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Abstract
Background: The aim of protein design is to predict amino-acid sequences compatible with a
given target structure. Traditionally envisioned as a purely thermodynamic question, this problem
can also be understood in a wider context, where additional constraints are captured by learning
the sequence patterns displayed by natural proteins of known conformation. In this latter
perspective, however, we still need a theoretical formalization of the question, leading to general
and efficient learning methods, and allowing for the selection of fast and accurate objective
functions quantifying sequence/structure compatibility.

Results: We propose a formulation of the protein design problem in terms of model-based
statistical inference. Our framework uses the maximum likelihood principle to optimize the
unknown parameters of a statistical potential, which we call an inverse potential to contrast with
classical potentials used for structure prediction. We propose an implementation based on Markov
chain Monte Carlo, in which the likelihood is maximized by gradient descent and is numerically
estimated by thermodynamic integration. The fit of the models is evaluated by cross-validation. We
apply this to a simple pairwise contact potential, supplemented with a solvent-accessibility term,
and show that the resulting models have a better predictive power than currently available pairwise
potentials. Furthermore, the model comparison method presented here allows one to measure the
relative contribution of each component of the potential, and to choose the optimal number of
accessibility classes, which turns out to be much higher than classically considered.

Conclusion: Altogether, this reformulation makes it possible to test a wide diversity of models,
using different forms of potentials, or accounting for other factors than just the constraint of
thermodynamic stability. Ultimately, such model-based statistical analyses may help to understand
the forces shaping protein sequences, and driving their evolution.

Background
Predicting the sequences compatible with a given struc-
ture defines what is traditionally called the inverse folding

problem, or more often, protein design [1-3]. As sug-
gested by the terminology, this question is usually consid-
ered in an engineering perspective: the aim is then to
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determine a sequence, or a set of sequences, that stably
fold into a pre-specified conformation. In a thermody-
namic perspective, this requirement translates into elicit-
ing sequences that have lowest free energy under the target
fold, compared to all possible alternative conformations.
In principle, such a criterion would imply a search
through the joint structure-sequence space, which is not
feasible but for small on-lattice model proteins [4].

As an alternative to the engineering approach, a more evo-
lutionary stance can be taken towards the inverse folding
problem, in which case the aim would rather be to predict
the sequences of natural proteins having the conformation
of interest. Seen from this new point of view, the design
problem raises new questions: natural proteins are the
result of a complex evolutionary process, involving an
intricate interplay between mutation and selection, and
this probably entails many constraints directly related to
the native conformation, but nevertheless not equivalent
to the mere requirement of structural stability. For
instance, the requirement of fast and cooperative folding
has an impact on the dispersion of contact energies [5].
For this and many other potential reasons, among all
sequences predicted by classical engineering-oriented pro-
tein design, probably only a subset will look like natural
proteins.

The evolutionary approach to protein design is particu-
larly relevant to phylogenetic studies, where one of the
current motivations is to develop the so-called structurally
constrained models of protein evolution, i.e. models
explicitly dependent on the protein's conformation, either
for simulation purposes [6-9], or in the context of phylo-
genetic inference [10,11]. In this framework, each substi-
tution undergone by a protein during evolution has to be
tested for its compatibility with the structure, in the con-
text of the sequence that the protein displays at all other
sites when the substitution occurs. Such repeated evalua-
tion of the structure-sequence compatibility along a phyl-
ogenetic tree requires relevant and computationally very
efficient scoring schemes/functions.

It is interesting to compare the different methods pro-
posed thus far for performing protein design in light of
this engineering/evolutionary distinction. A first direction
of research has consisted in using all-atom semi-empirical
force fields to evaluate the conformational free energy
(reviewed in [12]). These empirical methods have been
applied to many theoretical and experimental cases,
reaching a high level of accuracy. On the other hand, they
are computationally heavy, mainly because of the side-
chain positioning problem, and thus cannot be easily
applied to structurally constrained phylogenetic models
[10,11]. Concerns may also be expressed about their over-
sensitivity to the native conformation, in particular in the

core of the target structures and when the flexibility of the
backbone is not accounted for [13,14]. But more impor-
tantly, approaches based on physical force fields are, by
definition, exclusively focussed on the conformational
stability, and thereby, completely oversee other potential
factors shaping the sequences of biological proteins. As
such, they are well suited for engineering synthetic pro-
teins [15], or for testing to what extent natural sequences
are shaped by selection for protein stability [16], but may
not be sufficient for more general evolutionary purposes.

