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Abstract
Background: The continuous flow of EST data remains one of the richest sources for discoveries
in modern biology. The first step in EST data mining is usually associated with EST clustering, the
process of grouping of original fragments according to their annotation, similarity to known
genomic DNA or each other. Clustered EST data, accumulated in databases such as UniGene,
STACK and TIGR Gene Indices have proven to be crucial in research areas from gene discovery
to regulation of gene expression.

Results: We have developed a new nucleotide sequence matching algorithm and its
implementation for clustering EST sequences. The program is based on the original CLU match
detection algorithm, which has improved performance over the widely used d2_cluster. The CLU
algorithm automatically ignores low-complexity regions like poly-tracts and short tandem repeats.

Conclusion: CLU represents a new generation of EST clustering algorithm with improved
performance over current approaches. An early implementation can be applied in small and
medium-size projects. The CLU program is available on an open source basis free of charge. It can
be downloaded from http://compbio.pbrc.edu/pti

Background
Expressed sequence tags (ESTs) represent a significant
advancement in modern biology. With their introduction
in early 90's they represent the first truly high-throughput
technology that deluged the databases and made the
advent of advanced computer technologies in biology
inevitable. The flood of these short, error-prone messages
represents another important, although not immediately
obvious revolution: it has heralded the transition of mod-
ern biology from genetics to the genomics era. ESTs have
offered the first glimpse at the transcriptome, i.e. a volume
of messages, copied from genes and forwarded to all cor-
ners of a living cell. An EST library is essentially a coarse-
grained snapshot of all mRNA molecules present at a
given time in a biological sample. Currently there are
more accurate and advanced technologies to analyze the

function of genomes, but EST sequencing was one of the
first approaches and is still in extensive use today.

For EST sequences, only a few hundred readable bases are
produced from each sequencing read, and yet a full gene
transcript may be several thousands of bases long (Figure
1 outlines the EST production process). In publicly avail-
able databases, EST length varies from less than 20 to over
7000 base pairs, with an average length of 360 base pairs
and standard deviation of 120 base pairs (data from
dbEST, Genbank rel. 104). Obviously, not all of these
sequences are true single-read tags, but they are submitted
and accepted as such, bringing extra complications to EST
analysis. There is significant diversity in EST generation
methods. One of the most significant is using random
primers, which results in production of fragments without
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direction, originating from different non-overlapping
parts of the same mRNA [1]. ESTs provide a "tag level"
association with an expressed gene sequence, trading
quality and total sequence length for the high quantity of
samples.

A large scale and systematic public effort to isolate all
human genes began in 1993 when the Integrated Molecu-
lar Analysis of Genomes and their Expression (IMAGE)
consortium was formed to create, collect and characterize
cDNA libraries from various tissues and different state of
normalization [2]. This initiative gained significant
momentum when Merck & Co. provided funding to the
Washington University Genome Sequencing Center to
partially sequence clones from the IMAGE cDNA libraries
to generate expressed sequence tags. EST sequences are
now submitted to dbEST – a special division of Genbank
[3]. Apart from the centralized resources there are count-
less smaller databases, scattered throughout academic and
commercial research laboratories, often available for
download. An example of such ongoing EST sequencing
project Rat EST can be found at the University of Iowa

http://ratest.eng.uiowa.edu. Large quantities of ESTs are
also collected among other data in disease-oriented
resource centers such as Cancer Genome Anatomy Project
at the National Cancer Institute, USA http://
cgap.nci.nih.gov.

Practical application of a particular EST clustering tech-
nique results in a database of clustered ESTs, often includ-
ing mRNA, genomic DNA sequence and other available
information: a so called gene index. The primary goal of
most gene indices is to reconstruct the gene complement
of a genome and therefore require strict criteria to assign
one gene to one cluster. This approach is implemented by
TIGR [4], UniGene [5], IMAGEne [6] and MERCK [7]. A
novel approach, implemented by STACK [8] aims to cap-
ture transcript variation in the context of developmental
and pathological states. This approach incorporated addi-
tional steps that were tolerant of sub-sequence diversity
and the ability to perform assembly analysis. The gene
indexing projects described below implement a combina-
tion of data preparation, clustering, assembly, alignment
analysis, consensus generation, clone linking and visuali-
zation.

