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Abstract
Background: Gene selection is an important step when building predictors of disease state based
on gene expression data. Gene selection generally improves performance and identifies a relevant
subset of genes. Many univariate and multivariate gene selection approaches have been proposed.
Frequently the claim is made that genes are co-regulated (due to pathway dependencies) and that
multivariate approaches are therefore per definition more desirable than univariate selection
approaches. Based on the published performances of all these approaches a fair comparison of the
available results can not be made. This mainly stems from two factors. First, the results are often
biased, since the validation set is in one way or another involved in training the predictor, resulting
in optimistically biased performance estimates. Second, the published results are often based on a
small number of relatively simple datasets. Consequently no generally applicable conclusions can be
drawn.

Results: In this study we adopted an unbiased protocol to perform a fair comparison of frequently
used multivariate and univariate gene selection techniques, in combination with a ränge of
classifiers. Our conclusions are based on seven gene expression datasets, across several cancer
types.

Conclusion: Our experiments illustrate that, contrary to several previous studies, in five of the
seven datasets univariate selection approaches yield consistently better results than multivariate
approaches. The simplest multivariate selection approach, the Top Scoring method, achieves the
best results on the remaining two datasets. We conclude that the correlation structures, if present,
are difficult to extract due to the small number of samples, and that consequently, overly-complex
gene selection algorithms that attempt to extract these structures are prone to overtraining.

Background
Gene expression microarrays enable the measurement of
the activity levels of thousands of genes on a single glass

slide. The number of genes (features) is in the order of
thousands while the number of arrays is usually limited to
several hundreds, due to the high cost associated with the
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procedure and the sample availability. In classification
tasks a reduction of the feature space is usually performed
[1,2]. On the one hand it decreases the complexity of the
classification task and thus improves the classification
Performance [3-7]. This is especially true when the classi-
fiers employed are sensitive to noise. On the other hand it
identifies relevant genes that can be potential biomarkers
for the problem under study, and can be used in the clinic
or for further studies, e.g. as targets for new types of ther-
apies.

A widely used search strategy employs a criterion to eval-
uate the informativeness of each gene individually. We
refer to this approach as univariate gene selection. Several
criteria have been proposed in the literature, e.g. Golub et
al. [8] introduced the signal-to-noise-ratio (SNR), also
employed in [9,10]. Bendor et al. [4] proposed the thresh-
old number of misclassification (TNoM) score. Cho et al.
[11] compared several criteria: Pearson and Spearman cor-
relation, Euclidean and cosine distances, SNR, mutual
information and information gain. The latter was also
employed by [12]. Chow et al. [6] employed the median
vote relevance (MVR), Naïve Bayes global relevance
(NBGR), and the SNR, which they referred to as mean
aggregate relevance (MAR). Dudoit et al. [13] employed
the t-statistic and the Wilcoxon statistic. In all cases, the
genes are ranked individually according to the chosen cri-
terion, from the most to the least informative. The ranking
of the genes defines the collection of gene subsets that will
be evaluated to find the most informative subset. More
specifically, the first set to be evaluated consists of the
most informative gene, the second set to be evaluated con-
sists of the two most informative genes and the last set
consists of the complete set of genes. The set with the
highest score (classification performance or multivariate
criterion) is then judged to be the most informative. For a
set of p genes, this univariate search requires the evalua-
tion of at most p gene sets.

Several multivariate search strategies have been proposed
in the literature, all involving combinatorial searches
through the space of possible feature subsets [1,14]. In
contrast to the univariate approaches, which define the
search path through the space of gene sets based on the
univariate evaluation of genes, multivariate approaches
define the search path based on the informativeness of a
group of genes. Due to computational limitations, rela-
tively simple approaches, such as greedy forward search
strategies are often employed [5,15]. More complex proce-
dures such as floating searches [16] and genetic algo-
rithms have also been applied [5,17-19]. Guyon et al. [20]
employed an iterative, multivariate backward search
called Recursive Feature Elimination (RFE). RFE employs
a classifier (typically the Support Vector Machine (SVM))
to attach a weight to every gene in the starting set. Based

