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Abstract
Background: This article addresses the problem of interoperation of heterogeneous bioinformatics databases.

Results: We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database
warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component
databases into a common representational framework within a single database management system, thus enabling
multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database
integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration
of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt,
GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA
languages, parse and load these databases into a relational database schema. The loaders also apply a degree of
semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports
the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways,
proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism
taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the
fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence
databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been
assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway
prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the
value of the data warehousing approach to bioinformatics research.

Conclusion: BioWarehouse embodies significant progress on the database integration problem for
bioinformatics.

Background
The importance of the database (DB) integration problem
to bioinformatics has been recognized for many years [1-
6]. Many questions in bioinformatics can be addressed
only by combining data from multiple DBs, and DB inte-

gration also permits cross-checking of individual DBs for
validation. In 1993 a summary of a U.S. Department of
Energy workshop on genome informatics noted that
"achieving coordination and interoperability among
genome DBs and other informatics systems must be of the
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highest priority. ... We must begin to think of the compu-
tational infrastructure of genome research as a federated
information infrastructure of interlocking pieces..." [7].

One approach has involved mediator-based solutions
that transmit multidatabase queries to multiple source
DBs across the Internet. Although some progress has been
made in developing mediator technology, we argue that
these systems face several practical limitations (see Sec-
tion "Comparison of the Warehouse and Multidatabase
Approaches" for more details), including that (a) few
source DBs accept complex queries via the Internet (an
immediate deal killer), (b) the user lacks control over
which version of the data is queried, and over the hard-
ware that provides query processing power, (c) the speed
of the Internet limits transmission of query results, and
(d) users cannot cleanse the source DBs that they query of
potentially erroneous, incomplete or redundant data –
that is, they cannot alter the source DBs in any way. The
DB warehouse approach overcomes all of these limita-
tions.

This paper describes an evolving open source toolkit for
constructing DB warehouses that combines different col-
lections of bioinformatics DBs within a single physical DB
management system (DBMS) to facilitate queries that
span multiple DBs. We emphasize that BioWarehouse is a
flexible toolkit that supports multiple alternative ware-
houses: our goal is to enable different investigators to cre-
ate different warehouse instances that combine
collections of DBs relevant to their interests. The ware-
house also facilitates integration of locally produced data
with other public bioinformatics DBs in pursuit of goals
such as capture of experimental data, sharing experimen-
tal data with collaborators, Internet publishing of data to
the scientific community, and data mining and global
integrative studies across multiple DBs. The data sources
supported by BioWarehouse are particularly well suited to
integration of pathway information, although pathways
are only one of many datatypes supported by BioWare-
house.

SRI operates a publicly accessible BioWarehouse server
called Publichouse that contains four of the DBs sup-
ported by BioWarehouse. See URL [8] to obtain an
account.

Motivations
The 2004 online compilation of molecular biology DBs
prepared by Nucleic Acids Research lists approximately 580
DBs [9]. These DBs represent a significant investment
whose full potential has not been realized due to integra-
tion barriers. This is due to the need of different scientific
projects to access information from multiple different
DBs to meet their objectives. As bioinformatics DBs grow

in size, and as biological questions grow in scope, the
point-and-click style of DB mining becomes less and less
practical in such an environment. Instead, computational
biologists seek discoveries by using programs and com-
plex queries to mine DBs. These programs seek new pat-
terns and generalizations by issuing queries to one or
more DBs to select, combine, and compute over millions
of data records. Unfortunately, many barriers exist to the
querying of multiple DBs, including mismatches in query
language, access mechanisms, data models, and seman-
tics.

Combining information from multiple DBs is important
for two principal reasons. First, information about a given
biological entity is often scattered across many different
DBs: the nucleotide sequence of a gene may be stored in
one DB, the three-dimensional structure of its product
may be stored in a second DB, information about the
expression of the gene may be stored in a third DB, and
data regarding interactions of the gene product with other
proteins may be stored in a fourth DB. Bioinformatics
data tends to be organized around a given type of experi-
ment (such as gene expression or protein structure deter-
mination), yet many types of scientific investigations
require combining data from different experiment types.
For example, one way to partially validate whether an
observed protein-protein interaction is of physiological
relevance is to ask whether the genes for both proteins are
expressed in the same cell type; answering this question
requires combining information from multiple DBs.

Second, DB integration is important because different
DBs often contain redundant or overlapping information.
DB integration allows cross-validation and verification of
the DBs to identify such information.

In summary, advances in biology are hindered not by lack
of data, but by the diversity of technologies used for stor-
ing the data. Here we propose a solution, as shown in Fig-
ure 1, whereby the DBs required for a project (or set of
projects) are collected into a single high-performance
environment operating from a local server so that scien-
tists can control the set of DBs, the version of each of these
DBs, and the performance of the overall system. This
approach also enables scientists to combine data they
have produced locally with data from public bioinformat-
ics DBs.

Comparison of the warehouse and multidatabase 
approaches
We define the multidatabase approach (also known as the
federated approach) to DB integration as the approach
whereby users employ a special-purpose query language
to formulate a single query that spans multiple DBs [10].
A mediator software system then dissects the query into
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subqueries relevant to individual DBs, transmits the sub-
queries via the Internet to each DB, combines the results
of the subqueries, and returns the result to the user. Sys-
tems that employ the multidatabase approach include K2
[11] developed at the University of Pennsylvania, BioKRIS
[12], OPM [13], TAMBIS [14], and BioMediator [15].

This approach has two potential advantages over the
warehouse approach. First, it allows users to avoid invest-
ing in the hardware required to replicate the source DBs
locally. The significance of this barrier depends, of course,
on the number and size of the DBs to be integrated. Sec-
ond, it provides users with immediate access to the fresh-
est version of each source DB. However, warehouses can
provide fresh data if they are updated frequently. Yet,
refreshing large DBs can involve frequent downloads that
are costly in network bandwidth, unless the DB offers
downloads of changed entries only (deltas). Very few pub-
lic bioinformatics offer delta downloads, which we argue
should be an area for future research, to decrease the costs
of warehouse updating.