An alternative to the semi-empirical strategy consists in
relying on knowledge-based, or statistical, potentials.
These scoring functions mimic physical Boltzmann distri-
butions, but merely encode statistical patterns present in
the databases. Some of these potentials were obtained
under the quasi-chemical approximation, whereby fre-
quencies of patterns, such as contacts between each pair of
amino-acids, are transformed into energies using the
Boltzmann law [17-20]. Alternatively, contact energies
can be obtained by maximizing the potential's predictive
accuracy in a threading test [21-24]. In the present con-
text, an advantage of these knowledge-based potentials,
compared to semi-empirical force-fields, is that they
should in principle capture all kinds of patterns that true
biological sequences have, in relation to their conforma-
tion, and not only those directly related to thermody-
namic stability. Furthermore, statistical potentials need
not be defined at the atomic level, but can be based on a
coarse-grained description of the protein's configuration,
essentially by omitting the degrees of freedom associated
to side chains. This allows faster computations, by avoid-
ing the problem of searching through the rugged land-
scape of side-chain conformations. In addition, coarse-
grained potentials could turn out to be an advantage, in
that they will not recover the native sequence too faith-
fully. Most protein design procedures based on statistical
potentials proposed until now have relied on coarse-
grained, pairwise contact pseudo-energies [4,25-32].

Yet, irrespective of the level of description adopted, cur-
rently available statistical potentials may not be ideal for
protein design, since they have generally been optimized
in the context of the folding problem, i.e. for maximizing
the rate of correct structure prediction, given the sequence.
In contrast, we would like to optimize the reciprocal pre-
diction, namely, the sequences given the conformation.
Several approaches have been proposed in this direction,
consisting in maximizing the Z-score between the energy
of the native sequence on the target conformation and its
energy on a set of decoy sequences [33], or, alternatively,
in applying a mean-square criterion on the values taken
by the scoring function on each structure-sequence pair of
the database [28]. However, these methods have thus far
only been tested in cubic lattice protein models. In addi-
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tion, they lack a firm theoretical basis. In particular, it
would be interesting to guarantee optimal predictive
power, and to have a robust methodology available to
assess and compare the performance of alternative forms
of statistical potentials.

Standard statistical theory provides such theoretical guar-
antees [34]. In the present case, the inverse folding prob-
lem can be formulated directly in terms of the probability
of observing a sequence s given a conformation c, i.e. p(s |
c, θ). This probability explicitly depends on the pre-speci-
fied model through a series of parameters, represented
here by θ. These may be, for instance, the coefficients of a
pairwise potential, parameters describing compositional
effects, secondary structure environment, solvent accessi-
bility, etc. Taking the product over a database of P inde-
pendent sequence-conformation pairs, S = (sp)p = 1..P and C
= (cp)p = 1..p, yields a joint probability

which, as a function of θ, can be seen as a likelihood. The

parameter θ is then learnt by maximizing the likelihood

with respect to θ. Once this is done, sequences can be
assessed, or sampled, under the optimal parameter value

, by direct numerical evaluation of their probability, or
by Monte Carlo sampling methods.

Reformulated in this way, the method maximizes the pre-
dictive power of the potential, now in the structure-seeks-
sequence direction. By construction, it yields the optimal
parameter values that can be obtained for a given form of
the potential. In addition, the fit of the model can be
directly evaluated, based on the value of the likelihood
obtained on a test data set, distinct from the learning set
(cross-validation), giving a means of rigorous model
selection. Finally, the statistical framework proposed here
allows one to explicitly combine together, in a model
dependent manner, all kinds of factors that we surmise
may induce correlations between the structure and the
sequence of proteins.