on the assumption that the genes with the smallest
weights are the least informative in the set, a predefined
number of these genes are removed during each iteration,
until no genes are left. The performance of the SVM deter-
mines the informativeness of the evaluated geneset. Bo at
al. [21] introduced a multivariate search approach that
performs a forward (greedy) search by adding genes
judged to be informative when evaluated as a pair.
Recently, Geman et al. [22,23] introduced the top-scoring
pair, TSP method, which identifies a single pair of predic-
tive genes. Liknon [10,24] was proposed as an algorithm
that simultaneously performs relevant gene identification
and classification in a multivariate fashion.

The above mentioned univariate and multivariate search
techniques have been presented as successfully perform-
ing the gene selection and classification tasks. The goal of
this study is to validate this claim because a fair compari-
son of the published results is problematic due to several
limitations. The most important limitation stems from
the fact that the training and validation phases are not
strictly separated, causing an 'Information leak' from the
training phase to the validation phase resulting in opti-
mistically biased performances. This bias manifests itself
in two forms. First, there is the most severe form identified
by Ambroise et al. [25]. (See also the erratum by Guyon
[26]). This bias results from determining the search path
through gene subset space on the complete dataset (i.e. also
on the validation set) and then performing a cross valida-
tion at each point on the search path to select the best sub-
set. Although this bias is a well known phenomenon at
this stage, a fairly large number of publications still carry
this bias in their results [6,9-12,17,20,27,28]. The second
form of bias is less severe, and was elaborately described
in Wessels et al. [29]. See [4,13,21] for instances of results
where this form of bias is present. Typically, the training
set is employed to generate a search path consisting of
candidate gene sets, while the classification performance
of a classifier trained on the training set and tested on the
validation set is employed to evaluate the informativeness
of each gene set. The results are presented as a set of
(cross)validation performances – one for every geneset.
The bias stems from the fact that the validation set is
employed to pick the best performing gene subset from
the series of evaluated sets. Since optimization of the gene
subset is part of the training process, selection of the best
gene subset should also be performed on the training set
only. An unbiased protocol has been recently proposed by
Statnikov et al. [7] to perform model selection. Here, a
nested cross-validation has been used to achieve both the
optimization of the diagnostic model, such as the choice
of the kernel type and the optimization parameter c of the
SVM for example, and the performance estimate of the
model. The protocol has been implemented in a System
called GEMS [30]. In addition to the raised concerns, the
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comparison between the results in available studies is dif-
ficult since the conclusions are frequently based on a
small number of datasets, often the Colon [31] and Leuke-
mia [8] datasets. See, for example [5,12,20,21,28,32].
Sometimes even the datasets employed are judged by the
authors themselves to be simple and linearly separable
[10,17,18,33]. Therefore, no generally applicable conclu-
sions can be drawn.

We perform a fair comparison of several frequently used
search techniques, both multivariate and univariate, using
an unbiased protocol described in [29]. Our conclusions
are based on seven datasets, across different cancer types,
platforms and diagnostic tasks. Surprisingly, the results
show that the univariate selection of genes performs very
well. It appears that the multivariate effects, which also
influence classification performance, can not be easily
detected given the limited sizes of the datasets.

