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Abstract
Background: Selection of relevant genes for sample classification is a common task in most gene
expression studies, where researchers try to identify the smallest possible set of genes that can still
achieve good predictive performance (for instance, for future use with diagnostic purposes in
clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene
relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class
problems, and use gene selection ranking criteria unrelated to the classification algorithm. In
contrast, random forest is a classification algorithm well suited for microarray data: it shows
excellent performance even when most predictive variables are noise, can be used when the
number of variables is much larger than the number of observations and in problems involving more
than two classes, and returns measures of variable importance. Thus, it is important to understand
the performance of random forest with microarray data and its possible use for gene selection.

Results: We investigate the use of random forest for classification of microarray data (including
multi-class problems) and propose a new method of gene selection in classification problems based
on random forest. Using simulated and nine microarray data sets we show that random forest has
comparable performance to other classification methods, including DLDA, KNN, and SVM, and
that the new gene selection procedure yields very small sets of genes (often smaller than alternative
methods) while preserving predictive accuracy.

Conclusion: Because of its performance and features, random forest and gene selection using
random forest should probably become part of the "standard tool-box" of methods for class
prediction and gene selection with microarray data.

Background
Selection of relevant genes for sample classification (e.g.,
to differentiate between patients with and without cancer)
is a common task in most gene expression studies (e.g., [1-
6]). When facing gene selection problems, biomedical

researchers often show interest in one of the following
objectives:

1. To identify relevant genes for subsequent research; this
involves obtaining a (probably large) set of genes that are
related to the outcome of interest, and this set should
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include genes even if they perform similar functions and
are highly correlated.

2. To identify small sets of genes that could be used for
diagnostic purposes in clinical practice; this involves
obtaining the smallest possible set of genes that can still
achieve good predictive performance (thus, "redundant"
genes should not be selected).

We will focus here on the second objective. Most gene
selection approaches in class prediction problems com-
bine ranking genes (e.g., using an F-ratio or a Wilcoxon
statistic) with a specific classifier (e.g., discriminant anal-
ysis, nearest neighbor). Selecting an optimal number of
features to use for classification is a complicated task,
although some preliminary guidelines, based on simula-
tion studies by [4], are available. Frequently an arbitrary
decision as to the number of genes to retain is made (e.g.,
keep the 50 best ranked genes and use them with a linear
discriminant analysis as in [1,7]; keep the best 150 genes
as in [8]). This approach, although it can be appropriate
when the only objective is to classify samples, is not the
most appropriate if the objective is to obtain the smaller
possible sets of genes that will allow good predictive per-
formance. Another common approach, with many vari-
ants (e.g., [9-11]), is to repeatedly apply the same classifier
over progressively smaller sets of genes (where we exclude
genes based either on the ranking statistic or on the effect
of the elimination of a gene on error rate) until a satisfac-
tory solution is achieved (often the smallest error rate over
all sets of genes tried). A potential problem of this second
approach, if the elimination is based on univariate rank-
ings, is that the ranking of a gene is computed in isolation
from all other genes, or at most in combinations of pairs
of genes [12], and without any direct relation to the clas-
sification algorithm that will later be used to obtain the
class predictions. Finally, the problem of gene selection is
generally regarded as much more problematic in multi-
class situations (where there are three or more classes to
be differentiated), as evidence by recent papers in this area
(e.g., [2,8]). Therefore, classification algorithms that
directly provide measures of variable importance (related
to the relevance of the variable in the classification) are of
great interest for gene selection, specially if the classifica-
tion algorithm itself presents features that make it well
suited for the types of problems frequently faced with
microarray data. Random forest is one such algorithm.

Random forest is an algorithm for classification devel-
oped by Leo Breiman [13] that uses an ensemble of classi-
fication trees [14-16]. Each of the classification trees is
built using a bootstrap sample of the data, and at each
split the candidate set of variables is a random subset of
the variables. Thus, random forest uses both bagging
(bootstrap aggregation), a successful approach for com-

bining unstable learners [16,17], and random variable
selection for tree building. Each tree is unpruned (grown
fully), so as to obtain low-bias trees; at the same time, bag-
ging and random variable selection result in low correla-
tion of the individual trees. The algorithm yields an
ensemble that can achieve both low bias and low variance
(from averaging over a large ensemble of low-bias, high-
variance but low correlation trees).

Random forest has excellent performance in classification
tasks, comparable to support vector machines. Although
random forest is not widely used in the microarray litera-
ture (but see [18-23]), it has several characteristics that
make it ideal for these data sets:

a) Can be used when there are many more variables than
observations.

b) Can be used both for two-class and multi-class prob-
lems of more than two classes.

c) Has good predictive performance even when most pre-
dictive variables are noise, and therefore it does not
require a pre-selection of genes (i.e., "shows strong
robustness with respect to large feature sets", sensu [4]).

d) Does not overfit.

e) Can handle a mixture of categorical and continuous
predictors.

f) Incorporates interactions among predictor variables.

g) The output is invariant to monotone transformations
of the predictors.

h) There are high quality and free implementations: the
original Fortran code from L. Breiman and A. Cutler, and
an R package from A. Liaw and M. Wiener [24].

i) Returns measures of variable (gene) importance.

j) There is little need to fine-tune parameters to achieve
excellent performance. The most important parameter to
choose is mtry, the number of input variables tried at each
split, but it has been reported that the default value is
often a good choice [24]. In addition, the user needs to
decide how many trees to grow for each forest (ntree) as
well as the minimum size of the terminal nodes (nodesize).
These three parameters will be thoroughly examined in
this paper.