However, several limitations are associated with the medi-
ator approach:

• A key limitation of the multidatabase approach is that it
rests on a faulty assumption, namely, that all the bioinfor-
matics DBs that users want to query are queryable via the
Internet by using a network query API with the expressive
power of a language such as SQL.

That is, the assumption is that the multidatabase
approach will allow us to integrate DBs that are ready and
waiting in a queryable form. However, the vast majority of
bioinformatics DBs have not been made queryable in this
manner by their developers, and this situation has
changed little in the past decade. The DiscoveryLink sys-
tem [16] does provide technology for wrapping into an
SQL-queryable from data sources that are available as
files. We expect that writing such a wrapper would be sim-
ilar in complexity to writing a BioWarehouse DB loader.
Furthermore, once wrapped in this manner, some advan-
tages of the multidatabase approach (such as instant
access to newly released versions of the data) are lost.

• The performance of the Internet limits query speed
because potentially large intermediate results must be sent
across relatively slow Internet links.

• Every source DB server that is accessed by a user query
must be available during execution of that query; the
more sources a query accesses, the higher the probability
that at least one source will be unavailable.

• The fact that users do not control the hardware on which
queries submitted to a mediator are run can be problem-
atical for users whose applications produce large numbers
of queries and/or produce large query results. It is unreal-
istic to expect a single Internet- accessible server for a given
public DB to be able to satisfy the computational
demands of the entire biomedical research community,
and mediator users have no control over the hardware
supporting the DBMS servers to which their queries are
sent. This problem can be solved by installing a local
warehouse whose hardware is configured to satisfy the
query processing demands of the user's application (e.g.,
a large-memory multiprocessor).

• Although access to up-to-date data can be an advantage
of the multidatabase approach, it can also be a disadvan-
tage. Some users need control over what dataset version
they are querying, and do not want that version changing
out from under them. For example, a user who is running
a software package that functions with version 3.0 of a DB,
but that breaks under version 4.0 of that DB, wants con-
trol over when to migrate to version 4.0. Similarly, a user
who is training and evaluating a machine learning pro-
gram may want to perform experiments with respect to a
constant version of the DB for consistency in evaluating
program performance.

• Mediator users are unable to perform cleansing of
remotely accessed DBs. In contrast, DBs loaded into a
local warehouse can be cleansed of what a user considers
to be erroneous or noncompliant data. If desired, this
extracted data can then be stored as a distinct dataset
within the warehouse.

In addition, users who generate their own local experi-
mental or computationally derived datasets need a DBMS
in which to house them. The warehouse fulfills that need,
whereas the multidatabase approach is unable to store
locally produced data.

Taking full advantage of the BioWarehouse and its preced-
ing benefits does not preclude integration of databases
not yet supported by the BioWarehouse. BioWarehouse
may be used in a complementary fashion with a mediator
system in that a multidatabase query engine can sit above
BioWarehouse and enable access to additional DBs. This
software can then send subqueries to BioWarehouse when
it contains the relevant data, whereas other subqueries can
be sent to external Internet-accessible DBs.

In summary, our intention is not to rule out use of the
mediator approach, but to present what we see as a sys-
tematic discussion of the strengths and weaknesses of
both approaches, many of which have not been discussed
previously.
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Definitions
A data object is an element of a description of a biological
system at a particular granularity and with respect to a par-
ticular ontology. For example, a data object might corre-
spond to a gene, or to a control region within a gene, or to
a protein-protein interaction. A database (DB) is a collec-
tion of data objects. For example, Swiss-Prot is a DB. A
dataset is a specific version of a DB. For example, Swiss-
Prot version 39.0 is a dataset.

A database management system (DBMS) is a software
system for storing and querying collections of data. A data
model is the primitive data structuring mechanism used
by a DBMS, such as the relational data model used by rela-
tional DBMSs. A schema is the set of all tables used to rep-
resent data objects. A subschema is a set of related DB
tables within the warehouse schema, such as all tables
involved in defining the representation of a data object.

A BioWarehouse instance results from integrating a spe-
cific set of datasets into the BioWarehouse schema within
a single DBMS. An instance could contain multiple ver-
sions of the same DB. A warehouse object is the represen-
tation of a data object in a warehouse. A warehouse
identifier (WID) is an integer unique identifier assigned
within a BioWarehouse instance to a warehouse object.

Implementation
Design requirements of BioWarehouse reflect goals of
simplicity, accessibility, efficiency, and scientific utility.
This section discusses these requirements, and the corre-
sponding design decisions that were made to satisfy them.

Overall requirements
The warehouse must scale to allow effective operation
with terabytes of data. Each dataset is expected to be giga-
bytes in size, and available datasets typically increase sig-
nificantly in size each year. Decision: Relational DBMS
technology is in much more prevalent use in the bioinfor-
matics community than is object-oriented DBMS technol-
ogy, and has better scalability; therefore, BioWarehouse
uses relational technology.

The warehouse should be compatible with standard free-
ware DBMSs and commercial-grade DBMSs that are most
commonly used in the bioinformatics community, to
allow users who cannot afford the cost of commercial
DBMSs to employ freeware DBMSs, and to allow users
who cannot afford the limitations of freeware DBMSs to
employ commercial DBMSs. Decision: BioWarehouse
supports the Oracle and MySQL DBMSs.

The BioWarehouse architecture should be scalable to sup-
port the integration of a growing number of data sources.
Decisions: The project is open source to permit contribu-

tions of loaders from many groups. In addition, the com-
plexity of the schema must be constrained to facilitate
extensibility (see next section).

