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Abstract

This paper proposes an ensemble of classifiers for biomedical name recognition in which three
classifiers, one Support Vector Machine and two discriminative Hidden Markov Models, are
combined effectively using a simple majority voting strategy. In addition, we incorporate three post-
processing modules, including an abbreviation resolution module, a protein/gene name refinement
module and a simple dictionary matching module, into the system to further improve the
performance. Evaluation shows that our system achieves the best performance from among 10
systems with a balanced F-measure of 82.58 on the closed evaluation of the BioCreative protein/

gene name recognitiontask (Task |A).

Background

With an overwhelming amount of textual information in
biomedicine, there is a need for effective and efficient lit-
erature mining and knowledge discovery that can help
biologists to gather and make use of the knowledge
encoded in text documents. For example, MEDLINE [1],
the primary research database serving the biomedical
community, is an online bibliographic source of citations
and abstracts dating from 1966 till present and currently
contains over 12 million abstracts with 60,000 new
abstracts each month. There are also a few molecular bio-
logical databases covering various information on genes,
proteins, nucleotide and amino acid sequences, both gen-
erally (e.g. the protein sequence database SwissProt [2]
and the genetic sequence database GenBank [3]) and for
particular species (e.g. FlyBase [4] on the genetics and
molecular biology of Drosophila). Each of them contains
entries ranging from thousands to millions and multiplies
rapidly. Normally, all of these resources are annotated
manually by human experts. However, such manual han-
dling is much throughput-limited, extremely time-con-

suming and enormously expensive. In order to make
organized and structured information available, automat-
ically recognizing biomedical names becomes critical and
is important for protein-protein interaction extraction,
pathway construction, automatic database curation, etc.

Such a technique, called named entity recognition, has
been well developed in the Information Extraction litera-
ture [5,6]. In MUG, the task of named entity recognition is
to recognize the names of persons, locations, organiza-
tions, etc. in the newswire domain. In the biomedical
domain, we care about entities like genes, proteins,
viruses, etc. In recent years, many explorations have been
done to port existing named entity recognition systems
into the biomedical domain [7-10]. However, few of them
have achieved satisfactory performance due to the special
characteristics of the biomedical names, such as long and
descriptive naming convention, conjunctive and disjunc-
tive structure, causal naming convention and rapidly
emerging new biomedical names, abbreviation, and cas-
caded construction [9,10]. On all accounts, we can say
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that the entity names in the biomedical domain are much
more complex than those in the newswire domain.

Methods

In the competition, an ensemble of classifiers is proposed
to recognize the protein/gene names, in which three clas-
sifiers, one Support Vector Machine (SVM) and two dis-
criminative Hidden Markov Models (DHMMs), are
effectively combined. In literature, various strategies have
been used to integrate multiple classifiers into an ensem-
ble, e.g. bootstrapping [11] and boosting [12]. Here, the
ensemble is constructed using a simple majority voting
strategy. Among the three classifiers, the only difference
between the two DHMMSs comes from the part-of-speech
(POS) features, which are trained on different corpora.
The main reason for integrating these three classifiers as
an ensemble is the finding during our investigation that
they have quite different characteristics with regard to the
precision and recall. Our evaluation on the dry-run data
shows that the SVM using the POS feature trained on the
refined BioCreative-POS corpus (Please see below for
details) has high precision and low recall, the DHMM1
using the POS feature trained on the refined BioCreative-
POS corpus has balanced precision and recall, and the
DHMM?2 using the POS feature trained on the unrefined
BioCreative-POS corpus has low precision and high recall.
The reason that DHMM1 performs differently to DHMM2
may be due to that the refined BioCreative-POS corpus
restricts much more on the NNP POS and has much less
NNP POS-tagged words than the unrefined BioCreative-
POS corpus. Therefore the refined BioCreative-POS tagger
has much better precision and worse recall on the NNP
POS, which are critical in recognizing protein/gene
names, than the unrefined BioCreative-POS tagger. Such
differences among SVM, DHMM1 and DHMM2 mean
that they complement each other, and show the potential
for significant performance improvement via an
ensemble.