We have implemented this maximum likelihood (ML)
procedure in a Markov chain Monte Carlo framework,
and applied it to a simple case, using a contact potential,
supplemented with a solvent accessibility term. Using
cross-validation, we show that the resulting potentials
yield a better fit than currently available potentials of the
same form, and that combining solvent-accessibility con-
siderations with contact energies is better than either
alone. Furthermore, we find that solvent accessibility
requires a more complex description than what is cur-
rently used. Ultimately, the overall method proposed in

this work can be extended to a large spectrum of alterna-
tive models and statistical potentials.

Results
The probabilistic model
Let us consider a sequence s = (si)i = 1..N, of length N, and
of conformation c. In its most general form, the method
introduced here can work with any model M specifying
the conditional probability of s given c, in terms of an
unnormalized non negative function q(s, c):

To illustrate the method, we will apply it to a simple case,
using a pairwise contact potential. The argument is as fol-
lows. First, by Bayes' theorem:

If, in addition, we assume a uniform prior on s, we can
simply relate equations 3 and 2 by posing q(s, c) = p(c | s,
M). Next, given a statistical potential E(s, c), the confor-
mational probability p(c | s) can be expressed as a Boltz-
mann distribution:

where

is a normalization constant, and

F(s) = - ln Zs.   (7)

T and k are the absolute temperature and the Boltzmann
constant, respectively. Without loss of generality, it is pos-
sible to rescale the potential so that kT = 1, which we will
do in the following.

Then, by defining the inverse potential:

G(s, c) = E(s, c) - F(s),   (8)

the conditional probability of sequence s reads as
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where

is the normalization factor. Note that, contrary to the Zs
factor of equation 4, which was a sum over all conforma-
tions, the present factor Y is a sum over sequence space
(all possible sequences of length N).

Statistical potentials
In the present work, we used a statistical potential made
of two terms:

The first term is a contact free energy: Δij = 1 if positions i

and j are closer in space than a certain cut-off distance, and

0 otherwise, and εab defines the contact energy between

amino acids a and b. The second term encodes a solvent-

accessibility free energy: for each position,  represents

the free energy of amino acid a in the solvent accessibility
class d, a = 1..20, and d = 1..D, where D is the total number
of solvent accessibility classes considered.

Deriving the inverse potential requires the calculation of
F(s), which is already entirely specified by the potential E
as a sum over all conformations. However, this computa-
tion is difficult in practice. As an alternative, we can give it
a simple phenomenological form, inspired from the ran-
dom energy model [25,28,35]:

where the (μa)a = 1..20 are unknown parameters, analogous
to "chemical potentials" for the 20 amino acids.

Altogether, our parameter vector is made of three compo-
nents: θ = (α, ε, μ), and the inverse potential reads as:

Note that the probability defined by equation 9 is invari-
ant under the following transformation:

 = μa + J1,  (14)

 = εab + J2,  (15)

 =  + J3,  (16)

where J1, J2 and J3 are arbitrary real constants. Therefore, to
ensure identifiability of our probabilistic model, we
enforce the following constraints:

A series of alternative inverse potentials can be obtained
by suppressing the first or the second of the components
of equation 13. In the present work, we tested the follow-
ing combinations:

• μ,

• α + μ,

• ε + μ,

• ε + α + μ.

We also explored various numbers of accessibility classes,
with D ranging from 2 to 20. Alternatively, the ε compo-
nent can be fixed to values of a contact potential obtained
by other authors (MJ) [17]. In this case, we must add a
multiplicative scaling factor λ in front of the contact com-
ponent to account for the fact that these potentials are
normalized differently:

The scaling factor is optimized by ML, along with μ.