Multiple access mechanisms must eventually be provided
including SQL, XML-based methods, Open Agent Archi-
tecture (OAA) [17], CORBA, and Web-based query inter-
faces. Decision: Initial support is provided for SQL
(because of its pervasiveness) and for OAA (because of its
use in the DARPA Bio-SPICE program).

For installation, given an operating DBMS the require-
ments for the person configuring a warehouse instance are
limited to basic DB administrator (DBA) expertise.

Schema requirements
The BioWarehouse schema should be as simple as possi-
ble. If its schema grows too large, that complexity could be
a significant barrier to widespread adoption of the ware-
house technology, because users will find the schema so
difficult to understand that they will be unable to write
queries or application programs. Furthermore, because its
schema must evolve as BioWarehouse grows to support
new datatypes, a complex schema will be a significant bar-
rier to the further development of BioWarehouse, both at
SRI and by collaborators at other institutions, thus limit-
ing the scalability of BioWarehouse to more data sources.

Decisions: We define single common tables for informa-
tion that is common to many warehouse datatypes, to
decrease the schema complexity. For example, comments
and citations are common to many warehouse datatypes
(such as to genes, proteins, and pathways), and each is
implemented through a single table. We must, of course,
define an association between a comment and a ware-
house object. If different BioWarehouse object types used
different spaces of object identifiers, uniquely defining
that association would require the schema to encode both
the object ID and the object type, since objects of different
types could have the same ID. Thus, we use a simpler
approach whereby all BioWarehouse objects share a single
space of object identifiers within a warehouse instance.
The identifiers are known as warehouse identifiers
(WIDs), and are integers that are assigned at DB load time.
The use of a single space of WIDs allows associations
between, for example, a comment and an object, to spec-
ify a WID only, and not the object type also.

The warehouse schema must support the concurrent pres-
ence, accessibility, and addressability of multiple datasets
(multiple versions of a given DB) within a BioWarehouse
instance.

The warehouse schema should facilitate coercion of differ-
ent sources of the same type of data into a common
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semantic framework. For example, a warehouse might be
created that contains both the Swiss-Prot and PIR protein
DBs (note that UniProt does not contain all information
from PIR). Once loaded, the two DBs would exist side by
side within the warehouse, without having been merged,
but within the common warehouse schema. A separate
project within the same BioWarehouse instance could cre-
ate yet a third dataset within the warehouse consisting of
a nonredundant merging of Swiss-Prot and PIR. This
approach implies that the warehouse user need learn only
the schema of the warehouse, not of each data source,
whereas some mediator systems lack a global schema and
require the user to know the schema of each DB that they
query.

Loader requirements
Because bioinformatics DBs are often large and may have
a relatively poorly defined syntax, load failures are fre-
quently observed and without precautions could result in
crashing the loader. For this reason, DB loaders should be
able to recover gracefully from errors encountered during
parsing of their input files. Decision: The loaders are
designed to keep loading even in the presence of an error.
If partial data has been inserted into the warehouse, a
LoadError flag maintained on the related objects is
updated to indicate that an error occurred while parsing
the object, and that the warehouse entry for the object
may therefore be incomplete or contain errors.

BioWarehouse schema design
We designed the BioWarehouse schema by first studying
the schemas of each DB to be integrated, as well as the
schema of other DBs that use the same datatype. Our
experience in developing the Pathway Tools ontology
[18], which spans many warehouse datatypes, was also
helpful.

The development of the BioWarehouse schema was
guided by several principles, illustrated in this example
involving Swiss-Prot, TrEMBL, PIR, and EcoCyc. Although
the exact fields present in these DBs vary, all of them con-
tain information about proteins; therefore, we consider
the protein subsets of these DBs to be a single datatype.

Since DBs typically conceptualize proteins in different
ways, any kind of cross-DB operation faces the problem of
semantic heterogeneity, whereby information is parti-
tioned in different fields that use different definitions
(such as different units of measure). One possible
approach to supporting protein DBs within the ware-
house would be to create different schema definitions for
each of the conceptualizations of proteins used by the
source DBs. However, this approach would perpetuate the
semantic heterogeneity among these DBs, and would
complicate the resulting schema of BioWarehouse. At the

extreme, BioWarehouse would have to contain a different
protein schema for every protein DB that it loads. There-
fore, the warehouse schema would be larger and more
complex, and users would have more difficulty under-
standing the schema, making it more difficult for a user to
query the DB. Under this approach, a user who wanted to
query all proteins in the DB would have to study the sub-
schema for each different protein DB in the warehouse,
and essentially write a separate subquery for each sub-
schema.

Instead, the warehouse approach uses a single set of
schema definitions to cover a given datatype, even if that
datatype is conceptualized differently in different DBs. For
example, we create a single set of schema definitions to
span all attributes for proteins. The DB loaders are respon-
sible for translating from the conceptualization used in
each DB within the family to the conceptualization used
by the BioWarehouse schema. This approach eliminates
the semantic heterogeneity of these DBs, allowing users to
query all protein sequence DBs using the same schema.

Another important element of our approach is to explic-
itly encode the dataset from which each data object within
the warehouse is derived. For example, since entries from
any protein DBs are loaded into the same set of tables, it
is critical for user queries to be able to distinguish Swiss-
Prot entries from TrEMBL entries. Thus, queries can
request the retrieval of all warehouse protein sequences
that were loaded from the Swiss-Prot dataset.