In order to achieve maximum performance with minimal
compromise on sensitivity we have developed a new algo-
rithm for nucleic acid sequence comparison. Recently, the
growth rate of sequence data in genomic databases has
surpassed the growth rate of computer performance,
mostly due to introduction of high throughput sequenc-
ing technologies like EST manufacture and to a multiplic-
ity of genome sequencing projects. So far the existing
clustered EST databases manage to cope with the deluge of
data, but only with a help of high-end computer facilities.
Projection of this situation into the future suggests that

Schematic outline of a typical EST manufacture processFigure 1
Schematic outline of a typical EST manufacture process. After 
a sample of interest (A) is collected all transcribed copies of 
expressed genes (mRNAs) are isolated (B). Each mRNA is 
reverse-transcribed into a complementary DNA (cDNA) 
(C). Note that cDNA copies may have different lengths due 
to the polymerase processivity. The copy number of those 
fragments is increased when they are inserted into a host cell 
(D). The resulting population of host cells, containing cDNA 
fragments from the sample of interest is called a cDNA 
library (E). Typically a few thousand clones are randomly 
picked from the cDNA library to produce single-pass reads 
from 3', more rarely from the 5' ends and sometimes from 
the random location in the middle (F). The resulting collec-
tion represents fragments of different lengths starting from 
the polyadenylation site at 3' end and partially overlapping 
fragments from 5' end, starting at different points. Although 
3' and 5' ESTs rarely overlap, they usually share the same 
clone ID in the annotation.

Basic EST clustering stepsFigure 2
Basic EST clustering steps.
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the progress of computer hardware design may not be suf-
ficient. New algorithmic approaches are required to miti-
gate this problem.

Some latest developments in the EST clustering systems
give preference to fast sub-linear algorithms [9]. The sheer
speed of sequence comparison is the obvious advantage
of this family of algorithms. There are also some disadvan-
tages. First of all, the speed comes at the price of precision.
A higher false-positive rate is compensated by a thorough
alignment at the subsequent cluster assembly stage. False-
negative cases, once dropped, are hard to detect. To cut the
probable loss of matching sequence pairs, clustering pro-
grams have to be tuned to higher sensitivity. As a result,
the slow cluster assembly stage becomes overloaded with
sequences that can't be aligned (i.e. false-positives). Many
fast sub-linear algorithms require an extensive pre-cluster-
ing procedure. Apart from being resource consuming, this
stage is also a difficult parallel optimization. Pre-calcu-
lated index tables need to be adjusted with each update of
the initial data set. A clustering system, built around a fast,
but imprecise sub-linear algorithm would require lots of
compensatory mechanisms and additional routines.
Complex structure obstructs further development of the
clustering system as a whole.

In spite of the seemingly obvious choice of the fastest pos-
sible algorithm we experiment here with another strategy.
Although linear class algorithms are generally slower then
sub-linear, they have some advantages as a basis of an EST
clustering system. A more precise algorithm would pro-
duce much less false-positive and false-negative results.
Sensitivity to small regions of local similarity can improve
quality of results by detecting short, but non-random
overlaps between EST fragments and may result in much
longer consensus sequences. Detecting small regions of
similarity, even if accompanied by much longer non-sim-
ilar stretches, is crucial for detecting alternative gene vari-
ants.

