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Abstract
Background: Determining whether a gene is differentially expressed in two different samples
remains an important statistical problem. Prior work in this area has featured the use of t-tests with
pooled estimates of the sample variance based on similarly expressed genes. These methods do not
display consistent behavior across the entire range of pooling and can be biased when the prior
hyperparameters are specified heuristically.

Results: A two-sample Bayesian t-test is proposed for use in determining whether a gene is
differentially expressed in two different samples. The test method is an extension of earlier work
that made use of point estimates for the variance. The method proposed here explicitly calculates
in analytic form the marginal distribution for the difference in the mean expression of two samples,
obviating the need for point estimates of the variance without recourse to posterior simulation.
The prior distribution involves a single hyperparameter that can be calculated in a statistically
rigorous manner, making clear the connection between the prior degrees of freedom and prior
variance.

Conclusion: The test is easy to understand and implement and application to both real and
simulated data shows that the method has equal or greater power compared to the previous
method and demonstrates consistent Type I error rates. The test is generally applicable outside
the microarray field to any situation where prior information about the variance is available and is
not limited to cases where estimates of the variance are based on many similar observations.

Background
Determining whether a gene is differentially expressed
under different conditions is an important statistical
problem [1-3]. Consider, for example, a common micro-
array experiment: for a particular gene Y, one has an unor-
dered set of measurements of log-expression levels

 in a control situation and  in a treatment

situation (or any non-control situation) (notation similar

to [4]). The question of interest is whether any expression

difference  is a signifi-

cant difference, or if it would be expected under the null
hypothesis of no actual difference in expression.

Though multifactorial experimental designs are becoming
increasingly popular [5-7], there continue to be experi-
mentalists interested in analyzing two-sample designs.
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There are many approaches to determining whether genes
are differentially expressed in such designs and there are a
number of excellent reviews of the various methods [2,3].
Many of the approaches include the use of a t-test [8-14],
which is a common frequentist statistical approach to
comparing a difference in sample means. Some have
pointed out that the normality assumption used in t-tests
may not always hold and other statistical techniques may
be warranted [15,16]. Even for those measurements where
normality holds the t-test is difficult to apply because the
number of replicates n1 and n2 are often quite small (typi-
cally, n1 = n2 = 1 to 3), leading to uncertainty in the sample
variance and relatively low power. An early approach to
dealing with this problem was based on the addition of a
constant value to the estimate of the standard deviation
[16,17]. While the approach does tend to regularize the
variance estimates, it is ad hoc and is not expected to
exhibit statistically consistent behavior (unknown or
incorrect Type I error rate under the null).

More rigorous Bayesian methods have been developed
that incorporate prior information about the variance but
require Markov chain sampling of the posterior density or
numerical integration of the cumulative distribution func-
tion [18-21]. A very popular work by Baldi and Long [4]
avoids such calculations while using a statistically justi-
fied regularization technique via construction of a proba-
bilistic Bayesian framework that applies a prior
probability to parameters of interest such as the expres-
sion means and variances. An analytically tractable solu-
tion can then be obtained by taking a point estimate for
the variance. The chief advantages of this Bayesian frame-
work are twofold: it allows the use of a regularized t-test to
determine whether a difference in expression is signifi-
cant, and it provides a natural method for incorporating
information from putatively related measurements. It is
this basic framework that we seek to extend in the work
presented here.

As noted by Baldi and Long [4], the use of a point estimate
for the variance is a compromise between a rigorous Baye-
sian approach and tractable calculation. As demonstrated
below, this compromise can lead to bias in the specificity
of the test and improper behavior when there are few
prior degrees of freedom. Our hope here is to correct this
and other issues (both theoretical and practical) towards
the goal of improving the performance and understand-
ing of microarray and general laboratory data analysis. To
address these issues, we extend the basic framework put
forth earlier, taking the model to a fully Bayesian
approach by explicitly calculating the marginal posterior
distribution for the difference in mean expression levels.
This analytically tractable solution does not require simu-
lation from the posterior distribution and obviates the
need to use point estimates of the prior variance while

overcoming the undesirable correlation between specifi-
city and prior degrees of freedom. Moreover, a clear and
statistically rigorous connection between the prior vari-
ance and the prior degrees of freedom is established,
reducing the number of hyperparameters from two to one
while yielding consistent Type I error rates in the process.
It should be stressed that achieving consistent Type I error
rates is not just a conceptual luxury. Indeed proper deter-
mination of important quantities such as the false discov-
ery rate are of great economical significance and rely on
having correct Type I error rates [22].