Given these promising features, it is important to under-
stand the performance of random forest compared to
alternative state-of-the-art prediction methods with
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microarray data, as well as the effects of changes in the
parameters of random forest. In this paper we present, as
necessary background for the main topic of the paper
(gene selection), the first through examination of these
issues, including evaluating the effects of mtry, ntree and
nodesize on error rate using nine real microarray data sets
and simulated data.

The main question addressed in this paper is gene selec-
tion using random forest. A few authors have previously
used variable selection with random forest. [25] and [20]
use filtering approaches and, thus, do not take advantage
of the measures of variable importance returned by ran-
dom forest as part of the algorithm. Svetnik, Liaw, Tong
and Wang [26] propose a method that is somewhat simi-
lar to our approach. The main difference is that [26] first
find the "best" dimension (p) of the model, and then
choose the p most important variables. This is a sound
strategy when the objective is to build accurate predictors,
without any regards for model interpretability. But this
might not be the most appropriate for our purposes as it
shifts the emphasis away from selection of specific genes,
and in genomic studies the identity of the selected genes
is relevant (e.g., to understand molecular pathways or to
find targets for drug development).

The last issue addressed in this paper is the multiplicity
(or lack of uniqueness or lack of stability) problem. Vari-
able selection with microarray data can lead to many solu-
tions that are equally good from the point of view of
prediction rates, but that share few common genes. This
multiplicity problem has been emphasized by [27] and
[28] and recent examples are shown in [29] and [30].
Although multiplicity of results is not a problem when the
only objective of our method is prediction, it casts serious
doubts on the biological interpretability of the results
[27]. Unfortunately most "methods papers" in bioinfor-
matics do not evaluate the stability of the results obtained,
leading to a false sense of trust on the biological interpret-
ability of the output obtained. Our paper presents a
through and critical evaluation of the stability of the lists

of selected genes with the proposed (and two competing)
methods.

In this paper we present the first comprehensive evalua-
tion of random forest for classification problems with
microarray data, including an assessment of the effects of
changes in its parameters and we show it to be an excellent
performer even in multi-class problems, and without any
need to fine-tune parameters or pre-select relevant genes.
We then propose a new method for gene selection in clas-
sification problems (for both two-class and multi-class
problems) that uses random forest; the main advantage of
this method is that it returns very small sets of genes that
retain a high predictive accuracy, and is competitive with
existing methods of gene selection.

Results
Evaluation of performance and comparisons with 
alternative approaches
We have used both simulated and real microarray data
sets to evaluate the variable selection procedure. For the
real data sets, original reference paper and main features
are shown in Table 1 and further details are provided in
the supplementary material [see Additional file 1]. To
evaluate if the proposed procedure can recover the signal
in the data and can eliminate redundant genes, we need to
use simulated data, so that we know exactly which genes
are relevant. Details on the simulated data are provided in
the methods and in the supplementary material [see Addi-
tional file 1].

We have compared the predictive performance of the var-
iable selection approach with: a) random forest without
any variable selection (using ,
ntree = 5000, nodesize = 1); b) three other methods that
have shown good performance in reviews of classification
methods with microarray data [7,31,32] but that do not
include any variable selection; c) three methods that carry
out variable selection. For the three methods that do not
carry out variable selection, Diagonal Linear Discrimi-
nant Analysis (DLDA), K nearest neighbor (KNN), and

mtry number of genes=

Table 1: Main characteristics of the microarray data sets used

Dataset Original ref. Genes Patients Classes

Leukaemia [44] 3051 38 2
Breast [9] 4869 78 2
Breast [9] 4869 96 3
NCI 60 [61] 5244 61 8
Adenocarcinoma [62] 9868 76 2
Brain [63] 5597 42 5
Colon [64] 2000 62 2
Lymphoma [65] 4026 62 3
Prostate [66] 6033 102 2
Srbct [67] 2308 63 4
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Support Vector Machines (SVM) with linear kernel, we
have used, based on [7], the 200 genes with the largest F-
ratio of between to within groups sums of squares. For
KNN, the number of neighbors (K) was chosen by cross-
validation as in [7]. The methods that incorporate variable
selection are two different versions of Shrunken centro-
ids (SC) [33], SC.l and SC.s, as well as Nearest neighbor
+ variable selection (NN.vs); further details are provided
in the methods and in the supplementary material [see
Additional file 1].

Estimation of error rates
To estimate the prediction error rate of all methods we
have used the .632+ bootstrap method [34,35]. The .632+
bootstrap method uses a weighted average of the resubsti-
tution error (the error when a classifier is applied to the
training data) and the error on samples not used to train
the predictor (the "leave-one-out" bootstrap error); this
average is weighted by a quantity that reflects the amount
of overfitting. It must be emphasized that the error rate
used when performing variable selection is not what we
report in as prediction error rate in Tables 2 or 3. To calcu-
late the prediction error rate as reported, for example, in
Table 2, the .632+ bootstrap method is applied to the
complete procedure, and thus the samples used to com-
pute the leave-one-out bootstrap error used in the .632+
method are samples that are not used when fitting the ran-
dom forest, or carrying out variable selection. The .632+
bootstrap method was also used when evaluating the
competing methods.