Results
The focus of our work is on gene selection techniques. We
adopted several univariate and multivariate selection
approaches. For each dataset, the average classification
error across the folds of the 10-fold outer cross-validation
and its Standard deviation are reported in Tables 1 and 2.
The best result for each dataset is emphasized in bold
characters. For comparison the performance of three clas-
sifiers, namely Nearest Mean Classifier (NMC), Fisher
(FLD) and the Support Vector Machine (SVM), is evalu-
ated without any gene selection being performed, i.e.
when the classifiers are trained with all the genes. We
judge that method A with mean and Standard deviation of
the error rate μA and σA is significantly better than method
B with mean and Standard deviation of the error rate μB
and σB when μB ≥ μA + σA. The stars in Tables 1 and 2 indi-
cate results that are similar when employing this rule-of-
thumb. As can be observed from Tables 1 and 2, the uni-
variate approaches are significantly better than both the
multivariate approaches and cases where no gene selec-
tion was performed in two cases: DLBCL and HNSCC. In
addition, univariate approaches are the best but not sig-
nificantly better for the Breast Cancer and CNS datasets,
and comparable to the best approach in the remaining
two cases (Leukemia and Prostate). Only for the Colon data-
set, the univariate approaches perform significantly worse
than the multivariate TSP.

Employing the t-test or SNR in the univariate approaches
has no effect on the error rate when employed in combi-
nation with the NMC. However, it has a significant effect
in combination with the Fisher classifier. This is mainly
due to the sensitivity of the Fisher classifier when the
number of training objects approaches the number of
selected genes during training [34]. This stems from the
fact that the size of the selected gene-sets changes consid-

erably across the folds of the gene optimization proce-
dure, and may lead to sub-optimal gene set optimization.

Concerning the studied multivariate techniques, the base
pair (BP) and forward search (FS) approaches of Bö et al.
[21] are significantly worse in the majority of the datasets,
with the exception of the base pair approach in the case of
the Colon dataset. The Liknon classifier reaches error rates
comparable to univariate results on the CNS and Colon
datasets. The Recursive Feature Elimination [20] performs
slightly better than the other multivariate approaches
achieving performances that are not significantly worse
than the best approach on four datasets. However, in three
of these cases, the performance is similar to the results
achieved without any gene selection. As was observed by
[20], our results also indicate that there is no significant
difference between RFE employing the Fisher or SVM clas-
sifiers. Although the TSP method is the best performing
approach for the Colon and Prostate datasets, its perform-
ance is not stable across the remaining datasets, in fact, it
is worse than the best performing method in all the
remaining datasets. Summarizing, in six of the seven
adopted datasets there is no detectable improvement
when employing multivariate approaches, since better or
comparable performances are obtained with univariate
methods or without any gene selection. The classification
performance alone cannot be regarded as an indication of
biological relevance, since a good classification could be
reached with different gene sets, and gene-set sizes,
depending on the methodology employed. This is in
agreement with the studies of Eindor at al. [3] and
Michiels et al. [35]. These studies pointed out that the
selected gene sets are highly variable depending on the
sampling of the dataset employed during training. How-
ever, different gene-sets perform equally well [3,6,8,10],
indicating that there is, in fact, a large collection of genes
that report the same underlying biological processes, and
that the unique gene set does not exist. The lack of perform-
ance improvement when applying multivariate gene
selection techniques could also be caused by the small
sample size problem. This implies that there are too few
samples to detect the complex, multivariate gene correla-
tions, if these were actually present. Only one multivariate
approach, namely the TSP method, was able to extract a
pair of genes that significantly improved the classification
performance.

Conclusion
In gene expression analysis gene selection is imdertaken
in order to achieve a good classification Performance and
to identify a relevant group of genes t hat can be further
studied in the quest for biological understanding of the
cancer mechanisms. In the literature it is claimed that
both multivariate and univariate approaches successfiilly
achieve both purposes. However, these results are often
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biased since the training and validation phases of the clas-
sifiers are not strictly separated. Moreover, the results are
often based on few and relatively simple datasets. There-
fore no clear conclusions can be drawn. Therefore, we
have performed a comparison of frequently used multi-
variate and univariate gene selection algorithms across a
wide ränge of cancer gene expression datasets within a
framework which minimizes the Performance biases
mentioned above.