In addition, we also incorporate three post-processing
modules: an abbreviation resolution module, a protein/
gene name refinement module and a simple dictionary
matching module, into the system to further improve the
performance.

In this section, we will first introduce the various features
used in the competition, then the two machine learning
approaches and finally the three post-processing
modules.

Feature representation

The features described here are used in all the evaluations.
In the competition, various features, including the surface
word itself, are applied to capture the special characteris-
tics of protein/gene names:

Table I: Orthographic Feature

Features |-11 eg. Features 12-21 eg.
Comma B OneCap T
Dot . AllCaps CSF
Parenthesis 01 CapLowAlpha All
RomanDigit [} CapMixAlpha IgM
GreekLetter Beta LowMixAlpha kDa
StopWord in, at AlphaDigitAlpha H2A
ATCGsequence ACAG AlphaDigit T4
OneDigit 5 DigitAlphaDigit 6C2
AlIDigits 60 DigitAlpha 19D
DigitCommaDigit 1,25 Others Other
DigitDotDigit 0.5

¢ Orthographic feature: The purpose of this feature is to
capture capitalization, digitalization and other word for-
mation information. This feature has been widely used in
the biomedical domain [7,9,10]. Table 1 shows a com-
plete list for this feature in the descending order of
priority.

¢ Part-of-speech (POS): Since many of the words in bio-
medical names are in lowercase, capitalization informa-
tion in the biomedical domain is not as evidential as that
in the newswire domain. Moreover, many biomedical
names are descriptive and very long. Therefore, POS may
provide useful evidence about the boundaries of biomed-
ical names. In this competition, a DHMM [13]-based POS
tagger is trained to assign the POS feature. Throughout the
competition, three different POS taggers are trained on
different corpora:

e GENIA-POS tagger, which is trained on the GENIA cor-
pus V3.02p.

¢ Unrefined BioCreative-POS tagger, which is trained on
the original BioCreative-POS corpus with the NEWGENE
(indicating a protein/gene name) tag replaced by the NNP
tag (indicating a proper noun).

¢ Refined-BioCreative-POS tagger, which is trained on a
refined version of the BioCreative-POS corpus. In the
competition, the refined BioCreative-POS corpus is cre-
ated as follows: First, the unrefined BioCreative-POS tag-
ger is trained as above; Second, the words inside the
protein/gene names of the BioCreative-POS corpus are
retagged using the BioCreative-POS tagger while the POS
tags of the words outside the protein/gene names are kept
unchanged; Third, the words in the protein/gene names
are fine-tuned to have the NNP tag when they have a high
probability of being a proper noun, e.g. when they are the
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head nouns of the protein/gene names or include both
alphas and digits.

¢ Morphological pattern: Suffixes, such as ~ase, ~zyme,
~ome and ~gen, occur frequently in protein/gene names
and are considered as an important cue for terminology
identification and have been widely applied in the bio-
medical domain [7-10]. To reduce possible noise, some
common words (58 in the competition) of these suffixes,
such as disease, base, case and come, are filtered out.

e Trigger word: The head noun of a noun phrase often
describes the function or the property of the noun phrase.
In this paper, we automatically extract unigram and
bigram head nouns from the context of protein/gene
names in the training data as trigger words. In the compe-
tition, two kinds of trigger words are used: TW1, which
often occurs inside protein/gene names, and TW2, which
often occurs in the local context of protein/gene names.
TW1, such as receptor, enhancer and mutant, is collected
based on the Task 1A Guideline. TW2, such as activation,
transcription and stimulation, is extracted automatically
from the training data using the tf-idf weighing scheme
[14] to measure how specific a given trigger word is to pro-
tein/gene names. Here, the tf-idf value is used in the fea-
ture vector of the SVM. In the competition, 53 TW1 and
51 TW2 trigger words are used.

