrings, word shapes, POS tags, abbreviations
and the NE tags assigned to surrounding words. Character
substrings refer to all substrings of the current word, up to
a length of 6 characters. Thus the word "bio" would have
features _b, _bi, _bio, _bio_, bio_, io_, o_, bio, bi, i0, b, i, o.
Word shapes refer to mappings of each word to a simpli-

fied representation that encodes attributes such as its
length and whether it contains capitalization, numerals,
greek letters, and so on. For example, "Varicella-zoster"
would become Xx-xxx, "mRNA" would become xXXX, and
"CPA1" would become XXXd. Beyond standard word and
POS tag features, character substring and word shape fea-
tures were central players in the system of [2]. A feature
encoding whether each word was an abbreviation, a long
form, or neither was assigned to each token. Lastly, a
parentheses-matching feature that signalled when one
parenthesis was classified differently from its pair was
added in an effort to eliminate errors where the tagger
classified matching parentheses differently. All of these
basic feature types were then used singly or combined in
various ways to create new features. Features matching a
word were also used disjunctively on left and right con-
texts. We borrowed disjunctive word features from [10],
and introduced abbreviation and parentheses matching
features to model key problems in this textual domain.
The resulting feature set is summarized in Table 1 and
comprises all of the features used in the closed section.

Features — open section

The features described here were used in the "open" entry
and comprise various external resources including gazet-
teers, a web querying technique, the full abstracts corre-
sponding to the sentences in training and test sets, the
GENIA corpus, and the ABGene NE/POS tagger. The basic
assumption behind and motivation for using external
resources is that there are instances in the data where con-
textual clues do not provide sufficient evidence for confi-
dent classification. In such cases external resources may
bridge the gap, either in the form of word lists known to
refer to genes (gazetteers) or through examination of
other contexts in which the same token appears and the
exploitation of other more indicative contexts (as with
web-querying and use of surrounding text such as
abstracts).

All external resources are vulnerable to incompleteness,
noise, and ambiguity. Gazetteers are arguably subject to
all three and yet have been used successfully in a number
of systems. Because of its size (on 26.02.2004, Google
estimated that it indexed over 4,285M web pages), the
web is the least vulnerable to incompleteness but is highly
vulnerable to noise. Nevertheless, the web has been used
to good effect in various NLP tasks (see [11] for an over-
view) from machine translation [12] to anaphora resolu-
tion [13]. Abstracts do not contain indicative contexts as
frequently because they are so short; however their infor-
mation is least vulnerable to ambiguity because a token
used repeatedly within a text is likely used with the same
meaning each time. Information on a word's classification
elsewhere in the same text has been successfully used in a
number of NER systems (cf. [14] and [15]). By
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incorporating all of these resources as features in a proba-
bilistic system, we aimed to make use of their information
while taking into account their reliability.

Our gazetteer was compiled from lists of gene names from
biomedical sites on the Web (such as Locus Link) as well
as from the Gene Ontology and the data provided for
Tasks 1A and 1B. The gazetteer was cleaned by removing
single character entries ("A", "1"), entries containing only
digits or symbols and digits ("37", "3-1"), and entries con-
taining only words that could be found in the English dic-
tionary CELEX ("abnormal", "brain tumour"). The final
gazetteer contained 1,731,581 entries. As stated above,
gazetteer lookup was performed for each token in the pre-
processing stage. Lookup was case-insensitive but punctu-
ation was required to match exactly. For multiple word
entries in the gazetteer we required all words in the entry
to match. We also experimented with fuzzy-matching
where each gazetteer entry was converted into a regular
expression; however this matching led to inferior results
and was therefore not used.

For using the web we built several contexts indicative of
gene entities including "X gene", "X mutation" or "X
antagonist”. For each entity X identified as a gene by an
initial run of the tagger, we submitted the instantiation of
each pattern to the Web using the Google API and
obtained the number of hits. If at least one of the patterns
returned more than zero hits, the string was assigned a
'web' value for the Web feature. The classifier was then run
again; this time incorporating the web feature. Using web-
querying only on likely candidates for genes as identified
by an initial run of the tagger was more efficient than
using it on all words. Note however that this approach
uses the web only to eliminate false positives and there-
fore does not improve recall. In other work [16] we have
explored using the web with low-frequency words to
improve both recall and precision.