We have found that univariate gene selection leads to
good and stable performances across many cancer types.
Most multivariate selection approaches do not result in a

performance improvement over univariate gene selection
techniques. The only exception was a significant perform-
ance improvement on the Colon dataset employing the
TSP classifier, the simplest of the investigated algorithms
employing multivariate gene selection. However, the per-
formances of the TSP method are not stable across differ-
ent datasets. Therefore, we conclude that correlation
structures, if present in the data, cannot be detected relia-
bly due to sample size limitations. Further research and
larger datasets are necessary in order to validate informa-
tive gene interactions.

Table 1: The mean and the Standard deviation of the 10-fold cross-validation error (in percentage) for the different approaches and 
the Affymetrix platform datasets employed in the study.

Method CNS Colon Leukemia Prostate

Gene selection mean ± std mean ± std mean ± std mean ± std
U, SNR, NMC 30.4 ± 6.5 * 12.9 ± 4.2 * 4.8 ± 2.7 * 9.7 ± 4.2 *
U, SNR, FLD 42.5 ± 7.3 19.2 ± 5.9 8.0 ± 3.2 10.0 ± 3.0 *

U, t-test, NMC 32.5 ± 4.9 * 12.5 ± 4.2 * 4.8 ± 2.7 * 10.8 ± 3.4
U, t-test, FLD 35.8 ± 6.5 * 11.7 ± 3.5 * 12.0 ± 4.2 8.0 ± 2.5 *

BP greedy, FLD 43.8 ± 6.2 12.9 ± 3.8 * 11.6 ± 3.6 9.8 ± 3.3 *
FS, FLD 47.9 ± 5.1 15.4 ± 4.1 10.2 ± 4.2 14.0 ± 3.4

RFE, FLD 34.2 ± 5.0 * 22.9 ± 4.4 3.5 ± 2.6 * 10.0 ± 2.6 *
RFE, SVM 35.4 ± 5.0 * 22.1 ± 3.5 4.5 ± 2.6 * 8.0 ± 2.9 *

Liknon 32.9 ± 6.1 * 13.3 ± 4.2 * 11.8 ± 4.0 10.8 ± 3.7
TSP 47.0 ± 5.6 5.4 ± 2.9 * 10.6 ± 3.8 7.0 ± 2.6 * 

no gene selection mean ± std mean ± std mean ± std mean ± std
NMC 42.1 ± 5.5 17.9 ± 3.3 3.5 ± 2.6 * 33.7 ± 3.9
FLD 32.9 ± 6.3 * 21.7 ± 3.7 4.5 ± 2.6 * 8.0 ± 2.5 *
SVM 35.4 ± 7.0 * 22.1 ± 3.5 3.5 ± 2.6 * 8.0 ± 2.9 *

Table 2: The mean and the Standard deviation of the 10-fold cross-validation error (in percentage) for the different approaches and 
the cDNA platform datasets employed in the study.

Method DLBCL HNSCC Breast

gene selection mean ± std mean ± std mean ± std
U, SNR, NMC 2.5 ± 2.5 * 21.2 ± 7.1 * 33.0 ± 3.4 *
U, SNR, FLD 15.8 ± 6.4 33.3 ± 6.6 29.9 ± 3.6 *

U, t-test, NMC 2.5 ± 2.5 * 21.2 ± 7.3 * 33.5 ± 3.8 *
U, t-test, FLD 15.8 ± 6.4 36.2 ± 6.2 32.6 ± 3.0 *

BP greedy, FLD 10.0 ± 4.3 36.2 ± 7.0 35.8 ± 2.3
FS, FLD 10.8 ± 3.7 45.4 ± 8.5 35.4 ± 4.2

RFE, FLD 16.7 ± 5.3 35.0 ± 6.3 33.8 ± 3.5
RFE, SVM 15.8 ± 5.2 35.4 ± 7.2 32.6 ± 3.2 *

Liknon 13.3 ± 5.3 37.5 ± 7.4 34.5 ± 5.2
TSP 27.5 ± 2.8 37.6 ± 6.0 49.9 ± 4.6

no gene selection mean ± std mean ± std mean ± std
NMC 6.7 ± 3.5 29.2 ± 7.2 36.7 ± 3.2
FLD 14.2 ± 5.4 32.5 ± 6.6 35.8 ± 4.1
SVM 9.2 ± 3.8 29.6 ± 5.7 34.3 ± 4.2
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Methods
Gene selection techniques
In this section we elaborate on the different univariate and
multivariate selection strategies employed in this study.
The approaches are cast in a general framework which
highlights the choices made by the user, and facilitates
direct qualitative comparison of these approaches.