Effects of parameters of random forest on prediction error 
rate
Before examining gene selection, we first evaluated the
effect of changes in parameters of random forest on its
classification performance. Random forest returns a meas-

ure of error rate based on the out-of-bag cases for each fit-
ted tree, the OOB error, and this is the measure of error we
will use here to assess the effects of parameters. We exam-
ined whether the OOB error rate is substantially affected
by changes in mtry, ntree, and nodesize.

Figure 1 and the Figure"error.vs.mtry.pdf" in Additional
file 2 show that, for both real and simulated data, the rela-
tion of OOB error rate with mtry is largely independent of
ntree (for ntree between 1000 and 40000) and nodesize
(nodesizes 1 and 5). In addition, the default setting of
mtry (mtryFactor = 1 in the figures) is often a good choice
in terms of OOB error rate. In some cases, increasing mtry
can lead to small decreases in error rate, and decreases in
mtry often lead to increases in the error rate. This is spe-
cially the case with simulated data with very few relevant
genes (with very few relevant genes, small mtry results in
many trees being built that do not incorporate any of the
relevant genes). Since the OOB error and the relation
between OOB error and mtry do not change whether we
use nodesize of 1 or 5, and because the increase in comput-
ing speed from using nodesize of 5 is inconsequential, all
further analyses will use only the default nodesize = 1.
These results show the robustness of random forest to
changes in its parameters; nevertheless, to re-examine
robustness of gene selection to these parameters, in the
rest of the paper we will report results for different settings
of ntree and mtry (and these results will again show the
robustness of the gene selection results to changes in ntree
and mtry).

The error rates of random forest (without gene selection)
compared with the alternative methods, using the real
microarray data, and estimated in all cases using the .632+
bootstrap method, are shown in Table 2. These results
clearly show that random forest has a predictive perform-

Table 2: Error rates (estimated using the 0.632+ bootstrap method with 200 bootstrap samples) for the microarray data sets using 
different methods. The results shown for variable selection with random forest used ntree = 2000, fraction.dropped = 0.2, mtryFactor = 1. 
Note that the OOB error used for variable selection is not the error reported in this table; the error rate reported is obtained using 
bootstrap on the complete variable selection process. The column "no info" denotes the minimal error we can make if we use no 
information from the genes (i.e., we always bet on the most frequent class).

Data set no info SVM KNN DLDA SC.l SC.s NN.vs random 
forest

random forest var.sel.

s.e. 0 s.e. 1

Leukemia 0.289 0.014 0.029 0.020 0.025 0.062 0.056 0.051 0.087 0. 075
Breast 2 cl. 0.429 0.325 0.337 0.331 0.324 0.326 0.337 0.342 0.337 0. 332
Breast 3 cl. 0.537 0.380 0.449 0.370 0.396 0.401 0.424 0.351 0.346 0. 364
NCI 60 0.852 0.256 0.317 0.286 0.256 0.246 0.237 0.252 0.327 0.353
Adenocar. 0.158 0.203 0.174 0.194 0.177 0.179 0.181 0.125 0.185 0. 207
Brain 0.762 0.138 0.174 0.183 0.163 0.159 0.194 0.154 0.216 0. 216
Colon 0.355 0.147 0.152 0.137 0.123 0.122 0.158 0.127 0.159 0. 177
Lymphoma 0.323 0.010 0.008 0.021 0.028 0.033 0.04 0.009 0.047 0. 042
Prostate 0.490 0.064 0.100 0.149 0.088 0.089 0.081 0.077 0.061 0. 064
Srbct 0.635 0.017 0.023 0.011 0.012 0.025 0.031 0.021 0.039 0.038
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Table 3: Stability of variable (gene) selection evaluated using 200 bootstrap samples. "# Genes": number of genes selected on the 
original data set. "# Genes boot.": median (1st quartile, 3rd quartile) of number of genes selected from on the bootstrap samples. 
"Freq. genes": median (1st quartile, 3rd quartile) of the frequency with which each gene in the original data set appears in the genes 
selected from the bootstrap samples. Parameters for backwards elimination with random forest: mtryFactor = 1, s.e. = 0, ntree = 2000, 
ntreelterat = 1000, fraction.dropped = 0.2.

Data set Error # Genes # Genes boot. Freq. genes

Backwards elimination of genes from random forest

s.e. = 0

Leukemia 0.087 2 2 (2, 2) 0.38 (0.29, 0.48)1

Breast 2 cl. 0.337 14 9 (5, 23) 0.15 (0.1, 0.28)
Breast 3 cl. 0.346 110 14 (9, 31) 0.08 (0.04, 0.13)
NCI 60 0.327 230 60 (30, 94) 0.1 (0.06, 0.19)
Adenocar. 0.185 6 3 (2, 8) 0.14 (0.12, 0.15)
Brain 0.216 22 14 (7, 22) 0.18 (0.09, 0.25)
Colon 0.159 14 5 (3, 12) 0.29 (0.19, 0.42)
Lymphoma 0.047 73 14 (4, 58) 0.26 (0.18, 0.38)
Prostate 0.061 18 5 (3, 14) 0.22 (0.17, 0.43)
Srbct 0.039 101 18 (11, 27) 0.1 (0.04, 0.29)

s.e. = 1

Leukemia 0.075 2 2 (2, 2) 0.4 (0.32, 0.5)1

Breast 2 cl. 0.332 14 4 (2, 7) 0.12 (0.07, 0.17)
Breast 3 cl. 0.364 6 7 (4, 14) 0.27 (0.22, 0.31)
NCI 60 0.353 24 30 (19, 60) 0.26 (0.17, 0.38)
Adenocar. 0.207 8 3 (2, 5) 0.06 (0.03, 0.12)
Brain 0.216 9 14 (7, 22) 0.26 (0.14, 0.46)
Colon 0.177 3 3 (2, 6) 0.36 (0.32, 0.36)
Lymphoma 0.042 58 12 (5, 73) 0.32 (0.24, 0.42)
Prostate 0.064 2 3 (2, 5) 0.9 (0.82, 0.99)1
Srbct 0.038 22 18 (11, 34) 0.57 (0.4, 0.88)