To give a bigger context, we automatically located the full
Medline abstract from which each BioCreative sentence
was taken by searching Medline for the sentence using cgi
scripts. (In a practical application this would be unneces-
sary since one would almost always have the full abstract
and not a single sentence.) We incorporated additional
information by tagging the abstract and then adding to
words in the test sentence a feature that indicated whether
the word was tagged as a gene in the abstract. We found
that this feature was only helpful when combined with
other information such as frequency and whether the
word had appeared in the English dictionary CELEX. Pre-
sumably this was due to common words for which the
abstract feature was misleading; the fact that the word
"gene" was tagged as a gene in the phrase "CPA1 gene"

does not indicate that it is a gene named entity in the
phrase "a gene".

The final two external resources that we incorporated were
the ABGene tagger [17] and the GENIA corpus [9]. We
found that while the ABGene tagger used alone achieved
only a modest f-score of 0.62 on the BioCreative develop-
ment data, use of ABGene NE output as a feature neverthe-
less slightly improved our recall and overall f-score. We
assume that this is because its use allowed our classifier to
partially exploit the various gazetteers and lists of good
and bad terms incorporated into the ABGene system (see
[17]), thereby gaining additional knowledge of gene
names independent of context. We also sought to incor-
porate the GENIA corpus of NE-annotated MEDLINE
abstracts but found this difficult because it used an
entirely different tag set to the BioCreative data and the
mapping between them was unclear. We gained a small
improvement by training the C&C tagger [15] on the full
NE tag set of the GENIA corpus (consisting of 37 biomed-
ical NEs including "cell type" and "protein molecule"),
then using this tagger to tag both training and test data
and using its output as a feature in our final tagger. The
C&C tagger is another maximum entropy sequence tagger;
it was used here for pragmatic reasons related to memory
use.

Training

As previously stated, maximum entropy systems allow
incorporation of large numbers of diverse features; how-
ever, parameter estimation for large models can be time-
consuming. We found that a particularly large number of
features was necessary for high performance in the bio-
medical domain, and improved on our initial parameter
estimation method (conjugate gradient descent as in [2])
by implementing a quasi-Newton optimization proce-
dure. Quasi-Newton or limited memory variable metric
methods have been shown to be faster than other algo-
rithms by a factor of up to 7 to 1 [18]. Our final system
was trained on the combined training and development
data of 10,000 sentences and 262,139 words and
employed approximately 1.25 million features; using
quasi-Newton it trained in less than two hours. In a real-
world application the time taken for training is largely
irrelevant because it is a one-time cost. However, in tuning
a system, training must be fast enough to allow experi-
mentation with various configurations.

Tagging

Tagging used a Viterbi-style algorithm with a beam size of
30. Tagging was quick; the evaluation data of 5000 sen-
tences was tagged in approximately one minute (exclud-
ing web statistics, which were pre-computed).
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Postprocessing

We found that many of our errors stemmed from gene
boundaries (37% of false positives and 39% of false neg-
atives) and addressed this issue in several ways. Boundary
errors were often due to mismatched parentheses; the
parentheses-matching feature described above did not
eliminate these errors due to (generally erroneous)
instances in the training data which contained mis-
matched parentheses. We therefore used the Unix com-
mand grep to remove genes containing mismatched
parentheses from our results. We also found that we
obtained different gene boundaries when we ran the clas-
sifier forwards versus backwards (reversing the order of
the words) and obtained a significant improvement in
recall at the expense of precision by simply combining the
two sets of results. This new, larger set of genes contained
instances where one gene was a substring of another gene.
In those instances we kept only the shorter gene. We
found that this postprocessing was quite valuable and
added approximately 1% to our f-score. It was used in
both the open and closed sections. This postprocessing is
effectively a very simple form of classifier combination,
and we believe that most of the benefit comes from the
classifier combination, rather than mitigating "label bias"
problems [19], which tend to become very weak when
rich contextual features are employed. See [20] for a more
general classifier combination approach that includes for-
wards and backwards component models.