Gene selection approaches are, in fact, optimization strat-
egies, which input

1. D, a dataset consisting of n object-label pairs,

2. θΩ, a set of user-defined parameters which specify
which type of classifier to use, and possible algorithm
dependent choices such as the ranking criterion and

3. θΦ, another user-defined parameter defining the evalu-
ation procedure (if cross-validation is employed, would
specify the number of folds) and which return the optimal
value of a tunable parameter, ϕ, such that the gene set
associated with ϕ* (the optimal value of the tunable
parameter) corresponds to the most informative gene set.
During this optimization process, each gene selection
approach is characterized by its own unique way to
traverse and evaluate various gene sets. If we denote the
mapping associated with selection approach A by ΦA, this
can be formally expressed in the following way:

ϕA = ΦA(D, θΩ, θΦ).  (1)

For all the gene selection techniques described in this
paper, the gene selection technique employs a classifier to
evaluate the informativeness of the gene set associated
with a given setting of ϕ . Given a dataset, D, and a setting
of ϕ, the process which results in this classifier involves
both a gene selection and classifier training step which
could be separate or integrated. (This will be elaborated
upon in the detailed descriptions of each technique). For-
mally, this process can be described as follows:

ωA = ΩA(D, θΩ, ϕA),  (2)

where ωA is the classifier trained on the geneset resulting
from ϕA, θΩ represents the previously define Parameters,
and ΩA(.) is a mapping representing the training and
selection process. During the optimization process, ΦA(.)
repeatedly calls ΩA(.) with different settings for ϕ and
employs the Performance of ωA as quality measure to
guide the process. Upon completion of the optimization,
the optimal classifier associated with the optimal gene set
is given by:

Univariate gene selection
In the univariate approach (U) the informativeness of
each gene is evaluated individually, according to a crite-
rion, such as the Pearson correlation, t-statistic or signal-
to-noise ratio (SNR) [4,6,11,13]. The genes are ranked
accordingly, i.e. from the most to the least informative.
This ranking defines a series of gene sets as well as the
order in which they are subsequently evaluated. The first
gene set is the best ranked gene, the second gene set the
best two ranked genes, etc. The informativeness of each
gene set is evaluated by estimating its cross-validation per-
formance in combination with a particular classifier. As
ranking criterion we adopt the SNR and the t-statistic. The
former, due to its simplicity and popularity
[6,8,20,27,36], and the latter in order to enable a better
comparison with [21]. For the evaluation of every gene
set, we employ the Nearest Mean Classifier (NMC) with
cosine correlation as distance measure and the Fisher clas-
sifier (FLD). The Fisher classifier [14,37] is a linear discri-
minant, it projects the data in a low dimensional space
chosen by maximizing the ratio of the between-class and
within-class scatter matrices of the dataset, and in this
space classifies the samples. The within-class matrix is
proportional to the pooled sample covariance matrix. In
case of singularity of the matrix, which arises if the
number of samples is smaller than the number of dimen-
sions, the pseudo-inverse is used. In terms of the formal
framework, θΩ represents the choice of univariate criterion
(SNR or t-statistic) and classifier, while ϕ represents the
desired number of genes selected. For ϕ = k, this would
correspond to the top k ranked genes. θΦ represents the
type of cross validation to employ during the training
process.