Methods
Fast algorithm for sequence comparison
Suppose we have a query nucleic acid sequence (EST, for
example) Sq. We are to compare this query sequence to a
sequence Sb to reveal their possible similarity. To consider
only words situated within a short distance from each
other we introduce a short frame sliding by one position
at a time along Sb. We compare the words found anywhere
in the sequence Sq to the words found in each frame of Sb.
The frame containing few or none of coinciding words is
most probably unrelated to Sq. A high number of words,
coincident between Sq and a short frame in Sb, may indi-
cate a zone of local similarity, providing that the words are
informative (not too abundant). To accelerate the com-
parison all words found in sequence Sq are presented in a

table (H). The table H is a linear array, where the offset
itself is a hash value of certain oligonucleotide. Each ele-
ment of this array contains a number, associated with a
corresponding oligonucleotide. Each value of the hash
table H can be differentially weighted. Some words, for
example repeats of one letter, are less informative. Words
over-abundant in a sequence Sq are likely to be less
informative than unique or rare words. Differential
weighting allows ignoring low-complexity regions and
short tandem repeats without extensive pre-processing.

We slide the frame W repeatedly along Sb by one letter at
a time, calculating a similarity function F(Wi) for each
frame Wi.

Where w is the width (number of words) of the frame W.

The similarity function F(Wi) forms a continuous profile
of local similarity of each frame of Sb to the query
sequence Sq. If two unrelated sequences are compared,
there will be still non-zero values if F(Wi) due to the ran-
domly occurring matching words. If two sequences con-
tain even a short area of strong similarity, this area will be
reflected as a surge of F(Wi) like it is presented on Figure
3. A heuristic algorithm for scanning sequence databases
for matching sequences based on this idea has been devel-
oped in early 90 s [10]. However that algorithm did not
provide quantitative estimation of sequence similarity or
reliability of a match. To derive a single similarity score for
a pair of sequences we transform the similarity function
F(Wi) values to a categorized distribution form taking the
number of base pairs within a frame W for number of cat-
egories. The observed distributions for the pairs of unre-
lated sequences are different from the distributions,
derived from related sequences (see Figure 3).

To formalize this observation we have conducted a
Monte-Carlo experiment. A sufficiently large set (100
000) of sequence pairs, sharing a region of local similarity
was compared to a similar data set of unrelated (rand-
omized) sequences. To make this experiment as realistic
as possible the sequences were randomly chosen from the
EST database. The local similarity area was introduced by
coping 40 base pairs (with 2 mismatches) from a random
location in a given EST sequence to a random location in
its' random counterpart. The span of local similarity was
chosen to represent a resolution ability twice as good as
that of d2_cluster program (80 base pair with 95% of iden-
tity). Each pair-wise comparison of two simulated
sequences can be treated as a point of w-dimensional
space, where w is a number of categories of F(Wi) distri-
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bution. Weight factors , required for calculation of the
general similarity index are linear coefficients in the equa-
tion of the line, connecting centers of two contrasting sets
(pairs with and without a local similarity). Each pair of
sequences falls into one of two distinctively separate
classes with nearly perfect separation (see Figure 4). A gen-
eral similarity index of any pair of sequence can be seen as

a projection of the categorized F(Wi) distribution  to
the line stretched between centroids of those simulated

classes. A threshold, separating similar sequences from
non-similar can be chosen so that:

This algorithm was developed specifically for EST cluster-
ing. It cannot be applied to compare protein sequences, it
not sensitive enough to weak similarities between evolu-
tionary-related sequences. High sensitivity to weak simi-

( )b

( )a

x a b x xobs
T

obs threshold no match
match= ∗ >; |

Generation of simulated non-matching (A) and matching (B) pairs in the process of algorithm developmentFigure 3
Generation of simulated non-matching (A) and matching (B) pairs in the process of algorithm development. A non-matching 
pair of sequences is generated by shuffling a randomly picked EST. A matching pair is generated by coping a stretch of 40 base 
pairs with one mismatch from one sequence to another. For each pair the local similarity function F(Wi) profile and catego-
rized distribution of its values is generated.