Alternative approaches

SC.s

Leukemia 0.062 822 46 (14, 504) 0.48 (0.45, 0.59)
Breast 2 cl. 0.326 31 55 (24, 296) 0.54 (0.51, 0.66)
Breast 3 cl. 0.401 2166 4341 (2379, 4804) 0.84 (0.78, 0.88)
NCI 60 0.246 51183 4919 (3711, 5243) 0.84 (0.74, 0.92)
Adenocar. 0.179 0 9 (0, 18) NA (NA, NA)
Brain 0.159 4177 1257 (295, 3483) 0.38 (0.3, 0.5)
Colon 0.122 15 22 (15, 34) 0.8 (0.66, 0.87)
Lymphoma 0.033 2796 2718 (2030, 3269) 0.82 (0.68, 0.86)
Prostate 0.089 4 3 (2, 4) 0.72 (0.49, 0.92)
Srbct 0.025 374 18 (12, 40) 0.45 (0.34, 0.61)

NN.vs

Leukemia 0.056 512 23 (4, 134) 0.17 (0.14, 0.24)
Breast 2 cl. 0.337 88 23 (4, 110) 0.24 (0.2, 0.31)
Breast 3 cl. 0.424 9 45 (6, 214) 0.66 (0.61, 0.72)
NCI 60 0.237 1718 880 (360, 1718) 0.44 (0.34, 0.57)
Adenocar. 0.181 9868 73 (8, 1324) 0.13 (0.1, 0.18)
Brain 0.194 1834 158 (52, 601) 0.16 (0.12, 0.25)
Colon 0.158 8 9 (4, 45) 0.57 (0.45, 0.72)
Lymphoma 0.04 15 15 (5, 39) 0.5 (0.4, 0.6)
Prostate 0.081 7 6 (3, 18) 0.46 (0.39, 0.78)
Srbct 0.031 11 17 (11, 33) 0.7 (0.66, 0.85)

1 Only two genes are selected from the complete data set; the values are the actual frequencies of those two genes.
2 [33] select 21 genes after visually inspecting the plot of cross-validation error rate vs. amount of shrinkage and number of genes. Their procedure 
is hard to automate and thus it is very difficult to obtain estimates of the error rate of their procedure.
3 [31] report obtaining more than 2000 genes when using shrunken centroids with this data set and show that the minimum error rate is achieved 
with about 5000 genes.
4 [33] select 43 genes. The difference is likely due to differences in the random partitions for cross-validation. Repeating 100 times the gene 
selection process with the full data set the median, 1st quartile, and 3rd quartile of the number of selected genes are 13, 8, and 147. For these data, 
[31] obtain 72 genes with shrunken centroids, which also falls within the above interval.
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ance comparable to that of the alternative methods, with-
out any need for pre-selection of genes or tuning of its
parameters.

Gene selection using random forest
Random forest returns several measures of variable
importance. The most reliable measure is based on the
decrease of classification accuracy when values of a varia-
ble in a node of a tree are permuted randomly [13,36],
and this is the measure of variable importance (in its
unscaled version – see Additional file 1) that we will use
in the rest of the paper. (In the Supplementary material
[see Additional file 1] we show that this measure of varia-
ble importance is not the same as a non-parametric statis-
tic of difference between groups, such as could be
obtained with a Kruskal-Wallis test). Other measures of
variable importance are available, however, and future
research should compare the performance of different
measures of importance.

To select genes we iteratively fit random forests, at each
iteration building a new forest after discarding those vari-
ables (genes) with the smallest variable importances; the
selected set of genes is the one that yields the smallest
OOB error rate. Note that in this section we are using
OOB error to choose the final set of genes, not to obtain
unbiased estimates of the error rate of this rule. Because of
the iterative approach, the OOB error is biased down and
cannot be used to asses the overall error rate of the
approach, for reasons analogous to those leading to
"selection bias" [34,37]. To assess prediction error rates
we will use the bootstrap, not OOB error (see above).
(Using error rates affected by selection bias to select the
optimal number of genes is not necessarily a bad proce-
dure from the point of view of selecting the final number
of genes; see [38]).

In our algorithm we examine all forests that result from
eliminating, iteratively, a fraction, fraction.dropped, of the
genes (the least important ones) used in the previous iter-
ation. By default, fraction.dropped = 0.2 which allows for
relatively fast operation, is coherent with the idea of an
"aggressive variable selection" approach, and increases
the resolution as the number of genes considered
becomes smaller. We do not recalculate variable impor-
tances at each step as [26] mention severe overfitting
resulting from recalculating variable importances. After
fitting all forests, we examine the OOB error rates from all
the fitted random forests. We choose the solution with the
smallest number of genes whose error rate is within u
standard errors of the minimum error rate of all forests.
Setting u = 0 is the same as selecting the set of genes that
leads to the smallest error rate. Setting u = 1 is similar to
the common "1 s.e. rule", used in the classification trees
literature [14,15]; this strategy can lead to solutions with

fewer genes than selecting the solution with the smallest
error rate, while achieving an error rate that is not differ-
ent, within sampling error, from the "best solution". In
this paper we will examine both the "1 s.e. rule" and the
"0 s.e. rule".