Our DB loaders do not attempt to remove redundancy
during the loading of multiple DBs, so if Swiss-Prot and
PIR were loaded, and contained entries describing the
same protein, two distinct entries would be created in the
warehouse. This is important for four reasons: (1) Scien-
tifically, we believe that the warehouse should respect and
maintain the integrity of individual datasets, that is, the
warehouse should preserve information about the source
(provenance) of warehouse entries so that users can deter-
mine exactly what proteins are part of the Swiss-Prot data-
set or the PIR dataset. (2) Swiss-Prot and PIR might
provide different information about the same protein,
either because they disagree about the biological facts, or
because they provide different commentary. (3) It simpli-
fies the loaders, which need not be concerned with detect-
ing and removing redundancy between different datasets.
(4) It allows later execution of algorithms for computing
nonredundant protein datasets, where different algo-
rithms can be appropriate for different applications. A
nonredundant protein DB could be created as a separate
dataset within the warehouse that resulted from applying
a redundancy-reduction algorithm to the Swiss-Prot and
PIR datasets. This approach satisfies those users who will
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want to study Swiss-Prot per se, and those users who will
want to work with a large nonredundant protein DB.

Each dataset is described by a row within the DataSet
table, and contains attributes such as the dataset name,
version number, release date, and reference URLs.

Our schema design also allows multiple versions of a
given dataset to be loaded simultaneously, thus support-
ing queries that study the relationships among different
versions of a dataset (such as: Is the error rate of Swiss-Prot
increasing or decreasing? At what rate is the number of
ORFs in the bacterial genomes within Swiss-Prot decreas-
ing over time?). Having access to multiple versions of a
DB simultaneously is also important when a newer DB
version has changed in a way that interferes with impor-
tant application software, or when one user is in the mid-
dle of a computational study that he wants to complete on
the older DB version to maintain a consistent set of
results, and another user of the same BioWarehouse
instance wants to access the newest version of Swiss-Prot.
Our approach gives warehouse administrators the option
of deleting the old version of a DB and loading its new
version, or loading the new version alongside the older
one, allowing both to exist simultaneously.

This ability to maintain distinct datasets also enables users
to capture locally produced data (e.g., protein-sequence
data) in the warehouse by defining a separate warehouse
dataset to hold these data.

Consider the fact that proteins, pathways, and other bio-
informatics datatypes all need to cite literature references.
We do not want the protein and pathway datatypes within
BioWare-house to refer to different schema definitions of
literature references, as would be done in warehousing
approaches that create separate data-source-specific sub-
schemas for every data source they include. We also do
not want them to contain duplicate copies of the same
definitions of literature references, which can happen
with normalization schemes that blindly create new tables
for every multivalued attribute of an entity. Therefore, we
encode citations from all BioWarehouse datatypes and
datasets within a single citation subschema within Bio-
Warehouse. DB links are treated in a similar fashion – the
subschema for each warehouse datatype encodes links to
other DB objects in the same way.

Note that the current version of the warehouse schema is
more oriented toward prokaryotes than eukaryotes; over
time better support for eukaryotes is being added. This
orientation applies to representation of genes, for exam-
ple, the schema does not currently represent introns or
alternative splicing.

BioWarehouse schema implementation
BioWarehouse supports several bioinformatics datatypes,
each of which is implemented as one or more tables in the
schema. The full schema is provided as supplementary
material to this article as an ER diagram [see Additional
file 1] to provide an overview of its organization, and as
an SQL definition for readers interested in its details [see
Additional file 2]. Figure 2 shows the main datatypes in
the BioWarehouse schema, and the relationships between
them. From left to right within this figure:

• Taxon: Describes taxonomic groups such as genus or
species. Taxa are related to one another to represent the
various hierarchical levels of taxonomic classification.

• BioSource: Represents the source of a biological mate-
rial, whether nucleic acid molecule, protein, or gene. In
addition to specifying the taxon of the material by cross-
referencing to entries in the Taxon table, BioSource also
stores source descriptors such as cell type, tissue, and sex
of the organism. The loaders provided with the BioWare-
house all reference the NCBI Taxonomic DB [19] when
creating entries in BioSource to provide a normalized set
of taxonomic classifications.

• Nucleic Acid: Defines a DNA or RNA molecule, or a frag-
ment thereof. A single contiguously sequenced fragment
of a larger nucleic acid is represented by an entry in table
SubSequence.

• Gene: BioWarehouse uses the prokaryotic notion of
gene – a region of DNA that codes for a protein or RNA
product, beginning with the transcriptional start site.
Genes are related to entries in the NucleicAcid and Subse-
quence tables that define their sequence, and to their pro-
tein products. A gene may also be directly related to a
BioSource.

• Protein: Defines proteins, including their amino acid
sequences. Proteins are related to the genes that encode
them, to the reactions they catalyze, and to features
defined on their sequence. A protein may also be directly
related to a BioSource. The schema can capture the subu-
nit composition of a multimer, and does not require that
a protein sequence be present.

• Feature: A subsequence of interest on an amino acid or
nucleic acid sequence, such as a catalytic site, a phospho-
rylation site, a promoter region, or a transcription-factor
binding site.

• Reaction: A spontaneous or catalyzed chemical reaction.
A reaction is related to the protein that catalyzes it; to
pathways that contain it; and to its chemical substrates,
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which can be small molecules or macromolecules such as
proteins.

• Chemical: A small-molecular-weight chemical com-
pound.

• Pathway: An ordered collection of biochemical reac-
tions.

The bottom of Figure 2 lists some additional tables within
the schema. Every entity within the warehouse (e.g., every
nucleic acid, protein, and gene) has a row in the Entry
table that defines metadata such as the time it was inserted
in the warehouse, and its time of last update. Every ware-
house entity is also associated with the dataset (DB ver-
sion) from which it was derived; datasets themselves are
defined in the DataSet table.

The Term table implements storage of external controlled
vocabularies such as those provided by an ontology. Each
entry in the Term table is a single term in a controlled
vocabulary. The Enumeration table implements control-
led vocabularies internal to BioWarehouse itself. For
example, the BioWarehouse table BioSource contains a
column "Sex" that is allowed to take on several possible
controlled values including "Male" and "Female." The
Enumeration table specifies the allowed controlled values
for specified BioWarehouse tables and columns, making
BioWarehouse self-documenting.