Optimizing the potentials by gradient descent
If we now consider a database, made of P protein
sequences S = (sp)p = 1..P, of respective lengths Np and their
corresponding three dimensional structures C = (cp)p = 1..P,
the probability of observing the whole database, which we
define as the likelihood L(θ), is the product of the probabil-
ities of observing each protein independently:
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where

is the inverse potential summed over the database, and

is the corresponding normalization constant. Since it is
more convenient to work on minus the logarithm of the
probability, we define the score ω:

ω(θ) = - ln L(θ)   (26)

= G(S, C) + ln Y.   (27)

We wish to maximize the likelihood, or equivalently,
minimize ω, with respect to θ. We do this by gradient
descent, based on a numerical evaluation of the derivative
of ω (see methods). The overall method is akin to an
Expectation Maximization algorithm [36]. In fact, it can
be seen as a differential version of Dempster's method,
and therefore, we call it differential EM.

The derivative of ω reads as:

Applying the partition function formalism to equation 25,
we can express the second term as an expectation over p(S'
| C, θ):

which leads us to the following expression for the deriva-
tive of ω:

The computation of the first term in this equation is
straightforward, while the second term must be estimated
numerically. In order to do so, we obtain a sample

 drawn from p(S | C, θ) by a Gibbs sampling

algorithm similar to that of Robinson et al. [10] (see
methods).

Applying formula 33 on the inverse potential 13 yields the
following expressions for the derivatives:

where nab is the number of contacts between amino acids

a and b observed in the database, and �nab� is its expecta-

tion over the probability distribution p(S' | C, θ). Formula
34 thus leads to an intuitive characterization of the maxi-

mum likelihood estimate : it is the value of ε such that
the average number of each type of contact predicted by
the potential matches the number observed in the data-
base. Following a similar derivation:

where ma is the total number of amino acids of type a, and

where  is the total number of amino acids of type a

belonging to solvent-accessibility class d.

We first performed an optimization of the pure contact
potential (ε + μ-potential) on each data set. Figure 1
shows the evolution of the scoring function ω and of the
contact potential during the gradient descent. As can be
seen from these traceplots, the differential EM algorithm
converges after a few hundred cycles. The scoring function
stabilizes at around 272,000 natural units of logarithm
(nits), and then fluctuates by up to 25 nits around this
value. These fluctuations are mainly due to the finite size
of the sample of sequences on which the derivative of ln Y
is evaluated and, to a lesser extent, to the error on the esti-
mation of ln Y by thermodynamic integration. In any
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case, these errors are small compared to the differences
between scores obtained with alternative models (see
below).

The evolution of the potential for some residue pairs is
shown in figure 1b and 1c. Effects in the final values due
to residue polarity are easily seen: known favorable inter-
actions such as glutamate-lysine or the hydrophobic iso-
leucine-valine have a lower contact energy, while known
unfavorable interactions, such as glutamate-glutamate,
have higher energies, indicating that the potentials
obtained are biologically reasonable.

The potentials obtained in two independent runs are vir-
tually identical (figure 2a), indicating that the gradient
descent does not get trapped into local minima. We can
also compare the values of the potential for two distinct

data sets of equivalent size, DS1 and DS2 (figure 2b),
which uncovers a greater discrepancy than for two inde-
pendent runs on the same data set DS1. The correlation is
high, however, suggesting that data sets are large enough
for the learning procedure to reach stability. In addition,
these differences are small compared to the discrepancy
between the potential obtained by our method and that of
Miyazawa & Jernigan (figure 2c).

Model comparison
The same optimization procedure was applied to the
potential consisting only of the solvent accessibility term
(α + μ), with an increasing number of accessibility classes,
and to the combined (ε + α + μ) potential. The resulting
log likelihood scores cannot directly be compared, since
the models do not have the same dimensionality. We
therefore applied a 2-fold cross-validation procedure

Convergence of the optimization procedureFigure 1
Convergence of the optimization procedure. Traceplots illustrating the convergence of the differential EM method in the 
optimization of contact potentials, on data set DS1. Are shown, as a function of the number of iterations (a) the score ω(θ) = 
In p(S | C, θ), (b) and (c) examples of pairwise contact energies obtained for some amino acid pairs.
Page 6 of 17
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:326 http://www.biomedcentral.com/1471-2105/7/326
(CV), consisting in learning the potential on DS2, and
testing it on DS1, and vice versa.