Multivariate gene selection
Base-pair selection (BP)
The base-pair selection algorithm was proposed for micro-
array datasets by Bo et al. [21]. The informativeness of
genes is judged by evaluating pairs of genes. For each pair
the data is first projected by the diagonal linear discrimi-
nant (DLD) onto a one-dimensional space. The t-statistic
is then employed to score the informativeness of the gene
pair in this space. A complete search evaluates all pairs of
genes and ranks them in a list – without repetition –
according to the scores. The computational complexity of
this method is a serious limitation, therefore, a faster
greedy search is also proposed. The genes are first ranked
according to the individual t-statistic – as in univariate
selection. The best gene is selected and the method
searches for a gene amongst the remaining genes which,
together with the individual best gene, maximizes the t-
statistic in the projected space. This provides the first two
genes of the ordered list. From the remaining p – 2 genes
the best individual gene is selected and matched with a
gene from the remaining p – 3 genes which maximizes theω θ φA A AD* *, , .= ( ) ( )Ω Ω 3
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score in the projected space. This provides the second pair
of genes. By iterating the process, pairs of genes are added,
until all the genes have been selected. Similar to the uni-
variate selection approach, we have now established a
series of gene sets äs well as the order in which they are
subsequently evaluated, once again by starting with the
first pair in the ranking, and then creating new sets by
expanding the previous set with the next pair of genes in
the ranking. Following [21], the Fisher classifier is
employed to evaluate each gene set. Formally, θΩ repre-
sents the choice of DLD as mapping function, the t-statis-
tic as univariate criterion in the mapped space and the
choice of the Fisher classifier to evaluate the extracted gene
sets. ϕ represents the desired number of genes to be
extracted and θΦ represents the type of cross validation to
employ during gene set evaluation.

Forward selection (FS)
Forward gene selection Starts with the single most inform-
ative gene and iteratively adds the next most informative
genes in a greedy fashion. Here, we adopt the forward
search proposed by Bo et al. [21]. The best individual gene
is foimd according to the t-statistic. The second gene to be
added is the one that, together with the first gene, has the
highest t-statistic computed in the one-dimensional DLD
projected space. This set is expanded with the gene which,
in combination with the first two genes, maximizes the
score in the projected space – now a three-dimensional
space projected to a single dimension. By iterating this
process an ordered list of genes is generated, once again
defining a collection of gene sets, as well as the order in
which these are evaluated. Now the length of the list is
limited to n genes. In [21] this lipper limit stems from the
fact that the Fisher classifier cannot be solved (without
taking additional measures) when the number of genes
exceed n. Although elsewhere we employ the pseudo-
inverse to overcome this problem associated with the
Fisher classifier, we chose to maintain this lipper limit in
order to remain compatible with the set-up of [21]. More-
over, it keeps the selection technique computationally fea-
sible. The formal definition of parameters corresponds
exactly to the base-pair approach, except that a greedy
search strategy (instead of the approach proposed by [21])
is employed in the optimization phase.

Recursive Feature Elimination (RFE)
RFE is an iterative backward selection technique proposed
by Guyon et al. [20]. Initially a Support Vector Machine
(SVM) classifier is trained with the füll gene set. The qual-
ity of a gene is characterized by the weight that the SVM
optimization assigns to that gene. A portion (a parameter
determined by the user) of the genes with the smallest
weights is removed at each iteration of the selection proc-
ess. In order to construct a ranking of all the genes, the
genes that are removed, are added at the bottom of the

list, such that the gene with the smallest weight is at the
bottom. By iterating the procedure this list grows from the
least informative gene at the bottom, to the most inform-
ative gene at the top. Note that the genes are not evaluated
individually, since their assigned weights are dependent
on all the genes involved in the SVM optimization during
a given iteration. As was the case in all previous
approaches, a ranked gene list is produced, which defines
a series of gene sets, as well as the order in which these sets
should be evaluated when searching for the optimal set.
In our implementation we adopt both the Fisher classifier
and the SVM, with the optimization parameter set to c =
100 and a linear kernel. Both setups where proposed by
[20]. While the Fisher classifier suffers from the dimen-
sionality problem when p ≈ n (for p > n regularization
occurs due to the pseudo-inverse [34]), it has the advan-
tage over the SVM that no parameters need to be opti-
mized. Moreover, it allows for a comparison with the
other studied approaches which also employ the Fisher
classifier. We chose to remove one gene per iteration.