40bp, 95% identity

Pair of unrelated sequences Pair of similar sequence
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Plots and basic descriptive statistics of the local similarity function F(Wi) values for matching and non-matching pairsFigure 4
Plots and basic descriptive statistics of the local similarity function F(Wi) values for matching and non-matching pairs.
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larity is not required for clustering ESTs, where only
fragmented copies of the same gene must be put in the
same cluster. Excess sensitivity would also cause a prob-
lem generating false positive matches in the case of paral-
ogous transcripts.

The implementation of our nucleotide sequence-match-
ing algorithm uses binary encoding, similar to that of Cray
Bioinformatics Library http://www.apbionet.org/pr/cray-
lion-kooprime.html. This approach reduces the memory
consumption and accelerates computation. Each word
extracted from the encoded sequence serves as an index in
the in the query sequence hash-table. The algorithm oper-
ates with only integer numbers, which also improves the
performance. The computation is reduced to a few CPU
instructions per base pair plus a short vector multiplica-
tion per whole sequence.

Results
Summary of the match detection algorithm
1. Prepare hash table H for the query sequence Sq

2. Slide a short frame along the sequence Sb by one posi-
tion at a time, for each position count the number of
words identical between query hash table H and the
frame. Register all values of local similarity function in
categorized form F(W).

3. Calculate a single similarity score by vector multiplica-

tion of F(W) by pre-calculated weight factors .

4. Compare the resulting score to the pre-selected thresh-
old.

Clustering algorithm
To cluster the matching fragments we apply a single-link-
age agglomerative algorithm. In the initial state each clus-
ter has exactly one member. All initial clusters are
compared to each other and matching clusters are merged
until no more matches can be found.

The inter-cluster distance is chosen to be the nearest
neighbor distance, i.e. the shortest distance between two
objects that belong to different clusters. It has the same
properties as the inter-object distance and bears all its'
advantages.

The process starts with a number of clusters equal to the
number of initial ESTs, each cluster containing one
sequence only. All clusters are arranged in a bi-directional
dynamic list. All members of the list are repeatedly com-
pared against each other. Only consensus sequences are
compared in order to detect a match between clusters.
Comparison is performed by application of the fast linear

algorithm described above. Each time a match is found
two clusters are merged, their member lists are concate-
nated and the consensus sequence is regenerated to make
better representation for all members. The consensus
sequence is produced by a pair-wise alignment procedure
[11]. Each cluster in the dynamic list is compared against
the rest of the list in a cycle. This cycle is repeated until no
match is found for any of the clusters. The list of clusters
shrinks with every cluster merge making the main cycle
shorter and accelerating the clustering process. The algo-
rithm used by the EST clustering program is schematically
shown on Figure 5.

Parameter space evaluation
Most of the parameters for clustering have been deter-
mined during development of the sequence comparison
algorithm. The only parameter which remains to be set by
user is the threshold value for the general similarity index.
This parameter affects the stringency of clustering. A
higher threshold value results in more stringent clustering
with fewer and smaller clusters and higher similarity to
consensus within clusters. Lower threshold results in a
larger number of bigger clusters for the price of possibly
less representative consensus sequence. Any specific
threshold value defines a more or less arbitrary point of
equilibrium between higher degree of clustering and
higher cluster quality. A single parameter affects both
inter-object (EST to EST within a cluster) and inter-cluster
distance. When stringency threshold approaches mini-

( )b

Basic algorithms of the CLU clustering programFigure 5
Basic algorithms of the CLU clustering program.
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mum every pair of sequences produce general similarity
index above exceeding the threshold. As a consequence,
all initial sequences stick together in one cluster. In the
opposite case, when stringency is too high even slightly
dissimilar sequences produce similarity index below
threshold. The result of over-stringent clustering is all sin-
gletons. The effect of stringency threshold on the number
of clusters and cluster size distribution is given on Figure
6.