The evolution of the CV score as a function of the number
of accessibility classes (D) is shown in figure 3. When D
increases, the fit of the model improves, until a point is
reached where the penalization for model dimensionality
starts to dominate the score. The optimal number of
classes obtained is 14 to 16, depending on the form of the
potential studied, although 4 to 6 classes is sufficient to
attain 90% of the fit improvement.

The scores obtained for the different models tested are
reported in figure 4. We also included in the comparison
the Miyazawa and Jernigan potential [17]. The contact
potential performs better than the pure solvent accessibil-

ity potential, and the combination of both terms is the
most informative. Miyazawa and Jernigan's potential
results in a poorer fit improvement than any of the other
models.

Specificity of the designed sequences
Once an optimal value of θ is obtained, properties of the
sequences induced by the models can be investigated by
sampling sequences from p(s | c, θ), using this optimal
value of θ. In particular, we tested to what extent the
sequences proposed by our method met the requirement
of specificity, i.e. the condition that the sequences
designed on a given conformation c indeed have c as their
unique ground state. More precisely, we generated 20
sequences by Gibbs sampling for 60 randomly chosen
structures [see Additional file 8], i.e. 1,200 sequences for

XY-comparisons of pairwise contact potentialsFigure 2
XY-comparisons of pairwise contact potentials. (a) two independent runs on the same data set DS1, (b) two runs, on 
data sets DS1 (X-axis) and DS2 (Y-axis); (c) Miyazawa and Jernigan's potential, compared to that obtained on DS1.
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each potential, and performed a fold recognition experi-
ment for the designed sequences, monitoring the score for
the target fold using THREADER [37] (figure 6 and Table
1).

The solvent accessibility potential alone (α14ac + μ, figure
6b) is not sufficient to provide specificity to the designed
sequences, and behaves almost as poorly as the flat poten-
tial (μ, figure 6a). A mild improvement is seen when using
the contact potential (ε + μ, figure 6c): for 10% of the
designed sequences the target fold is found among the
best scoring folds (Table 1), and the distribution of this
ranking is skewed towards lower values. However, it is
only with the combined potential (ε + μ14ac + μ, figure
6d) that a significant improvement is observed: for more
than half of the designed sequences the target fold is
found among the best 1% scoring folds, even though the
average sequence identity with the native sequence is less
than 10% in all cases (Table 1).

We also tested a subset of 120 randomly chosen designed
sequences using another fold recognition program,
LOOPP [38]. LOOPP is based on a combination of several
structure prediction methods, based on threading, sec-
ondary structure, sequence profile and exposed surface
area prediction. The results obtained with this program
were similar to those of THREADER: for 51.2% of the
designed sequences using the combined (ε + α14ac + μ)
potential, the target fold was found as the first hit, and for
67.2% the target fold was found among the first 10 hits.

In contrast, many of the current fold recognition pro-
grams based on sequence profile methods produced no
significant hits (data not shown), which is not surprising,

Model comparisonFigure 4
Model comparison. Cross-validation (CV) scores obtained 
for the different forms of potentials tested. The average gain 
(relative to the CV score obtained with the flat potential μ, 
see Methods) for the 2-fold cross-validation experiment is 
reported. α14ac: solvent accessibility potential, 14 accessibility 
classes; ε: contact potential; MJ: Miyazawa and Jernigan's 
potential.

Effect of the solvent accessibility definition on the potentialFigure 3
Effect of the solvent accessibility definition on the potential. Gain in cross-validation score (see Methods) as a function 
of the number of accessibility classes. The average gain for the 2-fold cross-validation experiment is shown. (a) Inverse poten-
tial consisting in solvent accessibility terms only, and (b) inverse potential combining contact and solvent accessibility terms.
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Site-specific profilesFigure 5
Site-specific profiles. Sequence logos of site-specific profiles induced on an alpha-aminotransferase ([PDB:1GDE], chain A), 
using a contact + solvent accessibility (14 classes) potential. From top to bottom: (a) marginal profiles, (b) leave-one-out pro-
files, (c) empirical profiles from a multiple sequence alignment of 162 sequences [see Additional file 4], and (d) native sequence 
of the reference protein. Secondary structure representation was taken from PDBsum [57]. Red dot: residue interaction with 
ligand. Only the first 100 amino acids are shown; sequence logos for the whole protein are available as supplementary material 
[see Additional file 5] [see Additional file 6].
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given that our sampling algorithm produces highly diver-
gent sequences, with no similarity to any natural protein.