In addition to the preceding bioinformatics datatypes, the
BioWarehouse represents many relationships among
these datatypes. If the relationship is one-to-one, a col-
umn in the corresponding table simply contains the WID
of the associated object. For example, a gene is associated
with its nucleic acid in this manner. Relationships of
higher multiplicity, such as many-to-many relationships,
are implemented as linking tables that associate two or
more primitives, such as a gene and a protein. A linking
table contains WIDs for each of the related objects. This
permits efficient, normalized representation of these rela-
tionships.

The warehouse also contains tables that implement auxil-
iary information, including descriptions of the source
dataset of each warehouse entry, literature citations,
human- and software-generated comments, DB cross-ref-
erences (both internal and external to the warehouse),
synonyms for named objects, and controlled vocabular-
ies.

The BioWarehouse schema will evolve as new loaders are
added to support new datatypes. SRI encourages other
groups to submit new loader implementations, Java
library extensions, and schema extensions to this open-
source project. We do feel it is necessary for SRI to be the
final arbiter of such extensions to ensure that the schema
implementation remains compatible with its design prin-
ciples to ensure continued maintainability and scalability
of BioWarehouse. New versions of the schema will some-
times be incompatible with old versions, which will

Table 1: Semantics for translating the flatfile representation of a BioCyc reaction to columns of the BioWarehouse schema. The left 
column indicates source data from BioCyc; the right column indicates that data is transferred into the BioWarehouse. One row is 
added to the Reaction table for each flatfile reaction; rows to other tables are added as indicated. Table.Column indicates a column of 
a schema table. Attributes followed by [*] may occur multiple times per record. Note that some tables in this figure may not appear 
in Figure 2 because that figure is an abstraction of the full schema.

BioCyc Attribute Warehouse Semantics

LEFT [*] A row is added to A row is added to table Reactant. Value should match 
a Chemical.Name; its WID is stored as Product .WID. If a 
COEFFICIENT follows immediately, its value is stored as 
Reactant.Coefficient. Otherwise the value 1 is stored.

RIGHT [*] A row is added to table product. Value should match a chemical.Name; 
its WID is stored as product .WID. If a COEFFICIENT follows 
immediately, its value is stored as Product .Coefficient. Otherwise the 
value 1 is stored.

COEFFICIENT Reactant.Coefficient or Product.Coefficient for the immediately 
preceding LEFT or RIGHT attribute resp.

COMMON-NAME A row is added to SynonymTable where SynonymTable.Syn is this value 
and SynonymTable. OtherWID is the WID of this reaction.

DELTAG0 Reaction.DeltaG
EC-NUMBER Reaction.ECNumber
SPONTANEOUS? Reaction.Spontaneous
SYNONYMS [*] A row is added to SynonymTable where SynonymTable. Syn is this value 

and SynonymTable.OtherWID is the WID of this reaction
UNIQUE-ID A row is added to DBID where DBID.XID is this value. and 

DBID.OtherWID is the WID of this reaction.
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require loader modifications, and data reloading. Since
public data sources must in any event be reloaded at reg-
ular intervals, the requirement of data reloading is not a
large burden.

To support multiple DBMSs and their different flavors of
SQL, each DBMS-specific schema is generated from a
common schema template. The schema template consists
of a framework using SQL syntax that is common among
all supported DBMSs, interspersed with variables. Macro
substitution converts the common schema to one that is
conformant to the DBMS. The most common substitution
is for primitive data types, which differ significantly across
DBMSs.

DB loaders
It is the responsibility of each loader to translate the flat
file representation of its source DB into the warehouse
schema. Typically, many of the source DB attributes are
copied into the warehouse either verbatim or with minor
transformations (e.g., converting "YES" and "NO" to "T"
and "F"). The few source attributes not represented in the
warehouse are generally ignored, although some
attributes are added to the warehouse CommentTable. An
example of warehouse translation semantics is shown in
Table 1 for one file from the BioCyc collection of DBs.

Loaders have been implemented in both the C and Java
languages. C-based MySQL loaders interface with MySQL
using the C API provided as part of MySQL. C-based Ora-
cle loaders interface with Oracle using the Oracle Pro-C
precompiler. Java-based loaders use the Java Database
Connectivity (JDBC) API to interface with the DBMS.
Each of these APIs allows SQL to be embedded and/or
generated within its source language.

Loaders have been implemented for these bioinformatics
DBs: UniProt (Swiss-Prot and TrEMBL [20]), ENZYME
[21], Kyoto Encyclopedia of Genes and Genomes (KEGG)
[22], the BioCyc collection of pathway/genome DBs (see

URL [23-25]), the NCBI Taxonomy DB [19], GenBank
[26], the Comprehensive Microbial Resource (CMR) [27],
and Gene Ontology [28].

The architecture required to load datasets into a ware-
house instance is akin to the process of compilation, but
with the source code being a dataset and the object code
being SQL insert statements to add the contents of the
dataset to the warehouse. Standard parser generation
tools (ANTLR for Java, Flex and Bison for C) are used
throughout to specify the syntax of the input files, and
associated loader actions.

A set of support routines is provided to create and manip-
ulate an internal representation of the warehouse objects,
including assignment of WIDs to objects, and the resolu-
tion of intra-dataset cross-references into WIDs. Loaders
may make SQL queries to the local warehouse. SQL gen-
eration is performed by translating the internal represen-
tation into SQL statements.

Each loader has an associated manual describing its oper-
ations and any limitations in the loader. For example, the
GenBank loader is currently recommended for use on
prokaryotic sequences only.