Formally, θΩ represents the choice of SVM (or Fisher) as
classifier to generate the evaluation weights for the genes,
the regularization parameter of the SVM, as well as the
number of genes to be removed during every iteration. ϕ
represents the number of genes selected, while θΦ repre-
sents the type of cross validation to employ during gene
set evaluation.

Liknon
Bhattacharyya et al. [10,24] proposed a classifier called
Liknon that simultaneously performs classification and
relevant gene identification. Liknon is trained by optimiz-
ing a linear discriminant function with a penalty con-
straint via linear programming. This yields a hyper-plane
that is parameterized by a limited set of genes: the genes
assigned non-zero weights by Liknon. By varying the
influence of the penalty one can put more emphasis on
either reducing the prediction error and allowing more
non-zero weights or increasing the sparsity of the hyper-
plane parameterization while decreasing the apparent
accuracy of the classifier. The penalty term therefore
directly influences the size of the selected gene set.
Although [10] fixed the penalty term (C = 1), we chose its
value in a more systematic way, via cross-validation. The
penalty term was allowed to vary in the range C ∈ [0.1,...,
100]. Formally, θΩ is obsolete, ϕ represents the penalty
parameter and θΦ the choice of cross validation type.

Top-scoring pair

A recent classifier called Top-scoring pair (TSP) has been
proposed by [22,23]. The TSP classifier performs a full
pairwise search. Let X = {X1, X2,...Xp} be the gene expres-

sion profile of a patient, with Xi the gene expression of
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gene i. The top-scoring pair (i, j) is the one for which there
is the highest difference in the probability of Xi <Xj from

Class A to Class B. A new patient Xd is classified as Class A

if  and as Class B otherwise. Advantages of the

TSP classifier are the fact that no Parameters need to be
estimated (no inner cross-validation is needed), and that
the classifier does not suffer from monotonic transforma-
tion of the datasets, e.g. data normalization techniques.

Formally, θΩ and θΦ are obsolete, ϕ represents the best pair

of genes.

Training and evaluation framework
In order to avoid any bias, the selection of the genes and
training of the final classifier on the one hand and the
evaluation of the classification performance on the other,
must be carried out on two independent datasets. To this
end, the framework formalized in [29], is adopted here.
The framework is graphically depicted in Figure 1. The
whole procedure is wrapped in an outer cross-validation
loop. (The inner loop will be defined shortly). For No-fold
outer cross validation, the dataset, D, is split in No equally
sized and stratified parts. During each of the outer cross
validation folds, indexed by j, the training set, D(-j) con-
sists of all but the jth part, while the jth part constitutes the
validation set, denoted by D(j)- During the training phase,
two steps are performed. First, gene selection is performed
by optimizing the associated Parameter (Equation 1). This
process also employs an Ni-fold cross-validation loop (the
inner loop) to generate and evaluate gene sets. Each inner
fold provides the error curve of the classifier as a function
of the number of genes. We compute the average of the
curves across the folds. The number of genes that mini-
mizes the average error is considered to define the optimal
gene size. Subsequently the classifier is trained on the
training set with the optimal parameter setting as input
(Equation 3), e.g. the optimal gene size for the glven clas-
sifier. The performance of this classifier is only then eval-
uated on the validation set:

where  represents the performance of the optimal

classifier on the outer loop validation set of fold j, and

ΨA(.) the function mapping the dataset and classifier to a

performance. Averaging the validation performance
across the Nofolds yields the No-fold outer cross validation

performance of the gene selection technique with the spe-
cific user-defined choices. We adopted 10-fold cross-vali-
dation for both the inner and outer loops. This choice is
suggested by Kohavi [38], and was also applied to gene

expression data by Statnikov et al. [7]. The latter obtained
similar results using a 10-fold or leave-one-out cross-vali-
dation. The former is preferable due to lower computa-
tional requirements and lower variance. To estimate the
performance of a classification System we use the bal-
anced average classification error which applies a correc-
tion for the dass prior probabilities, if these are
unbalanced. In this way the results are not dependent on
unbalanced classes, and the results on different classifiers
can be better compared. The algorithms were imple-
mented in Matlab employing the PRTools [39] and PRExp
[40] toolboxes.