Support Vector Machine

Support Vector Machine (SVM) is a powerful machine
learning method, which has been applied successfully in
biomedical name recognition [7,8]. SVM is a binary clas-
sifier and training a SVM classifier is to find the optimal
hyper-plane that separates positive and negative data with
the maximum margin. Normally, a window of a target
word w represents the local context of w and is used to
make a decision on w. In this competition, we set the win-
dow size to 7, which includes the previous 3 words and
the next 3 words of the target word w including the target
word w itself. Here, each instance in the training and test
data is represented using a high-dimensional feature vec-
tor. For example, if a word occurs in the vocabulary (col-
lected from the training data), one dimension in the
feature vector of the SVM (corresponding to the position
of the word in the vocabulary) is set to 1. The vocabulary
is constructed by taking all the words in the training data
(filtered with threshold 3). In our system, all the five fea-
tures as described above are applied for each of the 7
words in the window. When a word contains dash(es),
one additional overlapping orthographic feature is gener-
ated for each segment separated by dashes. For example,
the word "TCF-Beta" has not only an orthographic feature
of "CapMixAlpha" as a whole but also two additional
overlapping orthographic features "AllCaps" and "Greek-
Letter" for the two segments separated by the dash while

the word "TCF" only has an orthographic feature of "All-
Caps". Please see Table 1 for details about the ortho-
graphic feature. In the competition, we adopt the
SVMLight toolkit [15] using a polynomial kernel with
degree = 2.

Since there is only one name class (NEWGENE) in the
BioCreative protein/gene name recognition task, we sim-
plify the traditional BIO representation and employ IO
tags to represent the regional information of protein/gene
names. In this IO representation, I means that current
word is a part of a protein/gene name, which corresponds
to the SVM output 1; O means that current word is not a
part of a protein/gene name, which corresponds to the
SVM output -1. After the simplification, the protein/gene
recognition task becomes a binary classification task.
Although the IO representation cannot differentiate con-
secutive names, it simplifies the problem a lot since we
can avoid the SVM multi-class problem. We find it is a
worth trade-off since very few (<0.5%) protein/gene
names are consecutive.

Discriminative Hidden Markov Model

Here, we use the discriminative Hidden Markov Model
(DHMM) which was first proposed in Zhou et al [13] and
then applied in Shen et al [9] and Zhou et al [10]. Given

an observation sequence 0]’ = 0,0, 0,, the DHMM finds a
stochastic optimal tag (state) sequence s} = (i, t, that

maximizes log P(s}' | of') as follows:

n ) n
s =arg max{ Y PMI(s;, s+ Y logP(s; | of' )} €]

st i=2 i=1

The above model consists of two models: the state transi-

n .
tion model ZPMI(si,si_l) and the output model
i=2

n .
> logP(s; | o]') . Here, PMI(s; si ') measures the state
i=1
dependence of a state given the previous states in a gener-
ative way using pairwise mutual information [16], which
reflects the change of the information content when s;and

si_l co-occur, while logP(s; | of' ) measures the observa-
tion dependence of a state given the observation sequence
in a discriminative way. Therefore, computation of the
above model consists of two parts. The first is to compute

n .

the state transition model: Z PMI(s;,si™1) . Here, the tra-
i=2

ditional ngram modeling (e.g. trigram) is used. The sec-
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n
ond is to estimate the output model: ZlogP(si [o]).
i=1

Here, a dynamic back-off modelling [10] is applied.

In the competition, only three features are used in the
DHMM: the orthographic feature, the POS feature and the
surface word as described above. All the three features are
combined and become an observation of DHMM while
each tag is structural and consists of three parts [13]:

e Boundary category {B, I, E, O}, which indicates the
position of the word. Here O means that current word is a
whole name and B/I/E means that current word is at the
Beginning/in the Intermediate/at the End of a name.

¢ Entity category, which indicates whether the word
locates inside or outside a protein/gene name.

* Word feature, which is added to represent the state tran-
sition model more accurately.

The idea behind the model is that we try to assign each
word an appropriate tag, which contains boundary and
class information. For example, "TCF 1 binds stronger
than NF kB to TCEd DNA". The tag assigned to the word
"TCF" should indicate that it is at the beginning of an
entity name and it belongs to the "Protein" class; and the
tag assigned to the word "binds" should indicate that it
does not belong to an entity name. Here, the Viterbi algo-
rithm [17] is implemented to find the most likely tag
sequence.