There are two measured statistics, which may help to opti-
mize the stringency parameter. The stringent clustering
application calculates the time spent in the alignment
procedure relative to the general processing time. Under
normal conditions i.e. clustering raw EST data with opti-
mal stringency settings, this figure should be small. If the
amount of time spent in the alignment procedure rises
above the acceptable limit, this means that either the data
set is enriched with matching sequences or that initial fast
sequence comparison produces too many false-positive
matches and stringency parameter has to be adjusted.
Another measured statistic is percentage of initially
detected matches confirmed by following thorough pair-
wise alignment. This measure characterizes the rate of
false-positive matches on the fast comparison stage. If

ratio approaches 100% the stringency is too high and a
considerable number of matches may be lost (see Figure
7). The stringency should be chosen so that percentage of
confirmed matches stay low while the time, spent in align-
ment remains within acceptable limits.

Estimation of clustering performance
Performance of the clustering programs was estimated
from the analysis of the same data as has been previously
used [12]. This data set contains the first 10000 ESTs from
the eye tissue subset, prepared for the STACK_PACK sys-
tem http://www.sanbi.ac.za/benchmarks/
benchmark10000.seq.gz. Benchmark10000 (10000 ESTs
from eye tissue set) is a real data set large enough to rep-
resent variations of EST sequence length, repeat and vector
sequence contamination, typical data quality and redun-
dancy. The results of testing of different programs are pub-

Effect of stringency threshold variation on the clustering resultsFigure 6
Effect of stringency threshold variation on the clustering 
results. The only free parameter in both loose and stringent 
clustering applications is the stringency threshold. This pic-
ture shows distribution of cluster size (axis X – categories by 
cluster size from 1 to 13, axis Z – number of clusters of cer-
tain size, decimal logarithmic scale) after clustering of 885 
human EST with a threshold value (parameter) ranging from 
0.05 to 0.9 (axis Y) with a step of 0.05.

Effect of stringency threshold parameter variationFigure 7
Effect of stringency threshold parameter variation. Stringency 
threshold affects the percentage of similarities confirmed by 
alignment, relative time spent on pair-wise alignment and 
percentage of initial ESTs assigned to clusters (non-single-
tons).
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Comparison of cluster size distribution in first 10 000 human 
EST from eye tissue set.
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Table 1: Comparison of cluster contents between D2 and CLU (new clustering program) results. 10 clusters, produced by d2 from the 
benchmark10000 dataset with numbers from 1 to 10 are compared against corresponding CLU clusters. Due to the differences in 
algorithms, clusters containing the same ESTs have different numbers. In two cases of 10 (clusters #5 and #7) CLU clusters are bigger. 
Following alignment (available from the author upon request) confirms that additional ESTs belong to the corresponding clusters and 
align well.