Method
Bayesian probability model
The original model proposed by Baldi and Long [4] is
briefly reviewed here. The likelihood of the observed data,
y, given the true expression level, µ, and variance, σ2, for a
single gene is assumed to follow a normal distribution:

where n is the number of measurements in one sample.
For the priors on µ and σ2 the authors attempt to capture
the a priori dependence between µ and σ2 by factoring the
joint prior as p(µ,σ2) = p(µ|σ2)p(σ2) and taking each factor
as

p(µ|σ2) = N(µ;µ0,σ2/λ0)  (2)

and

p(σ2) = I(σ2;ν0, )  (3)

where the prior probability of µ follows a normal distribu-

tion and σ2 follows a scaled inverse gamma distribution.

The hyperparameters µ0 and λ0 represent the prior beliefs

regarding the value of µ and the confidence associated

with that belief, while the hyperparameters  and ν0 rep-

resent the prior beliefs regarding the value of σ2 and the
degrees of freedom or confidence associated with that

belief. The authors subsequently let λ0 → 0 later in their

derivation, leading to a diffuse, noninformative prior on

µ:

The remaining 1/σ factor that comes from a diffuse nor-

mal results in a prior of the form p(µ,σ2) ∝ σ-1I(σ2;ν0, ).
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Using Bayes' rule the authors obtain the following poste-
rior distribution:

p(µ,σ2|y,α) ∝ N(µ;µn,σ2/λn)I(σ2;νn, )  (5)

where α is a vector of hyperparameters (µ0,λ0,ν0, ) for

the prior and

λn = λ0 + n  (7)

νn = ν0 + n  (8)

The sufficient statistics are  and

. Finally, the authors calculate the

posterior mean estimate or point estimate (PE) of the var-
iance for one sample as

This estimate is then used in the hypothesis testing proce-
dures implemented in their Cyber-T software. Though this
model is developed using a Bayesian framework to make
a point estimate of the variance, the hypothesis testing is
carried out using a classical frequentist t-test.

In the standard t-test, the variance is still defined when
there are no prior degrees of freedom, but inspection of
Eq. (10) shows that when the number of prior degrees of
freedom ν0 < 2 - n, the variance is undefined. This limiting
behavior stems from the use of a point estimate for the
variance. The total number of prior degrees of freedom
used in the Cyber-T software is actually 2ν0 as it counts ν0
prior degrees of freedom for each sample in the two-sam-
ple test. However, for consistency and clarity we hereafter
refer to the total number of prior degrees of freedom as ν0.
Therefore the total number of degrees of freedom used in
the Cyber-T software for the two-sample hypothesis test
then appears to be νt-test = ν0 + n1 + n2 - 4, where n1 is the
number of experimental replicates of the gene in the con-
trol regime and n2 is the number of replicates of the gene
in the treatment regime. This equation for the total
degrees of freedom also demonstrates undesired limiting

behavior when ν0 = 0, since positive degrees of freedom
exist only when n1 + n2 > 4. This result contradicts what we
would expect to see from a classic two-sample t-test with
no prior estimate of the variance, i.e. a classical two-sam-
ple t-test has degrees of freedom n1 + n2 - 2 and positive
degrees of freedom exist when n1 + n2 > 2.