Abbreviation resolution

In the competition, we present an effective and efficient
algorithm to resolve abbreviations accurately by mapping
them to their full forms. It is observed [9,18] that the full
form and its abbreviation often occur together via paren-
theses. Generally, there are two patterns: "full form
(abbreviation)" and "abbreviation (full form)".

Our algorithm is based on the fact that it is much harder
to classify an abbreviation than its full form. Generally,
the full form is more evidential than its abbreviation to
determine its class. The algorithm works as follows: Given
a sentence with parentheses, we use a similar algorithm as
in Schwartz et al [18] to determine whether it is an abbre-
viation with parentheses. This is done by starting from the
end of both the abbreviation and the expanded form,
moving from right to left and trying to find the shortest
expanded form that matches the abbreviation. Any char-
acter in the expanded form can match a character in the
abbreviation with one exception: the match of the charac-
ter at the beginning of the abbreviation must match the
first alphabetic character of the first word in the expanded

form. If yes, we remove the abbreviation and the paren-
theses from the sentence. After the sentence is processed,
we restore the abbreviation with parentheses to its origi-
nal position in the sentence. Then, the abbreviation is
classified as the same class of the full form, if the full form
is recognized as an entity name. In the meanwhile, we also
adjust the boundaries of the full form according to the
abbreviation, if necessary. In this way, we can correct the
boundary error of the full form which defines an abbrevi-
ation. In addition, we can classify the abbreviation accord-
ing to the prediction of its full form, since we assume it is
more accurate to classify the full form than the
abbreviation.

Name refinement

In order to further improve the performance, we also
develop a name refinement module. This module applies
some heuristic rules to refine the recognized protein/gene
names according to the Task1A guidelines and recover the
errors caused by the inconsistency and the improper
tokenization in the training data, e.g.

¢ Extending recognized names by adding positive trailer
words. For example, If only "p53" in "p53 mutant" is rec-
ognized as a protein/gene name, we will add "mutant"
into the name since "mutant” is a positive trailer word.
Similarly, we also shorten the recognized names by
removing negative trailer words. This rule is very general.
It suggests that we need to model the ends of biomedical
names.

e Removing generic adjective words, e.g. "new" and
"novel" in the beginning of recognized protein/gene
names. This rule can compensate the failure of IO repre-
sentation in the SVM to model the beginnings of biomed-
ical names, compared with the BIO representation, even
though the IO representation simplifies the problems and
makes the data denser.

e Recovering errors caused by the wrong tokenization of
"." in the recognized protein/gene names, e.g. "UL3 . 5"
and "E . coli RNase H". This rule is quite corpus specific.
It deals with the special tokenization scheme used in the
BioCreative annotation.

¢ Removing stop words, e.g. "by" and "or", from the rec-
ognized names, which have been wrongly recognized as a
part of the names.

¢ Formalizing the recognition of slash and parentheses

® Removing generic terms (all the words used in the name
are too common), e.g. "protein kinase".
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e Removing odd names, such as individual digits and
Greek letters.

Dictionary matching

Finally, we also evaluate the effectiveness of a protein/
gene name dictionary using a simple dictionary matching
algorithm. The basic assumption behind and motivation
for using public resources is that there are instances where
the contexts do not provide sufficient evidence. In such
cases, public resources, e.g. a protein/gene name diction-
ary, may bridge the gap. In our closed evaluations, the dic-
tionary is constructed by extracting all protein/gene
names from the training data. In our open evaluation, the
dictionary adds more protein/gene names (~700,000
entries) from public resources (e.g. the protein sequence
database [2] and the alias list [19]). Then, the dictionary
is filtered out using some criteria to reduce possible side-
effects since all the public resources are vulnerable to
noise and ambiguity. For example, if a name consists of
only one word, the length of the word must be greater
than 3. Finally, we use the dictionary to match the test
data and correct the output of the ensemble.