Datasets
In total we employed seven microarray gene expression
datasets. Four datasets, Central Nervous System (CNS) [41],
Colon [31], Leukemia [8] and Prostate [42], were measured
on high-density oligonucleotide Affymetrix arrays. Three
datasets, Breast Cancer [36,43], Diffuse Large B-cell Lym-
phoma (DLBCL] [44] and Head and Neck Squamous Cell
Carcinomas (HNSCC) [45] were hybridized on two-color
cDNA platforms. The datasets represent a wide range of
cancer types. The tasks are (sub)type prediction (Colon,
Leukemia, DLBCL and Prostate)while for the remaining
problems the goal is to predict the future development of
the disease: patient survival (CNS), probability of future
metastasis (Breast Cancer)and lymph node metastasis
(HNSCC).

The Breast Cancer dataset consists of 145 lymph node neg-
ative breast carcinomas, 99 from patients that did not
have a metastasis within five years and 46 from patients
that had metastasis within five years. The number of genes
is 4919. The CNS; dataset is a subset of a larger study. It
considers the outcome (survival) after embryonic treat-
ment of the central nervous System. The number of genes
is 4458, while the number of samples is 60, divided into
21 patients that survived and 39 that died. The Colon data-
set is composed of 40 normal healthy samples and 22
tumor samples in a 1908 dimensional feature space. The
DLBCL dataset is a subset of a larger study which contains
measurements of two distinct types of diffuse large B-cell
lymphoma. The number of genes is 4026. The total
number of samples is 47, 24 belong to the 'germinal
center B-like' group while 23 are labeled as 'activated B-
like' group. The Leukemia dataset contains 72 samples
from two types of leukemia where 3571 genes are meas-
ured for each sample. The dataset contains 25 samples
labeled as acute myeloid (AML) and 47 samples labeled as
acute lymphoblastic leukemia (ALL). The Prostate cancer
dataset is composed of 52 samples from patients with
prostate cancer and samples from 50 normal tissue. The
number of genes is 5962. For the HNSCC dataset, the goal
is to predict, based on the gene expression in a primary

X Xi
d

j
d<

p DA j A j A,
*

( )
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*
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HNSCC tumor, whether a lymph node metastasis will
occur. This dataset consists of 66 samples (39 which did
metastasize, and 27 that remained disease-free) and the
expression of 2340 genes.

The datasets present a variety of the tissue types, technol-
ogies and diagnostic tasks. In addition, the panel of sets
contains relatively simple, clinically less relevant tasks,
such as distinguishing between normal and tumor tissue,
as well as more difficult tasks, such as predicting future
events based on current samples. We therefore consider
the datasets suitable to perform a comparative investiga-

tion between univariate and multivariate gene selection
techniques.
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The training-validation protocol employed to evaluate various gene selection and classification approaches in simplified sche-matic formatFigure 1
The training-validation protocol employed to evaluate various gene selection and classification approaches in simplified sche-
matic format. The input is a labeled dataset, D, and the Output is an estimate of the validation performance of algorithm A, 
denoted by PA The most important steps in the protocol are the training step (Block labeled 'Train') and the validation step 
(Block labeled 'Validate'). The training step, in turn, consists of two steps, namely 1) the optimization of the gene selection 
parameter, ϕ, employing a Ni – fold cross validation loop and 2) training the final classifier glven the optimal setting of the selec-

tion parameter. The validation step estimates the performance of the optimal trained classifier ( ) on the completely 

independent validation set.
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