Full two-sample model
Posterior distribution
Instead of using a point estimate for the variance to con-
duct a frequentist t-test, we can recast the problem to
directly infer the posterior distribution for a two-sample
case:

p(µ,∆µ,σ2|y) ∝ p(µ,∆µ,σ2)p(y|µ,∆µ,σ2)  (11)

where µ is the mean expression level of the gene in the
control regime, µ +∆µ the mean of the gene in the alter-
nate experimental regime, and σ2 the variance associated
with the measurements. In contrast to the previous, point
estimate model, in this formulation there is no explicit
prior dependence between σ2 and µ. While this is admit-
tedly a simplification, this independence is not only a
practical requirement for the full Bayesian integration, we
also believe it is justified on several other grounds. First,
while it has been widely observed that genes with different
expression levels often have different variances [1], it is
not clear how the prior used by Baldi and Long [4] to
derive the point estimate of variance could capture the
dependencies observed with actual microarray data. Their
figures show that the logarithm of the mean expression
level tends to decrease with increasing variance, yet the
prior given by Eq. (2) asserts that the prior probability of
the mean should be more diffuse – not necessarily smaller
– with increasing variance. The observed trend between
mean and variance cannot be captured by such a prior.
Second, their method does include an implicit dependence
between mean and variance by using other gene expres-
sion levels to determine the priors; indeed, this is what
lends the method its power. Because the Bayesian formu-
lation proposed here determines the prior hyperparame-
ters in a similar fashion, it retains this implicit
dependence. One may also consider a number of variance
stabilizing transforms that may be applied in order to
achieve constant variance across the expression spectrum
[23,24]. Finally, as shown below, simulations reveal that
the method still retains power even when the true vari-
ance is allowed to vary over a substantial range.

Returning to the posterior distribution, we assume that
the samples from each experimental regime follow a nor-
mal distribution, each with equal variances and (possibly)
different means.

yi ~ N(µ,σ2)  (12)
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yj ~ N(µ + ∆µ,σ2)  (13)

This leads to the following posterior distributionp

where n1 and n2 are the number of measurements in each

sample. We elect not to make use of the prior on µ used in
the Baldi work, Eq. (2), or its limiting form, Eq. (4).

Instead, we assume a completely flat prior on both µ and

∆µ while retaining the prior for σ2 given by Eq. (3). Simi-
lar to the earlier work, the observed dependence between

µ and σ2 is established by calculating  based on the var-

iance of similarly expressed genes. However, in this for-
mulation, instead of taking the average standard deviation
of similarly expressed genes we choose to estimate the
prior variance by totaling the sum-squared differences for
each similar gene and dividing by the total prior degrees
of freedom. This is a more statistically rigorous way of
incorporating prior information and leads to more a more
consistent test as will be discussed below.

Marginal posterior for ∆µ
With the above definitions and assumptions in place, it
can be shown (see Appendix) that the marginal posterior
distribution follows a t distribution:

where

νn = n1 + n2 + ν0 - 2  (16)

The sufficient statistics are

, and the sum squared

differences (n1 - 1)  and (n2 - 1) , where

 and

. This distribution has the fea-

ture that the standard t-test is obtained even when there

are no prior degrees of freedom, ν0 = 0, in which case the

observed variance for each gene dominates the posterior
density. A hypothesis test is performed by asserting a null
hypothesis that the true difference in expression levels is

zero, i.e. ∆µ = 0 (though other values for the true differ-

ence, ∆µ, can be used when attempting to identify genes
that are differentially expressed by some threshold
degree). When the posterior probability of no differential

expression approaches zero, Pr(∆µ = 0|y) → 0, the null is
rejected. It is worth noting that while the posterior proba-

bility distribution for no differential expression, Pr(∆µ =
0|y), follows the same frequentist distribution for the

data, Pr(y|∆µ = 0) [25], the resulting probabilities have
different interpretations. In the Bayesian approach the
posterior probability is interpreted as the probability that
there is no difference in expression levels. In the frequen-
tist approach the probability is interpreted as the proba-
bility of observing such a difference from the null
distribution of no differential expression given chance

alone. When ∆µ = 0 the Bayesian and frequentist methods
give the same numerical results and one can ignore the
interpretational differences when discussing such things
as the false positive rate under the null. However, power

analysis calculations (∆µ ≠ 0) are best conducted under a
frequentist framework using a non-central t-distribution
[25].