On the simulated data sets [see Additional file 1, Tables 3
and 4] backwards elimination often leads to very small
sets of genes, often much smaller than the set of "true
genes". The error rate of the variable selection procedure,
estimated using the .632+ bootstrap method, indicates
that the variable selection procedure does not lead to
overfitting, and can achieve the objective of aggressively
reducing the set of selected genes. In contrast, when the
simplification procedure is applied to simulated data sets
without signal (see Tables 1 and 2 in Additional file 1),
the number of genes selected is consistently much larger
and, as should be the case, the estimated error rate using
the bootstrap corresponds to that achieved by always bet-
ting on the most probable class.

Results for the real data sets are shown in Tables 2 and 3
(see also Additional file 1, Tables 5, 6, 7, for additional
results using different combinations of ntree = {2000,
5000, 20000}, mtryFactor = {1, 13}, se = {0, 1}, frac-
tion.dropped = {0.2, 0.5}). Error rates (see Table 2) when
performing variable selection are in most cases compara-
ble (within sampling error) to those from random forest
without variable selection, and comparable also to the
error rates from competing state-of-the-art prediction
methods. The number of genes selected varies by data set,
but generally (Table 3) the variable selection procedure
leads to small (< 50) sets of predictor genes, often much
smaller than those from competing approaches (see also
Table 8 in Additional file 1 and discussion). There are no
relevant differences in error rate related to differences in
mtry, ntree or whether we use the "s.e. 1" or "s.e. 0" rules.
The use of the "s.e. 1" rule, however, tends to result in
smaller sets of selected genes.

Stability (uniqueness) of results
Following [39,40], and [41], we have evaluated the stabil-
ity of the variable selection procedure using the bootstrap.
This allows us to asses how often a given gene, selected
when running the variable selection procedure in the orig-
inal sample, is selected when running the procedure on
bootstrap samples.

The results here will focus on the real microarray data sets
(results from the simulated data are presented in Addi-
tional file 1). Table 3 (see also Additional file 1, Tables 5,
6, 7, for other combinations of ntree, mtryFactor, frac-
tion.dropped, se) shows the variation in the number of
genes selected in bootstrap samples, and the frequency
with which the genes selected in the original sample
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appear among the genes selected from the bootstrap sam-
ples. In most cases, there is a wide range in the number of
genes selected; more importantly, the genes selected in the
original samples are rarely selected in more than 50% of
the bootstrap samples. These results are not strongly
affected by variations in ntree or mtry; using the "s.e. 1"
rule can lead, in some cases, to increased stability of the
results.

As a comparison, we also show in Table 3 the stability of
two alternative approaches for gene selection, the
shrunken centroids method, and a filter approach com-
bined with a Nearest Neighbor classifier (see Table 8 in
Additional file 1 for results of SC.l). Error rates are compa-
rable, but both alternative methods lead to much larger
sets of selected genes than backwards variable selection
with random forests. The alternative approaches seem to
lead to somewhat more stable results in variable selection
(probably a consequence of the large number of genes

selected) but in practical applications this increase in sta-
bility is probably far out-weighted by the very large
number of selected genes.

Discussion
We have first presented an exhaustive evaluation of the
performance of random forest for classification problems
with microarray data, and shown it to be competitive with
alternative methods, without requiring any fine-tuning of
parameters or pre-selection of variables. The performance
of random forest without variable selection is also equiv-
alent to that of alternative approaches that fine-tune the
variable selection process (see below).

We have then examined the performance of an approach
for gene selection using random forest, and compared it to
alternative approaches. Our results, using both simulated
and real microarray data sets, show that this method of
gene selection accomplishes the proposed objectives. Our
method returns very small sets of genes compared to alter-
native variable selection methods, while retaining predic-
tive performance. Our method of gene selection will not
return sets of genes that are highly correlated, because they
are redundant. This method will be most useful under two
scenarios: a) when considering the design of diagnostic
tools, where having a small set of probes is often desira-
ble; b) to help understand the results from other gene
selection approaches that return many genes, so as to
understand which ones of those genes have the largest sig-
nal to noise ratio and could be used as surrogates for com-
plex processes involving many correlated genes. A
backwards elimination method, precursor to the one used
here, has been already used to predict breast tumor type
based on chromosomic alterations [18].

We have also thoroughly examined the effects of changes
in the parameters of random forest (specifically mtry,
ntree, nodesize) and the variable selection algorithm (se,
fraction.dropped). Changes in these parameters have in
most cases negligible effects, suggesting that the default
values are often good options, but we can make some gen-
eral recommendations. Time of execution of the code
increases ≈ linearly with ntree. Larger ntree values lead to
slightly more stable values of variable importances, but
for the data sets examined, ntree = 2000 or ntree = 5000
seem quite adequate, with further increases having negli-
gible effects. The change in nodesize from 1 to 5 has negli-
gible effects, and thus its default setting of 1 is
appropriate. For the backwards elimination algorithm,
the parameter fraction.dropped can be adjusted to modify
the resolution of the number of variable selected; smaller
values of fraction.dropped lead to finer resolution in the
examination of number of genes, but to slower execution
of the code. Finally, the parameter se has also minor
effects on the results of the backwards variable selection

Out-of-Bag (OOB) vs mtryFactor for the nine microarray data setsFigure 1
Out-of-Bag (OOB) vs mtryFactor for the nine micro-
array data sets. mtryFactor is the multiplicative factor of the 

default mtry ( ); thus, an mtryFactor of 3 

means the number of genes tried at each split is 3 * 

; an mtryFactor = 0 means the number of 

genes tried was 1; the mtryFactors examined were = {0, 0.05, 
0.1, 0.17, 0.25, 0.33, 0.5, 0.75, 0.8, 1, 1.15, 1.33, 1.5, 2, 3, 4, 5, 
6, 8, 10, 13}. Results shown for six different ntree = {1000, 
2000, 5000, 10000, 20000, 40000}, nodesize = 1.
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algorithm but a value of se = 1 leads to slightly more stable
results and smaller sets of selected genes.