Discussion
The central idea of the present work is to reformulate the
problem of devising statistical potentials for protein
design as a statistical inference problem. This reformula-

tion, based on the maximum likelihood (ML) principle,
led us naturally to a gradient descent method, with the
only additional aspect being that the gradient to follow is
itself estimated by Monte-Carlo averaging.

The main advantage of this ML framework is that it guar-
antees an optimal predictive power of the resulting poten-

Table 1: Specificity of designed sequences.

Potential Average Z-
score ratio

SDev Z-score 
ratio

Ranking 
(median)

Target fold in 
top 1% (A)

Target fold in 
top 10%

Average seq. 
identity

Correlation 
between (A) 

and mean 
entropy/site

μ -0.12 0.18 2249 0.5% 4.8% 5.76 % -0.26
μ + α14ac -0.10 0.18 2090 0.4% 6.3% 6.65 % -0.04
μ + ε 0.13 0.16 816.8 10.7% 33.5% 6.69 % 0.23

μ + α14ac + ε 0.45 0.23 32.7 53.6% 77.5% 7.82 % 0.64

Scores of a fold recognition experiment for designed sequences (see Methods). 1,200 sequences were sampled from p(s | c, θ) for each potential, 
and submitted to THREADER for fold recognition. Z-score ratio: Z-score of designed sequence/Z-score of native sequence in target fold.

Design specificityFigure 6
Design specificity. Histograms of the ranking of the target structure in a fold recognition experiment using THREADER. 20 
sequences were generate for 60 randomly chosen structures, using (a) a flat (μ) potential, (b) a solvent accessibility, 14 classes 
(μ + α14ac) potential, (c) a contact (μ + ε) potential, and (d) the combined (μ + α14ac + ε) potential.
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tial. In addition, it is very general, and can in principle be
applied to any form of statistical potential. In particular, it
is not restricted to coarse grained descriptions of proteins,
and it could also be applied at the atomic level.

Interestingly, our gradient descent method turns out to be
similar in spirit to an iterative scheme proposed by Tho-
mas and Dill [39], although in that case the purpose was
to optimize a potential in the context of the folding prob-
lem. Specifically, Thomas and Dill tune the potential so as
to match the observed and expected number of contacts of
each type, except that their expectation is taken on a set of
alternative conformations, for a fixed sequence, whereas
we take the expectation on a set of alternative sequences,
on the conformation of interest. Note that Thomas and
Dill derived their method from intuitive arguments, and
not as a mathematical consequence of the ML principle.

These two alternative optimization schemes, obtained by
normalizing either over the sequence or over the structure
space, are quite distinct, at least conceptually. How the
resulting potentials would differ in practice is more diffi-
cult to evaluate. Among other things, it will depend on
how the approximation of lnZs based on the random
energy model works. In the eventuality that it does not
work well, it is likely that the contact term of our inverse
potential will in fact combine two things: the information
corresponding to the conformational energy of the
sequence itself, which is also encoded in classical poten-
tials optimized for threading, plus some information
coming from the decoy term ln Zs. A way to settle this
question would be to optimize a contact potential using,
on the same learning set, both normalization schemes,
and then compare the resulting values as well as their pre-
dictive powers.

Model assessment and comparison
The methodological framework proposed here offers reli-
able criteria for comparing the empirical fit of alternative
models on real data. In this respect, it should be noted
that the lack of a reliable objective criterion for evaluating
different statistical potentials has often been invoked for
justifying the use of on-lattice idealized models [23].
However, on-lattice approaches are only moderately inter-
esting, as they completely ignore the problem of the
robustness of the learning method to model violation.
Coarse-grained statistical potentials are by definition
over-simplified models of proteins, and therefore, model
violation is an intrinsic feature of the protein design prob-
lem. In this respect, the statistical language is interesting,
since it is still valid, even for fitting and assessing models
that are known to be imperfect.