Estimating the prior variance
For m similarly expressed genes each having n replicates,
the prior degrees of freedom for the variance can be calcu-
lated as

ν0 = m(n - 1)  (18)

The prior variance is then calculated as the total sum-
square differences for each sample of similarly expressed
genes divided by the prior degrees of freedom, namely

where  is the mean response of gene k and yk,i is the

response i of gene k. In general the prior degrees of free-
dom and variance should be determined using these
equations and not chosen separately from one another.
While it is tempting to think of the prior variance as sepa-
rate from the precision or credibility associated with that
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estimate (as represented by ν0), a consistent hypothesis

test requires that they be considered together based on the
actual prior data collected.

Results
To assess the performance of the new test, a series of sim-
ulations were done to measure the false positive rate and
statistical power under various conditions. The simula-
tions consisted of the following steps:

1) Draw random samples from two normal distributions

of size n1 and n2 distributed as N(µ1, ) and

N(µ2, ) respectively. This step represents the selection

of two different experimental regimes for a gene of interest
in order to test for differential expression. For power test-

ing, the standardized effect (µ1 - µ2)/σtest = 2 is used to gen-

erate the data by setting µ1 = 2, µ2 = 0, and σtest = 1. For false

positive rate testing µ1 = 0.

2) Draw an estimate of the prior variance from the follow-

ing Chi-square distribution: . This step

simulates the task of estimating the prior variance from
similarly expressed genes. It is mathematically equivalent
to calculating the sum-squared differences of similarly
expressed genes and dividing by their prior degrees of free-
dom, but it is computationally more efficient.

3) Perform hypothesis tests using a) the method used by
Baldi and Long [4] based on the mean posterior point esti-
mate for the variance, PE(σ2) or just PE, and b) the new
test proposed here based on the marginal posterior for the
difference in expression level, MP(∆µ) or just MP. The
hypothesis tests using each method are done at the α =
0.05 level using a two-sided, two-sample t-test. Test p-val-
ues below this level are counted as significant. To make

valid comparisons, both methods used the same number
of prior degrees of freedom.

4) Steps 1 to 3 above are repeated 10,000 times.

Results of the power simulations for a number of sample
sizes and prior degrees of freedom are shown in Table 1.
Because the PE test cannot be used when ν0 + n1 + n2 ≤ 4,
the test has no power and no false positive rate when n1 =
n2 = 2 and ν0 = 0. Conversely, the MP test results in a clas-
sical t-test in this case and has a power of 0.2169 and a
false positive rate of 0.0509, which is near the expected
value given the α = 0.05 level of the test. Holding n1 = n2
= 2 but increasing the number of prior degrees of freedom
to ν0 = 2 (equal to 2 other similarly expressed genes used
to determine the prior variance) the PE test can now be
used but has a very low power of 0.0450, compared to the
MP power of 0.3343. Overall, when the estimate of the
variance is balanced between the prior and observed vari-
ances (i.e. the prior number of degrees of freedom is not
large compared to the number of replicates in the test
samples) the MP test is significantly more powerful. The
difference in power between the two methods is less pro-
nounced when ν0 = 16 (the default value used in the
Cyber-T software when n1 = n2 = 2). However, one should
note that such a relatively high number for the prior
degrees of freedom represents a strong degree of belief in
the prior estimate of the variance relative to the variance
in the genes of interest.

These simulations reveal that the observed false positive
rate for the PE test is substantially out of line with the
nominal value of 0.05 for small sample replicates (n1 = n2
≤ 3) and few prior degrees of freedom (ν0 ≤ 16). Con-
versely, the MP test demonstrates consistent behavior for
the observed false positive rate. However, it is possible to
obtain the desired false positive rate for the PE method by
iterating through values of α. Table 2 shows that, by
adjusting the critical α value for the PE method until the

σtest
2

σtest
2

σ σ χ νν0
2 2 2

0~ /test

Table 1: Comparison of false positive rate and statistical power for fixed α. For a given significance level (α) the observed false positive 
rate (FP) and power were determined by simulation using either a point estimate for the variance (PE) or the marginal posterior 
distribution for ∆µ (MP). Values are given for different sample sizes (n1 = n2 = n) and prior degrees of freedom (ν0).