Results

Tables 2,3,4 show the performance of both the "open"
and "closed" versions of the system on the development
and evaluation data as well as lesion studies showing the
individual contribution of feature classes to the overall
performance. Surprisingly, the "closed" version of the sys-
tem achieves performance only 1% lower than the "open"
version on the evaluation data (2% on the development
data). We had expected more value from extra data
sources, but it may well be that they are difficult to exploit
effectively because of subtly different decisions about
what does and does not count as a named entity to be
tagged. However, it is also worth noting that a 1-2%
improvement is relatively significant; as the performance
of the classifier gradually improved during development,
the improvements from revisions became progressively
smaller so that at times features were incorporated which
added only a tenth of a point. Also surprising was that
removing word shape features actually increased our f-
score by 0.13%. The "zero-order" and "first-order" experi-
ments refer to how far back the classifier can see the NE
tags assigned to previous words during sequence search.
Thus a zero-order model can only see the classification of
the current word, while a first-order model can see the
classification assigned to the previous word (but not the
words before). Removing second and third order features
also improved our result marginally.

Table 2: Development set results System Results on Cross-
Validated Training/Dev Data.

Precision Recall F-Score
Open 0.813 0.861 0.836
Closed 0.784 0.852 0.817

Table 3: Test set results System Results on Evaluation Data.

Precision Recall F-Score
Open 0.828 0.835 0.832
Closed 0.792 0.854 0.822
Discussion

Sources of error

A number of false positives (FPs) occurred when the entity
tagged by the classifier was a description of a gene rather
than a gene name, as with "homologue gene". FPs also
occurred with several strings that were composed of char-
acters and digits or sequences of capitalised letters, or that
included symbols and punctuation. This occurred fre-
quently with measures, such as "kat/L" (katal per litre)
and acronyms for non-gene entities. Acronym ambiguity
was a related source of error. The abbreviation "HAT", for
instance, could stand for the gene name "histone acetyl-
transferase" but actually referred to "hepatic artery throm-
bosis" in one specific context.

False negatives (FNs) were frequently caused by gene
names that had not been encountered in the training data,
so that the classifier did not have information about them
and contextual clues were insufficient. FNs also occurred
in some coordinated NPs where the modifier was attached
to only one of the phrases but modified all of the coordi-
nated members. Abbreviations, expansions, and names in
parentheses were also frequent causes of FNs.

The single largest source of error was mistaken boundaries
(37% of FP and 39% of FN). In most cases, the classifier
identified one correct and one incorrect boundary (i.e.
either the beginning or the end). It often included left or
right context as part of the entity which was not contained
in the gold standard. In several instances, the classifier
split a string into separate entities which in fact referred to
a single entity, or tagged separate entities as a single one.
Tokenisation errors sometimes triggered boundary errors,
as with "PGS-2 . CAT reporter gene" where the classifier
only recognized "CAT reporter" as a gene. Because many
abbreviations were not genes and because the precision
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Table 4: Lesion study results Results on Cross-Validated Training and Development Data With One Feature Removed At a Time

Precision Recall F-Score AF
Abbreviations 0813 0.860 0.836 -0.05%
Abgene 0.810 0.861 0.834 -0.18%
Abstract 08Il 0.855 0.832 -0.39%
Gazette 0.807 0.857 0.831 -0.51%
Genia 0.806 0.857 0.831 -0.55%
Substrings 0.814 0.852 0.833 -0.37%
POS; ;.1 41 0.814 0.860 0.836 -0.03%
Google Web 0.807 0.864 0.835 -0.17%
Word Shape 0.8I15 0.862 0.838 +0.13%
Zero Order 0.741 0.799 0.770 -6.66%
First Order 0818 0.853 0.835 -0.15%
Second Order 0.814 0.861 0.837 +0.06%
Third Order 0.814 0.863 0.837 +0.07%

and recall of the gazetteer were fairly low, we believe that
both abbreviation and gazetteer features helped more in
identifying gene boundaries than in identifying genes.