In contrast to other procedures (e.g., [3,8]) our procedure
does not require to pre-specify the number of genes to be
used, but rather adaptively chooses the number of genes.
[3] have conducted an evaluation of several gene selection
algorithms, including genetic algorithms and various
ranking methods; these authors show results for the
Leukemia and NCI60 data sets, but the Leukemia results
are not directly comparable since [3] focus on a three-class
problem. They report the best results with the NCI60 data
set estimated with the .632 bootstrap rule (compared to
the .632+ method that we use, the .632 can be down-
wardly biased specially with highly overfit rules like near-
est neighbor that they use – [35]). These best error rates
are 0.408 for their evolutionary algorithm with 30 genes
and 0.318 for 40 top-ranked genes. Using a number of
genes slightly larger than us, these error rates are similar to
ours; however, these are the best error rates achieved over
a range of ranking methods and error rates, and not the
result of a complete procedure that automatically deter-
mines the best number of genes and ranking scheme
(such as our method provides). [8] conducted a compara-
tive study of feature selection and multi-class classifica-
tion. Although they use four-fold cross-validation instead
of the bootstrap to assess error rates, their results for three
data sets common to both studies (Srbct, Lymphoma,
NCI60) are similar to, or worse than, ours. In contrast to
our method, their approach pre-selects a set of 150 genes
for prediction and their best error rates are those over a set
of seven different algorithms and eight different rank
selection methods, where no algorithm or gene selection
was consistently the best. In contrast, our results with one
single algorithm and gene selection method (random for-
est) match or outperform their results.

Recently, several approaches that adaptively select the best
number of genes or features have been reported. For the
Leukemia data set our method consistently returns sets of
two genes, similar to [27] using an exhaustive search
method, and lower than the numbers given by [42] of 3 to
25. [2] have proposed a Bayesian model averaging (BMA)
approach for gene selection; comparing the results for the
two common data sets between our study and theirs, in
one case (Leukemia) our procedure returns a much
smaller set of genes (2 vs. 15), whereas in another (Breast,
2 class) their BMA procedure returns 8 fewer genes (14 vs.
6); in contrast to BMA, however, our procedure does not
require setting a limit in the maximum number of rele-
vant genes to be selected. [43] have developed a method
for gene selection and classification, LS Bound, related to
least-squares SVMs; their method uses an initial pre-filter-
ing (they choose 1000 initial genes) and is not clear how
it could be applied to multi-class problems. The perform-

ance of their procedure with the leukemia data set is better
than that reported by our method, but they use a total of
72 samples (the original 38 training plus the 34 validation
of [44]) thus making these results hard to compare. With
the colon data sets, however, their best performing results
are not better than ours with a number of features that is
similar to ours. [5] proposed two Bayesian classification
algorithms that incorporate gene selection (though it is
not clear how their algorithms can be used in multi-class
problems). The results for the Leukemia data set are not
comparable to ours (as they use the validation set of 34
samples), but their results for the colon data set show
error rates of 0.167 to 0.242, slightly larger than ours
(although these authors used random partitions with 50
training and 12 testing samples instead of the .632+ boot-
strap to assess error rate), with between 8 and 15 features
selected (somewhat larger than those from random for-
est). Finally, [31], applied both shrunken centroids and a
genetic algorithm + KNN technique to the NCI60 and
Srcbt data sets; their results with shrunken centroids are
similar to ours with that technique, but the genetic algo-
rithm + KNN technique used larger sets of genes (155 and
72 for the NCI60 and Srbct, respectively) than variable
selection with random forest using the suggested parame-
ters. In summary, then, our proposed procedure matches
or outperforms alternative approaches for gene selection
in terms of error rate and number of genes selected, with-
out any need to fine-tune parameters or preselect genes; in
addition, this method is equally applicable to two-class
and multi-class problems, and has software readily avail-
able. Thus, the newly proposed method is an ideal candi-
date for gene selection in classification problems with
microarray data.