n1 = n2 = n ν0 αPE αMP FPPE FPMP PowerPE PowerMP

2 0 0.05 0.05 - 0.0509 - 0.2169
2 2 0.05 0.05 0.0044 0.0490 0.0450 0.3343
2 4 0.05 0.05 0.0146 0.0535 0.1814 0.3919
2 6 0.05 0.05 0.0211 0.0518 0.2747 0.4182
2 16 0.05 0.05 0.0385 0.0498 0.4186 0.4709
3 0 0.05 0.05 0.0030 0.0500 0.0709 0.4664
3 2 0.05 0.05 0.0167 0.0486 0.2833 0.5404
3 4 0.05 0.05 0.0261 0.0556 0.4153 0.5834
3 6 0.05 0.05 0.0280 0.0500 0.4838 0.6053
3 16 0.05 0.05 0.0389 0.0501 0.5951 0.6441
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observed false positive rate matches that of the MP
method, both tests have similar power. The disadvantage
is that α no longer represents the expected Type I error
rate, and simulation or calibration is required whenever a
new test is performed. Conversely, with the MP test, the
critical value α represents an unbiased estimate of the
Type I error rate.

It is interesting to look for a simple correction to the
degrees of freedom in order to make the two methods
match each other. Unfortunately, there does not appear to
be any simple correction available. The degrees of free-
dom used in the t-test itself would be easy to modify –
though ad hoc, one could change the last term in the
expression for the degrees of freedom used in the PE test
(νt-test = ν0 + n1 + n2 - 4) from -4 to -2 by simply adding two
to ν0. Unfortunately, the point estimate of the variance
given by Eq. (10) is more problematic as it appears to give
an increased estimate of the variance compared to the one
used in the MP test, resulting in a decrease in both the t-
statistic and the statistical power.

In the Cyber-T software [4] the prior variance is estimated
by averaging the standard deviation over 100 similarly
expressed genes. This has two problems associated with it.
First, the measured standard deviation is a biased estimate
and tends to be smaller than the true value for small sam-
ple sizes like n = 2 or 3, the average of these measured
standard deviations will also be biased downward and in

general , where E(·) represents the

expected value of a random variable. The correct way to
estimate the variance based on prior observations is to cal-
culate the total sum square differences for all the prior
samples and divide by the total degrees of freedom, as
shown in Eq. (19). Second, if similarly expressed genes for
each of the two samples are used to estimate the prior var-
iance and they have the same number of replicates, n, as

the samples themselves, then estimating the standard
deviation from m = 100 similarly expressed genes is tanta-

mount to asserting ν0 = 100·(n - 1) prior degrees of free-

dom. Setting ν0 to less than the actual number of prior

degrees of freedom used to calculate the prior variance
results in a lower actual false positive rate than the rejec-

tion level α. For consistency if we fix the number of prior
degrees of freedom that are used in the test, then we must
choose a corresponding number of similarly expressed
genes that together have the same number of prior degrees

of freedom. This dependence between ν0 and m is more

consistent with the formulation of the prior itself and
leads to consistent Type I error rates. When we calculate
the prior variance in the statistically rigorous manner (by
taking the total sum square differences of prior observa-
tions and dividing by the total prior degrees of freedom)
the PE method becomes overly conservative, generating

false positives with a rate of 0.0044 at n1 = n2 = 2, α = 0.05,

and ν0 = 2, this appears to be the result of using a point

estimate for the prior variance that is larger than the
expected value given similar genes, see Eq. (10).

As mentioned previously, to perform the full Bayesian
integration required by the MP test, the assumption of a
constant variance is required. To test the effect of violating
this assumption, simulations were performed as described
above, but in step 2 the variances for each sample were
drawn from a uniform distribution in the range [0.05,1].
The same uniform distribution was used to generate prior
variances by calculating the total sum-squared differences
of m = ν0/(n - 1) different draws (corresponding to m dif-
ferent genes) for the variance and dividing by the prior
degrees of freedom, ν0. The results for both the PE and MP
methods are shown in Table 3, where the observed false
positive rate for the MP method is used to calibrate the α
value for the PE test so as to achieve nearly the same false
positive rate for each method. Though both methods are

E E( )σ σ2 2≠ ( )

Table 2: Comparison of α and statistical power for iterated false positive rate. The values are the same as those given in Table 1 except 
the significance level (α) was iterated for the PE method until its power matched that of the MP method where α was held constant.