Some of our errors were due to errors in the evaluation
data. In example (1) below which appeared in the evalua-
tion data, our system annotated "nuclear factor Y" as a
gene while the gold standard annotated only "nuclear fac-
tor"; we were penalized for both a FP and a FN. This
appears to be an error and is inconsistent with (2) which
appeared in the training data. Examples (3) and (4) also
appear to be misannotated; a quick web search shows that
SGOT (our system's FP) in (3) is a well-known enzyme,
while the GaAs/(Al,Ga)As heterojunctions (our system's
FN) in (4) are found in semiconductors. Even in cases
where our error in the evaluation data was in fact an error,
it could not infrequently be traced to a similar error in the
training data. In example (5) we annotated "human cyc-
lin-dependent kinase" and were penalized for a FP; how-
ever, our annotation mirrors the pattern of (6) which
appeared in the training data.

(1) ..both PC12 and C6 cell nuclear extracts were
recruited by the CCAAT-box as a complex containing
nuclear factor Y.

(2) The sequence-specific interaction of nuclear factor
HiNF-D with this key proximal promoter element of the
H4-FO108 gene is cell cycle regulated in normal diploid
cells

(3) Nitrogen balance was compared, and metabolic com-
plications were monitored by evaluating BUN, serum cre-

atinine, creatinine clearance, serum CO2, SGOT, SGPT,
serum LDH, and serum alkaline phosphatase.

(4) Envelope-function matching conditions for GaAs/
(Al,Ga)As heterojunctions.

(5) Structure of the gene encoding the human cyclin-
dependent kinase inhibitor p18

(6) ...which targets the cyclin-dependent kinase (Cdk) inhib-
itor SicIp...

Directions for improvement

The learning curve in Figure 1 suggests that we can expect
only very limited improvement from the availability of
additional training data, given the current task and feature
set. Rather we must explore other avenues, including bet-
ter exploitation of existing features and resources, devel-
opment of additional features, incorporation of
additional external resources, or experimentation with
other algorithms and strategies for approaching the task.

One obvious improvement of our current system would
be the incorporation of protein names into our gazetteer.
Due to ambiguity in the guidelines we were unaware that
protein names were to be recognized and incorporated
only gene names into our gazetteer.

Secondly, more careful attention to coordination may
improve results. This could involve parsing or less
sophisticated treatment of coordinations. Our work in
[16] shows that full parsing can give value to NER tasks.
However, if one heads in this direction, one can no longer
so easily think of NER as a lightweight initial processing
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Learning curve. Learning curve for the performance of the
"open" NER system on development data.

step feeding into more complex analysis such as informa-
tion extraction and full sentence understanding.

Thirdly, boundary errors might be addressed more effec-
tively with a more sophisticated post-processing stage.
Considering only the problem of segmentation of NEs,
Collins [21] applies reranking to candidate structures gen-
erated from a maximum-entropy tagger and achieves a
17.7% relative reduction in error rate. He used reranking
to allow features that describe the full NE identified by the
tagger, such as its first and last words and attributes
thereof, and whether all words between a set of quotes
were given the same tag (reminiscent of the parentheses
problems in our data). Such features cannot be encoded
in a standard sequence tagger.

Another possible avenue would be automatic addition of
conjunctions of current features [22,23]. A number of the
features listed in Table 1, as well as the features used to
incorporate external resources, are relatively unintuitive
conjunctions of other features that were chosen by
lengthy trial and error processes. Feature induction might
suggest useful feature conjunctions that we have over-
looked and reduce the cost of incorporating additional
resources. All told, we spent about 25 person-weeks
extending the system of [2] for this evaluation exercise,
much of it in designing and testing variant feature sets.
This leaves us open to the criticism that much of the effort
was not machine learning, and one might have been able
to develop a system of hand-crafted rules in the same
time. Use of automatic feature induction would partly
address this criticism.

Finally, improvements in the annotation of data used for
both training and evaluation may be the single best source
of improvement. We note that the quality of data for Bio-
Creative was overall quite good and the organizers' inno-
vation of providing alternate correct boundaries for a
given named entity was instrumental in reducing spurious
errors due to debatable boundaries. However, as noted in
the previous section, a significant proportion of errors
could be attributed to errors in the annotated data, and
the fact that no clear annotation guidelines were provided
in a domain as complex as molecular biology would sug-
gest that there is room for improvement.