A reviewer has alerted us to the paper by Jiang et al. [45],
previously unknown to us. In fact, our approach is virtu-
ally the same as the one used by Jiang et al., with the
exception that these authors recompute variable impor-
tances at each step (we do not do this in this paper,
although the option is available in our code) and, more
importantly, that their gene selection is based both in the
OOB error, as well as the prediction error when the forest
trained with one data set is applied to a second, independ-
ent, data set; thus, this approach for gene selection is not
feasible when we only have one data set. Jiang et al. [45]
also show the excellent performance of variable selection
using random forest when applied to their data sets. The
final issue addressed in this paper is instability or multi-
plicity of the selected sets of genes. From this point of
view, the results are slightly disappointing. But so are the
results of the competing methods. And so are the results
of most examined methods so far with microarray data, as
shown in [29] and [30] and discussed thoroughly by [27]
for classification and by [28] for the related problem of
the effect of threshold choice in gene selection. However,
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and except for the above cited papers and [6,46] and [5],
this is an issue that still seems largely ignored in the
microarray literature. As these papers and the statistical lit-
erature on variable selection (e.g., [40,47]) discusses, the
causes of the problem are small sample sizes and the
extremely small ratio of samples to variables (i.e., number
of arrays to number of genes). Thus, we might need to
learn to live with the problem, and try to assess the stabil-
ity and robustness of our results by using a variety of gene
selection features, and examining whether there is a sub-
set of features that tends to be repeatedly selected. This
concern is explicitly taken into account in our results, and
facilities for examining this problem are part of our R
code.

The multiplicity problem, however, does not need to
result in large prediction errors. This and other papers
[7,27,31,32,48,49] (see also above) show that very differ-
ent classifiers often lead to comparable and successful
error rates with a variety of microarray data sets. Thus,
although improving prediction rates is important, when
trying to address questions of biological mechanism or
discover therapeutic targets, probably a more challenging
and relevant issue is to identify sets of genes with biologi-
cal relevance.

Two areas of future research are using random forest for
the selection of potentially large sets of genes that include
correlated genes, and improving the computational effi-
ciency of these approaches; in the present work, we have
used parallelization of the "embarrassingly parallelizable"
tasks using MPI with the Rmpi and Snow packages [50,51]
for R. In a broader context, further work is warranted on
the stability properties and biological relevance of this
and other gene-selection approaches, because the multi-
plicity problem casts doubts on the biological interpreta-
bility of most results based on a single run of one gene-
selection approach.

Conclusion
The proposed method can be used for variable selection
fulfilling the objectives above: we can obtain very small
sets of non-redundant genes while preserving predictive
accuracy. These results clearly indicate that the proposed
method can be profitably used with microarray data and
is competitive with existing methods. Given its perform-
ance and availability, random forest and variable selec-
tion using random forest should probably become part of
the "standard tool-box" of methods for the analysis of
microarray data.

Methods
Simulated data sets
Data have been simulated using different numbers of
classes of patients (2 to 4), number of independent

dimensions (1 to 3), and number of genes per dimension
(5, 20, 100). In all cases, we have set to 25 the number of
subjects per class. Each independent dimension has the
same relevance for discrimination of the classes. The data
come from a multivariate normal distribution with vari-
ance of 1, a (within-class) correlation among genes within
dimension of 0.9, and a within-class correlation of 0
between genes from different dimensions, as those are
independent. The multivariate means have been set so
that the unconditional prediction error rate [52] of a lin-
ear discriminant analysis using one gene from each
dimension is approximately 5%. To each data set we have
added 2000 random normal variates (mean 0, variance 1)
and 2000 random uniform [-1,1] variates. In addition, we
have generated data sets for 2, 3, and 4 classes where no
genes have signal (all 4000 genes are random). For the
non-signal data sets we have generated four replicate data
sets for each level of number of classes. Further details are
provided in the supplementary material [see Additional
file 1].

Competing methods

We have compared the predictive performance of the var-
iable selection approach with: a) random forest without

any variable selection (using ,

ntree = 5000, nodesize = 1); b) three other methods that
have shown good performance in reviews of classification
methods with microarray data [7,31] but that do not
include any variable selection (i.e., they use a number of
genes decided before hand); c) two methods that carry out
variable selection.

The three methods that do not carry out variable selection
are:

• Diagonal Linear Discriminant Analysis (DLDA) DLDA
is the maximum likelihood discriminant rule, for multi-
variate normal class densities, when the class densities
have the same diagonal variance-covariance matrix (i.e.,
variables are uncorrelated, and for each variable, its vari-
ance is the same in all classes). This yields a simple linear
rule, where a sample is assigned to the class k which min-

imizes , where p is the number of

variables, xj is the value on variable (gene) j of the test

sample,  is the sample mean of class k and variable

(gene) j, and  is the (pooled) estimate of the variance

of gene j [7]. In spite of its simplicity and its somewhat
unrealistic assumptions (independent multivariate nor-
mal class densities), this method has been found to work
very well.

mtry number of iables= var

( ) /x xj kj jj
p −=∑ 2 2

1
σ

xkj

σ̂ j
2
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• K nearest neighbor (KNN) KNN is a non-parametric
classification method that predicts the sample of a test
case as the majority vote among the k nearest neighbors of
the test case [15,16]. To decide on "nearest" we use, as in
[7], the Euclidean distance. The number of neighbors used
(k) is chosen by cross-validation as in [7]: for a given train-
ing set, the performance of the KNN for values of k in {1,
3, 5, ..., 21} is determined by cross-validation, and the k
that produces the smallest error is used.

• Support Vector Machines (SVM) SVM are becoming
increasingly popular classifiers in many areas, including
microarrays [53-55]. SVM (with linear kernel, as used
here) try to find an optimal separating hyperplane
between the classes. When the classes are linearly separa-
ble, the hyperplane is located so that it has maximal mar-
gin (i.e., so that there is maximal distance between the
hyperplane and the nearest point of any of the classes)
which should lead to better performance on data not yet
seen by the SVM. When the data are not separable, there is
no separating hyperplane; in this case, we still try to max-
imize the margin but allow some classification errors sub-
ject to the constraint that the total error (distance from the
hyperplane in the "wrong side") is less than a constant.
For problems involving more than two classes there are
several possible approaches; the one used here is the "one-
against-one" approach, as implemented in "libsvm" [56].
Reviews and introductions to SVM can be found in
[16,57].