n1 = n2 = n ν0 αPE αMP FPPE FPMP PowerPE PowerMP

2 0 - 0.05 - 0.0505 - 0.2146
2 2 0.190 0.05 0.0514 0.0489 0.3374 0.3336
2 4 0.120 0.05 0.0483 0.0522 0.3783 0.3840
2 6 0.095 0.05 0.0496 0.0514 0.4302 0.4267
2 16 0.067 0.05 0.0491 0.0508 0.4794 0.4738
3 0 0.190 0.05 0.0507 0.0513 0.4576 0.4599
3 2 0.115 0.05 0.0531 0.0462 0.5324 0.5308
3 4 0.095 0.05 0.0475 0.0486 0.5611 0.5641
3 6 0.082 0.05 0.0536 0.0500 0.5994 0.6053
3 16 0.066 0.05 0.0511 0.0472 0.6531 0.6469
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seen to have nearly the same power for a given false posi-
tive rate, the PE method again shows large deviations
between α and the observed false positive rate. However,
the MP method shows more consistency between the
observed and theoretical rates and is fairly robust to viola-
tions of the constant variance assumption.

To test whether these statistical improvements in the
method translate to improvements in experimental data
analysis, both methods were evaluated with the same
microarray data [26] used by Baldi and Long [27]. The
Arfin data matrix is composed of 8 columns by 1973 rows
that contain gene expression levels used to study IHF reg-
ulated genes in Escherichia coli. Columns 1 to 4 correspond
to 4 IHF+ strains while columns 5 to 8 correspond to 4
IHF- strains. The 1973 rows correspond to the measured
gene expression levels for each strain. There are actually
more rows in the original data set but to be consistent
with the earlier work, we only chose rows that had meas-
urable expression levels for all 8 runs. As was done in the
Long paper the 4 control and 4 treatment replicates were
partitioned into 12 subsets that differ by at least two rep-
licates so that quasi-independent pairwise comparisons
could be made (i.e. 12v56, 12v78, 13v57, 13v68, 14v58,
14v67, 23v58, 23v67, 24v57, 24v68, 34v56, and 34v78).
For the experimental evaluation we adopted the same
strategy for pooling variances used by Baldi and Long. We
sorted all the genes within each sample by the mean
expression level and computed the prior variance by con-
sidering a window of the m/2 most similarly expressed
genes around each gene of interest. For the two samples
this corresponds to a total of m similarly expressed genes
and Eq. (18) gives the total prior degrees of freedom, ν0 =
m.

To measure the consistency of a given testing method the
number of common genes discovered between two quasi-
independent subsets can be recorded. Genes that are dis-
covered to be in common between subsets are more likely
to be truly differentially expressed, thus higher a commo-
nality percentage (genes discovered in common divided
by the total number of genes discovered) is an indication
that the testing method is more reliable. The number of
common genes discovered can be recorded for the 66 pos-

sible ways of comparing the 12 subsets. Based on p-value
rankings, the MP method achieved similar results (within
sampling error) to those published using the Cyber-T soft-
ware. The single hyperparameter (ν0) was optimized for
the MP method and a 95% confidence interval of [62.4,
67.8] common genes were identified out of the top 120.
This compares well with the published results using
Cyber-T where optimizing two parameters independently
(ν0 and m) achieved an average common gene count of
67. These results represent a substantial improvement
over the 33 common genes identified using a zero param-
eter classical t-test.

Because the p-value rankings by themselves are not actu-
ally statistical tests, a more stringent approach to assessing
the performance of each method was accomplished by
identifying genes that are differentially expressed at some
confidence level α. For the following tests we used a p-
value of 0.01 for the null hypothesis cutoff (uncorrected
for multiple tests). The results are presented in Table 4. In
general, for a given number of prior degrees of freedom,
the MP method consistently detects more genes as differ-
entially expressed than does the PE method and more of
these genes are commonly discovered when comparing
them with quasi-independent subsets. In addition the
fraction of common genes within those detected is gener-
ally higher for the MP method. The difference between the
methods tends to decrease as the number of prior degrees
of freedom is increased. The optimal performance (in
terms of % commonality) is achieved at around ν0 = 400,
which corresponds to basing the local variance on about
10% of the 1972 similarly expressed genes within each
sample (there are 3944 similarly expressed genes when
considering both samples). As ν0 increases past 400 the
commonality percentage drops somewhat. Basing the var-
iance on the combined estimated of all 3944 similar genes
results in a difference-in-means test, and the drop in per-
formance is similar to that seen by Long and Baldi when a
simple difference in means was used to rank the expres-
sion differences [27].