Conclusion

We have presented in detail a machine learning system for
identifying genes and proteins in text and described its
feature set comprising both contextual clues and external
resources. We have also presented its performance on the
BioCreative development and evaluation data, analyzed
its sources of error, and identified possible avenues for
improvement.

Many of our features were focused on increasing the cor-
rect identification of entity boundaries. This is partly an
artifact of the scoring metric: using an f-score of exact
match precision and recall means that one is penalized
twice, both for a FP and a FN, in cases of an incorrect
boundary identification. One scores better in such cases if
one suggests no entity. This problem was somewhat amel-
iorated within the BioCreative evaluation by a facility for
annotators to be able to specify alternate correct answers,
which allowed as correct matches of several lengths in
places where the annotators thought it appropriate. The
CoNLL task also used a straight f-score metric, but note
that the "mid-nineties" results commonly remembered
from MUC NER competitions reflect an easier metric
where partial credit was given for cases of incorrect
boundary identification. We evaluated our BioCreative
result of 83.2 with the MUC scorer and scored 85.62. Nev-
ertheless, the lower results equally reflect that finding cor-
rect entity boundaries in the biomedical domain is an
extremely hard task, whereas in many cases it is quite triv-
ial for people or place names in English - capitalization
giving sufficient clues.

The final performance of the tagger at 0.83 f-score remains
far below the best results reported for the most well-
researched NER task of PERSON, LOCATION, and
ORGANIZATION entities in newswire texts. Using the set
of features designed for that task in CoNLL 2003 [24], our
system achieves an f-score of 0.76 on the BioCreative
development data, a dramatic ten points lower than its f-
score of 0.86 on the CoNLL newswire data. Despite the
massive size of the final feature set (almost twice as many
features as used for CoNLL), its final performance of 0.83
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Table 5: Examples of Errors Examples of FPs, FNs and boundary errors. In some of the examples square brackets are used to indicate
the differences between the classifier's output and the annotation in the gold standard.

False Positives Classifier (CL)

Gold Standard (GS)

General Words homolog gene
Measures kat/L
Possible Errors in GS

False Negatives Classifier (CL)

[ssDNA-] and [RNA-binding protein]

ssDNA- and [RNA-binding protein]

Gold Standard (GS)

Coordination
Missing Expansion

Boundary Errors Classifier (CL)

[YAP2 uORFI] and uORF2
zinc-finger protein ([THZif-1])

[YAP2 uORFI] and [uORF2]
[zinc-finger protein] ([THZif-1])

Gold Standard (GS)

GS NE contains CL NE(s) AP-| complexes
USHIC

partner of [Rac]

high mobility AP-1 complexes
USH I C disease gene
[partner of Rac]

CL NE contains GS NE(s) regulator virF

Whnt pathway
CL and GS Overlap

is still below its performance on the CoNLL data (and far
below the 0.89 f-score of the top-performing system in the
CoNLL task), even though the BIOCREATIVE task
involved only one distinction. The discrepancy in per-
formance is a striking illustration of the greater difficulty
of NER in the biomedical domain.

It is worth comparing these performance figures with lev-
els of interannotator agreement in the biomedical
domain. Interannotator agreement effectively provides a
ceiling on the performance that can be expected from a
system by measuring how well a human annotator per-
forms on a task. While agreement for the MUC entities
was measured at 97% (though again using the slightly
more lenient measure implemented in the MUC scorer), a
number of results have measured agreement for biomedi-
cal NEs to be substantially lower, with f-scores in the
range of 0.87 [25] to 0.89 [26]. With interannotator
agreement so low, it appears that we cannot currently
expect to improve system performance more than a few
points. This suggests that more clarity in what should be
annotated (or perhaps just when a variety of answers of
different extent should be counted as correct) is needed. It
also may suggest that performance of 83% or improve-
ment of just a few points is sufficient for the technology to
be practically applicable.
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