Results and discussion

In the BioCreative competition, we only participated in
the protein/gene name recognition task (Task 1A), focus-
ing on the closed evaluation. In total, we submitted three
closed evaluations and one open evaluation. The final sys-
tem is trained on the combined official training and dry-
run data (10000 sentences). All the open and closed eval-
uations are done on the official test data (5000 sentences)
using the precision/recall/F-measure. Here, precision (P)

measures the number of correct protein/gene names in
the answer file over the total number of protein/gene
names in the answer file, recall (R) measures the number
of correct protein/gene names in the answer file over the
total number of protein/gene names in the key file and F-
measure is the weighted harmonic mean of precision and
(B> +)RP
B’R+P
shows that our system on the closed evaluation performs
the best out of all the closed systems with an F-measure of
82.58, which is 0.4 and 2.2 higher than the second and
third best systems. It also shows that our closed system
performs only slightly worse (0.6) than the best open sys-
tem and better than other open systems. It is surprising
because we had expected that the best open system should
outperform the best closed system by at least 2-4 in the F-
measure. One major reason is due to our use of the classi-
fier ensemble and the effective post-processing modules,
abbreviation resolution and name refinement (as shown
in Table 3). Another reason may be somewhat corpus spe-
cific. For example, one system-component that seems to
help our score quite a bit (as shown in Table 3) is the
name refinement module, which is built in part to adjust
decisions to conform more to what is marked in this cor-
pus. Finally, it may be due to the difficulty in exploring
public resources and the subtlety about what does and
what does not count as a protein/gene name in biomedi-
cal name recognition. This suggests that exploring public
resources still remains a big problem and much more
research should be made in this direction in the near
future.

recall: F = with f2 =1 [20]. The evaluation

Table 2: Performance and configurations of all the evaluations in the protein/gene name recognition task

Modules Closed-1 Closed-2 Closed-3 Open-|
SVM Surface word, orthographic feature, morphological pattern, trigger word

GENIA-POS Refined-BioCreative-POS Refined-BioCreative-POS Refined-BioCreative-POS
DHMMI Surface word, orthographic feature

GENIA-POS Refined-BioCreative-POS Refined- BioCreative-POS Refined-BioCreative-POS
DHMM2 Surface word, orthographic feature, BioCreative-POS
Ensemble Majority Voting

Abbreviation Resolution

Abbreviation Resolution based on the parentheses structure

Name Refinement N/A N/A

YES N/A

Dictionary Matching Closed Dictionary Closed Dictionary

Closed Dictionary Open Dictionary

Overall Performance P79.97 P80.46
R80.50 R80.80
F80.23 F80.63(+0.40)

P82.00
R83.17
F82.58(+2.35)

P75.10
R81.26
F78.06(-4.52)
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Table 3: Detailed performance of various components in our
best closed system (closed-3)

Configuration P R F

SVM (individual) 75.1 702 727
DHMMI (individual) 716 719 718
DHMM2 (individual) 70.1 743 721
Ensemble (majority voting) 759 770 764
Ensemble + Abbreviation Resolution 798 804  80.1
Ensemble + Name Refinement 786  79.1 788
Ensemble + Dictionary Matching 755 785 76.9
All (overall performance) 820 832 826

Table 2 indicates the performances and configurations of
all the closed and open evaluations. For clarity, the differ-
ences and their contributions among different evaluations
are emphasized (in Bold, compared with the left configu-
ration). It shows that the POS tagger trained on the
refined version of the BioCreative-POS corpus works bet-
ter (+0.40) than the POS tagger trained on the GENIA cor-
pus V3.02p (closed-2 vs. closed-1). This may be because
the refined BioCreative-POS corpus is more task-oriented
than the GENIA corpus V3.02p, although the GENIA cor-
pus V3.02p comes from the biomedical domain and is
larger than the BioCreative-POS corpus (360 k words vs.
260 k words). It also shows that the protein/gene name
refinement module increases the F-measure by 2.35
(closed-3 vs. closed-2). However, the open evaluation
shows that extra protein/gene names from public
resources decrease the performance by 2.57 in F-measure
from 80.63 to 78.06 (closed-2 vs. open-1). This is largely
due to the short time spent on the open evaluation (half
day). This may be also due to the high ambiguity in the
open dictionary of protein/gene names. This suggests that
proper handling of public knowledge resources is
important for the performance improvement in biomedi-
cal name recognition.