BioWarehouse java utility classes
The BioWarehouse implementation provides a set of Java
classes with general utilities for interacting with BioWare-
house. These classes are useful for developers who want to
construct new BioWarehouse loaders or applications. The
classes provide methods for connecting to the database
and for loading data into a BioWarehouse instance. These
classes are packaged as a single module (a Java JAR file)
that can be used by any Java-based loader or application.
To abstract underlying DB specifics from the developer, a
client application uses a factory class to obtain an instance
of a Java DB class (Oracle or MySQL). The DB class pro-
vides methods for connecting to the database, performing
queries, or doing BioWarehouse-specific tasks, such as

Table 2: Example BioWarehouse operations, implemented as SQL, and as operations in the Java utilities.

Example SQL Java

Create a new entry in the Protein table and add 
a comment for it in the CommentTable.

// Obtain a new WID SELECT 
WID_sequence.NextVal FROM dual INSERT 
INTO Protein (WID, Name, AASequence, 
DataSetWID) VALUES ('5', 'Sample Name', 
'XXX', '2');
INSERT INTO CommentTable (OtherWID, 
Comm) VALUES ('5', 'Tester"s comment');

// A new WID is automatically obtained by the 
Protein class
Protein protein = new Protein (2); protein. 
setName("Sample Name"); protein. set 
AASequence("XXX"); protein. addComment 
("Tester's comment"); protein. storeQ;

Retrieve an existing entry in the Protein table 
and alter some of its data.

SELECT * FROM Protein WHERE WID = '5'; 
UPDATE Protein SET Name = 'New Name' 
WHERE WID = '5';

Protein protein = new Protein (2, 5); protein. 
load(); protein. setName("New Name""); 
protein. update();

Delete the Protein entry. DELETE FROM Protein WHERE WID = '5'; Protein protein = new Protein (2, 5); Protein. 
delete ();
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obtaining a WID in an object-oriented, DBMS-independ-
ent way.

Similarly, we provide Java classes enabling a client to
interact with the BioWarehouse tables in an object-ori-
ented manner. The table classes are defined by an extensi-
ble class hierarchy that defines one class per table. The
hierarchy greatly simplifies implementation of new table
classes. Similar table types (e.g., all object tables or all
linking tables) have their common functionality factored
out into a base class. Each class provides accessors with
methods for each property (column) of the table. These
classes enable developers to create instances of the table
classes (representing a single row in the table), set proper-
ties of the table object (corresponding to inserting values
into the table), and store the data into the database. Meth-
ods are also provided to retrieve a row from a table given
its primary key(s) (e.g., given a WID for object table
entries), and to update or delete that row. Table 2 com-
pares the processes for the SQL versus the Java method. In
these examples, the Protein.DataSetWID is 2 and the Pro-
tein. WID is 5.

In addition to providing a convenient object-oriented
interface to the BioWarehouse schema, the Java schema
classes leverage the metadata capabilities of JDBC to per-
form data checking before inserting data. For example, we
can detect if a text length exceeds the allowed maximum
for a column before attempting an insert (which would
otherwise fail). Another benefit is that we can perform
unit tests on the classes to ensure compatibility with the
current implementation of the BioWarehouse schema,
and to confirm that all functions work as expected with
each type of DBMS.

Publichouse: Publicly queryable BioWarehouse server
As a convenience to users who do not want to maintain
their own local BioWarehouse instance, SRI provides a

publicly queryable BioWarehouse instance called Public-
house, which stores the open BioCyc, NCBI Taxonomy,
ENZYME, and CMR DBs. Users can query Publichouse via
Internet SQL queries. Because Publichouse stores only
those DBs that their creators make openly available, users
wanting to query other BioWarehouse-supported DBs
must load those DBs into their own local BioWarehouse
instance. That is, SRI cannot typically redistribute DBs that
are not openly available, but most users will be able to
download and install those DBs for their own local use.

Currently, Publichouse contains BioCyc DBs for ten
organisms. However, in the near future we expect that
number to increase to more than 150 organisms due to a
joint effort between SRI and the Computational Genom-
ics Group at the European Bioinformatics Institute to gen-
erate Pathway/Genome DBs for every completely
sequenced bacterial and eukaryotic genome.

User support and documentation
Extensive documentation is available for BioWarehouse
within the software distribution. The available documen-
tation is listed in a table of contents within the distribu-
tion at http://contrib/sri/warehouse/doc/index.html. The
BioWarehouse documentation set includes release notes,
a quick start guide, environment setup documentation,
schema description and DBMS setup instructions, a
description of the integration with the Dashboard for the
February 2004 Bio-SPICE demonstration, and descrip-
tions of Perl utilities and Perl demo scripts.

The table of contents also has a table listing statistics
about each loader (latest supported version of its DB, last
input DB size, load time, etc.) For each loader, there are
two pieces of documentation: how to build and run the
loader, and a manual for developers describing the details
of the loader implementation and mappings from the
source DB schema to the BioWarehouse schema.

Table 3: EC number content of Swiss-Prot, TrEMBL, PIR, CMR, and BioCyc. Total EC numbers is the number of distinct EC numbers 
in each DB. Incremental Novel ECnumbers is the number of EC numbers present in a given DB that were not present in all preceding 
DBs in the table. For example, 158 EC numbers are present in PIR that are not present in either Swiss-Prot or TrEMBL. We do not 
show all pairwise combinations of shared EC numbers between DBs because it is not particularly meaningful. Time is the execution 
time of the SQL query listed below to compute the distinct EC numbers in each DB on a dual-CPU 1 GHz Pentium Oracle server with 
2 GB memory running Linux. Note that because a PIR warehouse loader does not exist at this time, PIR statistics were obtained 
through queries to an XML version of PIR outside the warehouse. Note also that it is somewhat surprising that PIR contains EC 
numbers not found in Swiss-Prot, because version 42.6 is a UniProt version of Swiss-Prot that incorporates data from PIR. It appears 
that not all data from PIR entries has been incorporated into UniProt.