It is important to stress that the above results for the PE
method are not what one would expect using the imple-
mentation found in the Cyber-T software [4]. As men-

Table 3: Comparison of α and statistical power for iterated false positive rate and variable variance. The values are the same as those 
given in Table 1 and Table 2 except the variance for each sample was drawn from a uniform distribution between 0.05 and 1 during the 
simulation. The significance level (α) for the PE method was iterated so that the observed false positive rate matched that of the MP 
method where α was held constant.

n1 = n2 = n ν0 αPE αMP FPPE FPMP PowerPE PowerMP

2 0 - 0.05 - 0.0554 - 0.4038
2 2 0.190 0.05 0.0593 0.0592 0.5876 0.5756
2 6 0.090 0.05 0.0522 0.0521 0.6838 0.6859
2 16 0.067 0.05 0.0573 0.0571 0.7563 0.7566
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tioned before, this is because the existing software
incorrectly calculates the pooled variance by averaging the
standard deviation of similarly expressed genes. This
results in a substantial error for example, when n1 = n2 = 2
and ν0 = 400, the Type I error rate is approximately 0.125
(2.5 times higher than that predicted by the nominal rate
α = 0.05). The authors of Cyber-T recommend smaller val-
ues of ν0 where the overestimate of variance given by their
point estimate, Eq. (10), is balanced by the underestimate
of variance owing to incorrect pooling, thereby achieving
(approximately) correct false positive rates by offsetting
two competing biases.

Discussion and conclusion
The new marginal posterior (MP) formulation proposed
here is uniformly at least as powerful as the previous point
estimate (PE) method which it is based on and more pow-
erful when the number of similarly expressed genes (and
therefore prior degrees of freedom ν0) is small. Moreover,
unlike the existing regularization methods, the new for-
mulation consistently maintains the proper false positive
rates under the null hypothesis across the entire range of
pooling. The MP formulation also makes clear the
dependence between the prior degrees of freedom and
prior variance and thus methods to estimate the single
hyperparameter ν0 are expected to be more robust and
interpretable.

As mentioned previously, the key to the power of these
Bayesian methods is the use of similarly-expressed genes
to estimate the expected variance. Naturally, the more
similar the variance in expression of the other genes is to
the gene of interest, the greater the statistical consistency
of the method. In generating the simulated data we have
attempted to remain agnostic on the definition of "simi-
larly-expressed", using variances that are either constant
or drawn from a uniform distribution. Another Bayesian
method [28] utilizes a clustering technique based on a
series of t-statistics to group genes into prior categories in

order to pool their prior variances. Because the Bayesian
posterior probabilities used by that method are not inter-
pretable as frequentist Type I error rates, it is difficult to set
the desired false positive rate using such a method with-
out resorting to simulation and iteration. Other clustering
strategies include those based on non-parametric regres-
sion to obtain local variance estimates [29] and mixture
models that group together similar variances [30] using
maximum likelihood. These clustering strategies assume
the variance is known based on the large number of obser-
vations in each group. This allows normal distributions to
be used in deriving test statistics. Unfortunately, when the
number of similarly expressed genes is small the use of a
normal distribution is not justified as it assumes there is
no uncertainty in the variance. The advantage of the MP
formulation is that the normal approximation for the test
statistic is not required – it is statistically robust across the
entire range of pooling or clustering strategies (assuming
the strategies work properly to group together genes of
similar variance). In our experimental application of the
method we have adopted a pooling strategy based on
grouping together genes with similar expression levels.
Thus the MP formulation can be used in situations where
two or more control replicates can be compared with only
single observations under treatment conditions; this is not
possible with clustering strategies that require at least two
replicates in each sample [30].