Stack Cluster # size ESTs Clu Cluster # size ESTs difference

1 8 T27877
H37900
H38651
H38682
H84662
H85197
H89941
H84148

3145 8 T27877
H37900
H38651
H38682
H84662
H85197
H89941
H84148

2 2 T27878
AA489885

7763 2 T27878
AA489885

3 2 T27889
AA176889

5505 2 T27889
AA176889

4 2 T27893
H84548

1040 2 T27893
H84548

5 3 T27897
H37921
H40706

2240 4 T27897
H37921
H40706
H92170

H92170

6 6 T27899
H87764
H86519
AA057721
AA167121
AA489902

7780 6 T27899
H87764
H86519
AA057721
AA167121
AA489902

7 2 T27904
AA063476

4532 4 T27904
AA063476
H40639
H38672

H40639
H38672

8 4 T27908
H37775
H85549
H86568

4051 5 T27908
H37775
H85549
H86568
H40669

9 3 T27910
H80800
AA062794

4444 3 T27910
H80800
AA062794

10 6 T27914
AA063475
AA057847
AA174102
AA219283
AA219467

6434 6 T27914
AA063475
AA057847
AA174102
AA219283
AA219467
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lished on Internet and can be found at http://
www.sanbi.ac.za/benchmark. The dataset itself can also
be downloaded from the same URL. Although we don't
have means to compare the quality of clustering, we sug-
gest that as long as all tested programs produce similar
results, their clustering quality is more or less the same. At
least one of the tested programs, D2_cluster, is widely
used and has been established as producing valid and use-
ful results from the scientific point of view [13]. Thus, the
other EST clustering systems are expected to produce a
similar cluster structure. As a quick estimation of similar-
ity of the results we propose a distribution of number of
ESTs per cluster. The similarity between distributions
doesn't guarantee the identity of clustering results. On the
other hand, dissimilarity of distributions would be a good
indicator of differences in resulting cluster structure. Our
experiments show a remarkable correspondence between
the result of D2_cluster and the new clustering programs,
while the new programs are consistently faster. Figure 8
shows distributions of cluster size in raw D2_cluster out-
put, D2_cluster output after cluster assembly stage and the
new stringent clustering program output.

The number of singletons generated by D2_cluster is
7006, while new program generates 6531. The largest
cluster defined by D2_cluster has 56 ESTs. However, after
the following cluster assembly stage some of the initial
EST matches are not confirmed and this cluster is split into
smaller sub-clusters defined as producing a single contig.
The largest cluster after assembly counts not more then 20
members. Three largest clusters produced by CLU have 66,
69 and 123 members confirmed by alignment resulting in
a continuous consensus sequence. Overall CLU produces
results with a very similar cluster size distribution (see Fig-
ure 8). The difference is mainly on the extreme ends of the
distribution because CLU tends to produce more clusters,
clusters of bigger size and leaves fewer singletons. A quick
comparison of the cluster contents shows that CLU is
more sensitive, especially on shorter sequences. The
results of such comparison are shown in Table 1. The first
10 clusters are picked by their numbers as they appear in
the D2_cluster output. In both cases of disagreement
between D2_cluster and CLU results all ESTs are longer
than 100 base pairs (default frame length parameter in
D2_cluster), but sequences missed by D2_cluster are
shorter than the others in the same cluster.

Discussion
The CLU algorithm has been implemented as a working
prototype, able to perform the most basic of the EST clus-
tering functions – isolation of clusters, alignment and
consensus generation. As a standalone application this
program can be very practical for analysis of small-to-
medium size EST libraries, custom microarray design, etc.
The current implementation doesn't keep the alignments

of clusters for analysis and generates a cluster consensus
based on unsorted pair-wise alignments only. The pro-
gram performs both clustering and cluster assembly, but
the quality of results is curbed by the performance limita-
tion of a desktop PC. Fast sequential pair-wise alignment
implemented in the prototype version is only tolerable in
a prototype-level testing, and it can't compete in accuracy
with the tools, specifically developed for sequence assem-
bly, like PHRAP. Improvement of the consensus genera-
tion and introduction of multiple alignments is the
priority in development of the stringent clustering appli-
cation. Sequential pair-wise alignment of low-quality EST
may reduce consensus quality and is significantly affected
by the order of alignments. The introduction of a more
sophisticated multiple alignment will generate more rep-
resentative consensus and correct this problem.

A major improvement can be an introduction of a pre-
processing stage. This stage can be based on one of the fast
sub-linear algorithms. Unlike the systems initially built
around fast sub-linear sequence comparison, our system
doesn't experience the problem of excessive false matches,
is not supported by further assembly and doesn't rely on
extensive pre-processing. The additional fast comparison
stage should aim not to detect the matches, but rather to
cut most obviously non-matching ESTs from further com-
parison. Development of a sub-linear booster for pre-
selecting ESTs before comparison is currently in progress
at Pennington Biomedical Research Center. Another
improvement currently being implemented is a scalable
parallel version of the CLU EST clustering algorithm for
high-performance grid computing.

An implementation of the CLU algorithm can be down-
loaded from http://compbio.pbrc.edu/pti. The C++ code
is provided free of charge. This version requires an input
file in XML format. A program for converting standard
FASTA format into CLU input is also provided.
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