Database Version Total EC numbers Incremental Novel EC 
numbers

Time

Swiss-Prot 42.6 1899 1899 7.6 s
TrEMBL 25.4 1678 316 53 s

PIR PIR-PSD 78.03 1695 108 na
CMR April, 2003 1230 26 159 s

BioCyc 7.6 1357 44 2.6 s
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Bug reports and requests for assistance should be sent to
support@biowarehouse.org.

Results and discussion
Here we present results obtained by BioWarehouse in its
use by several bioinformatics projects, and a performance
analysis of BioWarehouse.

An SRI project is developing algorithms for predicting
which genes within a sequenced genome code for missing
enzymes within metabolic pathways predicted for that
genome [29]. BioWarehouse fills several roles within that
project: it is used to construct a complete and nonredun-
dant dataset of sequenced enzymes by combining protein
sequences from the UniProt and PIR DBs, and by remov-
ing from the resulting dataset those sequences that share a
specified level of sequence similarity. Our current research
involves extending the pathway hole filling algorithm
with information from genome-context methods such as
phylogenetic signatures, which is obtained from BioWare-
house thanks to the large all-against-all BLAST results
stored within CMR.

Another SRI project is comparing the data content of the
EcoCyc and KEGG DBs using BioWarehouse to access the
KEGG data in a computable form. Jeremy Zucker of Har-
vard is using BioWarehouse as a component of an auto-
mated pipeline that will construct metabolic flux models
from annotated genomes [30] as part of the Bio-SPICE
project [31]. Zucker is also using BioWarehouse to

develop a translator from KEGG to the BioPAX pathway
exchange standard (see URL [32]).

Enzyme sequence completeness
An SRI project is using BioWarehouse to determine the
completeness with which biochemically characterized
enzymes have been sequenced. Specifically, we answered
the question: in the Swiss-Prot, TrEMBL, PIR, CMR, or
BioCyc DBs, what fraction of enzymes that have been
assigned EC numbers are associated with at least one pro-
tein sequence [33]? Illustrated here is a type of problem
that can be solved with BioWarehouse. This problem is
not a systematic or formal evaluation of BioWarehouse.

This question is significant since the identification of an
enzyme in a newly sequenced genome cannot be made if
no sequence is known for an enzyme with that activity.
Unrecognizable enzymes therefore limit the completeness
of genome annotations and of metabolic pathway predic-
tions. Furthermore, we cannot genetically engineer an
unsequenced enzyme into a new organism to accomplish
a metabolic engineering goal, because we do not know
which gene to insert to provide the needed enzyme activ-
ity.

EC numbers (Enzyme Commission numbers) constitute a
classification system for enzyme function developed over
the course of many years by the Nomenclature Committee
of the International Union of Biochemistry and Molecular
Biology (NC-IUBMB) [34] (see also URL [35]). The classi-

Figure 1Figure 1
Architecture of the BioWarehouse system. Loader tools parse source databases and insert their contents into BioWarehouse. Oval shaped loaders
are written in Java, diamond shaped loaders are written in C.
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fication system is four levels deep, and each enzyme func-
tion at a leaf of the classification tree is assigned a unique
tuple of four numbers. The enzyme functions are classi-
fied according to the chemical transformation of the enzy-
matic reaction. For example, the enzyme "tryptophan
synthase" is assigned the EC number 4.2.1.20, with class
"4" indicating that this enzyme belongs to the class of
lyase enzymes.

The ENZYME DB is an electronic version of the EC system.
Version 33.0 of ENZYME (all DB versions used to address
this question were those of December 2003 except for
CMR) contains 4208 distinct EC numbers, of which 472
have been deleted or transferred to new numbers; it there-
fore lists 3,736 different biochemically characterized
enzyme activities. Warehouse queries allowed us to deter-
mine the distinct EC number content of each DB as shown
in Table 3. We provide execution times to give the reader
a sense of how fast these queries execute on BioWare-
house.

In total, these DBs reference 2380 distinct EC numbers, or
64% of all known EC numbers. Therefore, for 1356 EC

numbers (36%), no sequence is known. We refer to such
EC numbers as "orphan activities."

Two qualifications to the preceding analysis should be
stated. First, the EC system is incomplete in that it does
not yet include a number of enzymes whose biochemical
activities have been characterized. The MetaCyc DB alone
describes 890 enzyme activities that have no associated
EC number. The true number of biochemically character-
ized enzymes is probably between 5000 and 6000.

Second, there could be entries in UniProt that omit EC
number annotations, which, if properly annotated, would
provide sequences for some of these enzymes. We have
performed manual literature searches and DB searches in
Swiss-Prot and TrEMBL for 228 orphan activities, and
have found sequences for 18% of them. Additional infor-
mation about this survey can be found at [36].

We conclude from this analysis that an Enzyme Genomics
project should be initiated with the goal of obtaining at
least one sequence for each unsequenced enzyme activity.
Such a project would boost the accuracy of genome anno-
tation at the level of both proteins and metabolic path-

Figure 2Figure 2
The main datatypes in the BioWarehouse schema, and the relationships between them. An arc is shown connecting two datatypes A and B if 
datatype A contains a column that references datatype B.
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ways, and would remove barriers to metabolic
engineering.

One SQL query that implements the analysis in Table 3 is
shown below. It queries a single column of the Reaction
table for a set of EC number values. Care is taken to filter
out partial EC numbers and multiple EC numbers by
using query expressions containing wildcards (percent
signs). Partial EC numbers contain a hyphen in place of
one or more of its numbers (for example, 4.2.1.-). Occa-
sionally, multiple EC numbers will be associated with a
reaction. These are separated by forward slashes.

select distinct ecnumber from Reaction

where datasetwid = [DATABASE-WID]

and ecnumber not like '%-%'

Performance analysis
We present the run times of the following queries to illus-
trate the performance of BioWare-house using the hard-
ware described in Table 3. All queries were run against an
Oracle BioWarehouse instance running on a dual-proces-
sor 2.66 GHz Pentium 4 processor machine with 2 GB of
memory. The instance contained all seven DBs loaded,
which occupies approximately 10 GB. Additional queries
are provided in supplementary material [see Additional
file 3]. Our intention is not to provide a thorough per-
formance analysis, but simply to show that even with a
number of large datasets loaded, simple queries are evalu-
ated quickly.