Though the MP test was developed in a Bayesian frame-
work, there is a strong analogy with frequentist statistics.
One person's prior is another person's data; if we treat the
prior estimates of variance as just additional data collec-
tion then our hypothesis test using the t distribution is the
same one as that used in any introductory statistics course.
In either situation, one considers the estimate of variance
as the total sum-of-squared differences for all observa-
tions of the variance divided by the total degrees of free-
dom. By "all observations" we mean both the two samples
involved in the hypothesis test plus some number of rep-

Table 4: Experimental comparison of hypothesis testing methods. The microarray data consists of 1973 genes partitioned into 12 quasi 
independent n1 = 2 and n2 = 2 subsets using replicate experiments of 4 control and 4 treatment runs [26, 27]. The number of genes 
detected as differentially expressed using each method is listed for an α = 0.01 significance level (there was no correction for multiple 
testing) and different prior degrees of freedom (ν0). The average number of common genes for the 66 unique comparisons of the 12 
subsets is also listed along with the % of commonality (common/detected) for each test.

ν0 DetectedPE DetectedMP CommonPE CommonMP % CommonPE % CommonMP

0 0 46.2 0 6.4 0 13.8
2 3.3 72.5 0.2 21.0 6.3 29.0
4 29.7 88.0 8.7 30.9 29.2 35.1
8 61.5 95.2 23.4 37.9 38.1 39.8
16 83.3 103.9 34.0 42.6 40.1 40.1
400 107.0 108.1 51.2 51.5 47.9 47.6
1972 118.8 119.0 54.7 54.7 46.0 46.0
3944 109.1 109.2 48.6 48.7 44.6 44.6
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licates from other genes we believe to be similarly
expressed and are good representatives of the variance.
This is just like estimating the method standard deviation
and conducting a normal t-test with that estimate along
with the additional degrees of freedom that come with it.
All of the power analysis calculations can then be done
without recourse to simulations; for example, built-in
functions in the desktop statistical package R (using the
non-central t distribution) gave the same results we
present by simulation for the MP method. It should be
stressed that this Bayesian hypothesis test is not limited in
any way to the analysis of microarray data. It can be
applied to any experimental situation where prior beliefs
about the variance associated with small sample sizes are
used to achieve higher statistical power while maintaining
consistent Type I error rates. This is particularly important
when only a few similar observations of the variance are
available, for example when only a handful of genes are
under study across a range of treatment conditions.

The method is implemented in R and is freely available for
download [31] or by contacting the corresponding
author.
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Appendix
Determining the marginal posterior distribution of ∆µ
The posterior is the product of the prior and the likeli-
hood:

p(µ,∆µ,σ2|y) ∝ p(µ,∆µ,σ2)p(y|µ,∆µ,σ2)  (20)

The likelihood consists of the product of two normal dis-
tributions:

yi ~ N(µ,σ2)  (21)

yj ~ N(µ + ∆µ,σ2)  (22)

Combining the joint likelihood into a common exponen-
tial gives:

Next we can define a variable that that only contains terms
for the expression levels:

Expanding the square leads to the following:

Next, we look to complete the square by adding and sub-
tracting the same value k:

Now collapsing back to a single squared term in the expo-
nent and defining a new variable, Cσ, we have

Cµ = (n1 + n2)(µ - k)2 + Cσ  (33)

where

The posterior density can then be written as

We can now look to integrate out the true expression level,
µ:
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We have flat priors on µ and ∆µ, allowing us to complete
the integration over all µ.

p(µ,∆µ,σ2) ∝ p(σ2)  (37)

The posterior for the joint density of ∆µ and σ2 is then

We next look to integrate out σ2 by defining the sufficient
statistics associated with the variance:

where

The last term in Eq. (43) C∆µ, now contains all references
to the null difference in means, ∆µ. The term can be
expanded by multiplying out k2 and then simplified:

This can be inserted back into Eq. (43) to give

The prior for variance is said to follow a scaled inverse
Chi-square distribution:

The posterior density is then

But now we can integrate out σ2

With a change of variables

The posterior density then becomes the well known t dis-
tribution.

where

νn = n1 + n2 + ν0 - 2  (55)
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