For each of these three methods we need to decide which
of the genes will be used to build the predictor. Based on
the results of [7] we have used the 200 genes with the larg-
est F-ratio of between to within groups sums of squares.
[7] found that, for the methods they considered, 200
genes as predictors tended to perform as well as, or better
than, smaller numbers (30, 40, 50 depending on data set).
The three methods that include gene selection are:

• Shrunken centroids (SC) The method of "nearest
shrunken centroids" was originally described in [33]. It
uses "de-noised" versions of centroids to classify a new
observations to the nearest centroid. The "de-noising" is
achieved using soft-thresholding or penalization, so that
for each gene, class centroids are shrunken towards the
overall centroid. This method is very similar to a DLDA
with shrinkage on the centroids. The optimal amount of
shrinkage can be found with cross-validation, and used to
select the number of genes to retain in the final classifier.
We have used two different approaches to determine the
best number of features.

- SC.l: we choose the number of genes that minimizes
the cross-validated error rate and, in case of several solu-

tions with minimal error rates, we choose the one with
largest likelihood.

- SC.s: we choose the number of genes that minimizes
the cross-validated error rate and, in case of several solu-
tions with minimal error rates, we choose the one with
smallest number of genes (larger penalty).

• Nearest neighbor + variable selection (NN.vs) We first
rank all genes based on their F-ratio, and then run a Near-
est Neighbor classifier (KNN with K = 1; using N = 1 is
often a successful rule [15,16]) on all subsets of variables
that result from eliminating 20% of the genes (the ones
with the smallest F-ratio) used in the previous iteration.
The final number of genes is the one that leads to the
smallest cross-validated error rate.

The ranking of the genes using the F-ratio is done without
using the left-out sample. In other words, for a given data
set, we first divide it 10 samples of about the same size;
then, we repeat 10 times the following:

a) Exclude sample "i", the "left-out" sample.

b) Using the other 9 samples, rank the genes using the F-
ratio

c) Predict the values for the left-out sample at each of the
pre-specified numbers of genes (subsets of genes), using
the genes as given by the ranking in the previous step.

At the end of the 10 iterations, we average the error rate
over the 10 left-out samples, and obtain the average cross-
validated error rate at each number of genes. These esti-
mates are not affected by "selection bias" [34,37] as the
error rate is obtained from the left-out samples, but the
left-out samples are not involved in the ranking of genes.
(Note, that using error rates affected by selection bias to
select the optimal number of genes is not necessarily a bad
procedure from the point of view of selecting the final
number of genes; see [38]).

Even if we use, as here, error rates not affected by selection
bias, using that cross-validated error rate as the estimated
error rate of the rule would lead to a biased-down error
rate (for reasons analogous to those leading to selection
bias). Thus, we do not use these error rates in the tables,
but compute the estimated prediction error rate of the rule
using the .632+ bootstrap method.

This type of approach, in its many variants (changing both
the classifier and the ordering criterion) is popular in
many microarray papers; a recent example is [10], and
similar general strategies are implemented in the program
Tnasas [58].
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Software and data sets
All simulations and analyses were carried out with R [59],
using packages randomForest (from A. Liaw and M.
Wiener) for random forest, e1071 (E. Dimitriadou, K.
Hornik, F. Leisch, D. Meyer, and A. Weingessel) for SVM,
class (B. Ripley and W. Venables) for KNN, PAM [33] for
shrunken centroids, and geSignatures (by R.D.-U.) for
DLDA.

The microarray and simulated data sets are available from
the supplementary material web page [60].

Availability and requirements
Our procedure is available both as an R package (var-
SelRF) and as a web-based application (GeneSrF).

varSelRF
Project name: varSelRF.

Project home page: http://ligarto.org/rdiaz/Papers/rfVS/
randomForestVarSel.html

Operating system(s): Linux and UNIX, Windows,
MacOS.

Programming language: R.

Other requirements: Linux/UNIX and LAM/MPI for par-
allelized computations.

License: GNU GPL 2.0 or newer.

Any restrictions to use by non-academics: None.

GeneSrF
Project name: GeneSrF

Project home page: http://genesrf.bioinfo.cnio.es

Operating system(s): Platform independent.

Programming language: Python and R.

Other requirements: A web browser.

License: Not applicable. Access non-restricted.

Any restrictions to use by non-academics: None.

List of abbreviations
• DLDA: Diagonal linear discriminant analysis.

• KNN: K-nearest neighbor.

• NN: nearest neighbor (like KNN with K = 1).

• NN.vs: Nearest neighbor with variable selection.

• OOB error: Out-of-bag error; error rate from samples not
used in the construction of a given tree.

• SC.l: Shrunken centroids with minimization of error
and maximization of likelihood if ties.

• SC.s: Shrunken centroids with minimization of error
and minimization of features if ties.

• SVM: Support vector machine.

• mtry: Number of input variables tried at each split by
random forest.

• mtryFactor: Multiplicative factor of the default mtry

( )

• nodesize: Minimum size of the terminal nodes of the
trees in a random forest.

• ntree: Number of trees used by random forest.

• s.e. 0 and s.e. 1: "0 s.e." (respectively "1 s.e.") rule for
choosing the best solution for gene selection (how far the
selected solution can be from the minimal error solution).
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