Query 1: "select * from Protein where name = 'Zyxin' and
DataSetWID = (select WID from DataSet where Name =
'Swiss-Prot')"

Query 1 retrieves three proteins (including their
sequences) from Swiss-Prot by name in 204 milliseconds.
The Protein table contains 1694037 rows.

Query 2: "select AASequence from Protein where WID =
(select OtherWID from DBID where XID like '
ZYX\_MOUSE%') and DataSetWID = (select WID from
DataSet where Name = 'Swiss-Prot')"

Query 2 retrieves the sequence of one protein from Swiss-
Prot given its Swiss-Prot ID in 114 milliseconds. The Pro-
tein table contains 1694037 rows. The DBID table con-
tains 3685779 rows.

Related work
BioWarehouse is distinguished from other bioinformatics
DB warehouse efforts in the following respects. BioWare-
house supports a unique collection of bioinformatics data

sources that are not supported by any other warehousing
system, with a unique focus on integrating metabolic
pathway and enzyme databases, and on integrating multi-
ple sources of information on completely sequenced
microbial genomes. BioWarehouse offers a unique
approach to scalability that will allow it to scale to a large
number of data sources; that approach combines a meth-
odology for limiting the growth of schema size and com-
plexity, which are critical attributes of warehousing
systems; with an open-source development model that
will allow other groups to contribute new loaders to Bio-
Warehouse; and a Java library that simplifies the process
of writing new loaders. BioWarehouse runs on two indus-
try standard DBMSs – Oracle and MySQL – whereas some
other warehouses run on non-standard DBMSs, or on
only one DBMS.

Ritter created a warehouse of several bioinformatics DBs
called IGD [37,38] using AceDB [39] as the underlying
DBMS. AceDB did not have adequate scalability for the
handful of DBs that Ritter integrated. The AceDB DBMS
has other limitations as well, such as its lack of a well-
crafted and standardized query language.

SRS [40] uses a variant of the warehouse approach that is
highly text oriented rather than oriented toward struc-
tured data values, meaning that the ability of SRS to com-
pute with its data is constrained. Furthermore, SRS has no
integrated schema, meaning that it does not attempt to
unify the disparate semantics of the DBs that it integrates.
SRS is also a read-only system – it does not have standard
DBMS update operations based on atomic transactions.
Therefore, users cannot insert and update data from their
own laboratories into an SRS DB by using transactions.
Finally, SRS is not an industry-standard DBMS, and does
not support a full-featured complex-query language. The
proprietary nature of SRS makes its workings very difficult
to discern.

The GUS [11] project at the University of Pennsylvania
has somewhat different goals than BioWarehouse. GUS is
not designed for integration of public bioinformatics DBs,
but is oriented toward implementation of bioinformatics
applications that require integration of custom local data
collections. Therefore, GUS does not provide loader tools
for public bioinformatics databases. GUS emphasizes
issues of data provenance and of detecting changes in the
underlying data sources. GUS is implemented for the Ora-
cle and Postgresql DBMSs. GUS has an extremely large
schema (approximately 480 tables – see [41]) that is likely
to limit its understandability by other groups and there-
fore their ability to query and extend GUS. GUS provides
a publicly queryable DBMS server.
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The Atlas warehouse system [42] is remarkably similar to
BioWarehouse in its design. Like BioWarehouse, Atlas
uses a set of loaders to transform data from source-DB
files into a relational DBMS schema that models several
bioinformatics datatypes. Atlas focuses integrating data
on biological sequences, species taxonomies, molecular
interactions, gene annotations, and ontologies. Atlas and
BioWarehouse support four DBs in common: GenBank,
UniProt, Gene Ontology, and NCBI Taxonomy. Atlas runs
on MySQL only, and has a medium-sized schema of
approximately 70 tables, which according to the Atlas
schema diagram in [42] are not shared among different
biological datatypes.

EnsMart [43] is another warehouse-based system that is
distinguished by its user-friendly query front end that
allows users to compose complex queries interactively.
EnsMart runs on Oracle and MySQL. Datatypes currently
supported by EnsMart are genes, SNP data, and controlled
vocabularies. The size and full design principles of the
schema underlying EnsMart (and its parent BioMart) are
unclear. Because the number of datatypes supported is
small, so is the schema, and it is unclear how well the
schema will scale as more datatypes are added. One
schema design principle stated is the use of the star-
schema approach, which is known to produce schemas
that have large numbers of tables for each datatype, and
thus could prove troublesome for scalability.

The Biozon system (see URL [44]) is also warehouse-
based, and also provides a user-friendly Web interface for
constructing complex queries.

Conclusion
We have presented the design and implementation of the
open source BioWarehouse toolkit for constructing bioin-
formatics DB warehouses. BioWarehouse consists of a glo-
bal relational DB schema for important bioinformatics
datatypes, and a set of loader tools that parse public bio-
informatics DBs and load their contents into that schema.
BioWarehouse has been implemented for both the Oracle
and MySQL relational DBMSs. The toolkit can be down-
loaded and installed by users who want to configure their
own warehouses on local hardware. In addition, SRI oper-
ates a BioWarehouse instance called Publichouse that
contains the Bio-Cyc, NCBI Taxonomy, ENZYME, and
CMR DBs, and can be queried by the public. The utility of
BioWarehouse has been proven as a result of its use in sev-
eral research projects at SRI and elsewhere.

Availability and requirements
• Project name: BioWarehouse

• Project home page: http://bioinformatics.ai.sri.com/
biowarehouse/
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• Any restrictions to use by non-academics: None
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