Table 3 shows the detailed performance of various com-
ponents in our best closed evaluation (closed-3). It shows
that individual SVM, DHMM1 and DHMM?2 achieve the
precision/recall/F-measure of 75.1%/70.2%/72.7, 71.6%/
71.9%/71.8 and 70.1%)/74.3%s/72.1 respectively on the
official test data. This means that these three classifiers are
quite complementary (some have better recall, others
have better precision) and this provides a potential for
further performance improvement via an ensemble. This
is proven by the ensemble of these three classifiers via a
simple majority voting strategy, which improved the F-
measure by about 3.7 (over SVM). It also shows that the
abbreviation resolution and name refinement modules
further improve the F-measure by 3.7 and 2.4 respectively.

Finally, the dictionary matching module using the closed
dictionary only slightly improves the F-measure by 0.5. It
increases the recall by 1.5% but decreases the precision by
0.4%. While the abbreviation resolution is very general,
the name refinement and the dictionary matching are
fine-tuned based on the error analysis of the development
set and may be very much dependent on the development
set.

Table 4 shows the contributions of various features in our
best closed evaluation (closed-3). It measures the decrease
in precision/recall/F-measure by leaving one feature out at
a time. It shows that the orthographic feature, POS and
surface word are critical and contributes about 96% of all
the features while the remaining morphological feature
and trigger word only contribute about 4%.

Finally, in order to further evaluate our system, we have
implemented an error analysis. This is done by randomly
choosing 100 errors from our recognition results, which
can be classified as follows:

e Left boundary errors (37): It includes the errors with
correct right boundary detection and only wrong left
boundary detection. We find that most of such errors
come from the long and descriptive naming convention
in the biomedical names. In fact, it is even hard for biolo-
gists to decide whether the descriptive words should be a
part of protein/gene names, such as "normal", "activated",
etc.

¢ Right boundary errors (9): It includes the errors with
correct left boundary detection and only wrong right
boundary detection. It usually occurs when the head
words of the protein/gene names seldom occur in the
training data and the system fails to model these less-fre-
quently occurring head words.

¢ True negative (23): It includes the errors by missing the
identification of protein/gene names. It often occurs when
the system has little information about them and context
clues are insufficient.

Table 4: Contributions of various features in our best closed
system (closed-3): decrease in precision/recall/F-measure by
leaving one feature at a time.

Feature P R F
Orthographic Feature 27.1 42.5 332
POS 23.7 311 26.8
Surface Word 12.2 8.1 10.1
Trigger Word 2.4 1.6 1.9
Morphological Pattern 1.3 1.0 1.1
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e False positive (22): It includes the errors by wrongly
identifying protein/gene names. It usually occurs when a
noun phrase is a description of a protein/gene name or
includes symbols or is mixed with digits and capitalized
letters.

e Miscellaneous (9): It includes all the other errors,
mostly caused by parentheses and the tokenization
scheme in the BioCreative annotation (e.g. the dot ".").
Although we have applied a name refinement module to
filter such errors, it is always difficult to cover special
cases.

Conclusion

In this paper, we first propose an ensemble of classifiers
for biomedical name recognition via a simple majority
voting strategy to effectively integrate various domain-
specific features and then present several ad-hoc post-
processing modules to further improve the performance.
It is found that the integrated three classifiers are quite
complementary and the ensemble of them via the simple
majority voting strategy can greatly improve the perform-
ance. Moreover, it shows that our system benefits very
much from the post-processing modules, such as abbrevi-
ation resolution and name refinement. Finally, it shows
that the dictionary matching module using a very big
open dictionary decreases the performance. This means
that the improper use of knowledge resources is harmful
to biomedical name recognition.

In future work, we will explore more classifiers and more
effective approaches to integrate them in an ensemble.
Moreover, we will explore proper approaches for handling
the large open dictionary and even more knowledge
resources. Finally, we will further improve the perform-
ance by investigating more on conjunctive and disjunctive
construction, the synonym phenomenon and the name
alias phenomenon.
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