On the other hand, the intuitive idea underlying cross-val-
idation, i.e. measuring the rate of prediction of the native

sequence, is quite simple, and has been invoked and used
several times previously [16,29,32,35,40]. What we pro-
pose here is a better formalization of this idea. Note that
in contrast to previous methods, we do not measure the
marginal native prediction rate at each site, but the joint
probability of the native sequence. This can be important,
as it accounts for possible correlations in the predictive
distribution. For instance, two given positions may not
display any particular pattern, when considered margin-
ally, but may jointly follow charge or steric compensatory
patterns. These phenomena will not be taken into account
in the overall fit of the potential when measuring the mar-
ginal prediction rate, as is usually done. Technically
speaking, the joint probability of the native sequence on
the corresponding structure is extremely small, and can-
not be evaluated just by counting the frequency at which
the native sequence appears in the sample obtained by
Gibbs sampling. For this, more elaborate numerical meth-
ods, such as thermodynamic integration, are required.

In the present case, the comparison between alternative
models has allowed us to measure the relative contribu-
tion of each term of the potential and to refine the protein
representation. The contact component turns out to be the
most informative (figure 4), although it should be com-
plemented with other energetic forms. Here, we have
tested the addition of a solvent accessibility component,
which significantly improves the fit of the model. Contact
information and solvent exposure are correlated, which is
reflected in the fact that the fit improvement of each term
is not additive.

Our model comparison method also gives us a direct way
of choosing the optimal number of solvent accessibility
classes (figure 3). Here, we found a number of 14 to 16
classes, which is higher than what one may have expected
and than what is usually used. Note that this number
depends on the way the classes are defined; here, the
classes are based on quantiles, but as an alternative, we
also tried a linear definition (evenly splitting the whole
range of accessibility surfaces into D bins), which gave us
an even higher optimal number of classes (20 classes, data
not shown). In general, the present methodology could be
used to investigate different definitions of accessibility
classes, to refine the pairwise contact definition, or any
other elements of the structure representation included in
the potential.

The fact that our potential has a significantly better predic-
tive power than that of Miyazawa and Jernigan (MJ, figure
4) is trivially expected, by construction of the ML poten-
tial. What is more surprising is that the MJ matrix is less fit
than a simple solvent-accessibility profile. A possible
explanation would be that Miyazawa and Jernigan's
potential is based on the quasi-chemical approximation,
Page 11 of 17
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:326 http://www.biomedcentral.com/1471-2105/7/326
which is now known to be somewhat drastic [19,41,42],
as it neglects correlations between observed pairing fre-
quencies, due to chain connectivity and multiple contacts.
Alternatively, it could mean that potentials optimized for
folding are really not suited for protein design purposes.
Testing other pairwise contact potentials, in particular
those that do not rely on the quasi-chemical approxima-
tion [22,24,43-45], would be a way to address this issue.

Sequence sampling
The method that we propose in this work is probabilistic
in essence. As such, it offers a very natural framework for
investigating the patterns induced by the models on distri-
butions of sequences.

Specificity of the designed sequences
A sequence s designed for a target conformation c should
not only be compatible with c, but also incompatible with
competing folds. A rigorous solution to this problem
involves a simultaneous search over the sequence and
conformation space. It is possible, however, to achieve
specificity without explicitly seeking to penalize compet-
ing states (negative design), if we rely on the approxima-
tion based on the random energy model, where the
normalization constant of equation 4 can be considered
as a function of the sequence composition only [25,46].
In our case, the normalization of the likelihood will also
play an important role: since the total probability over all
possible sequences has to be 1, maximizing the probabil-
ity for a given sequence s1 on its native conformation c1
will lower the probability that another natural sequence
s2, with native conformation c2, also gets a high probabil-
ity on c1. When many sequences are learnt in parallel, this
phenomenon should ultimately favor specificity of s2 on
c2, compared to all other conformations of the data set.

On the other hand, the extent to which the specificity is
achieved will depend on the actual form of the potential
used, as well as on the data base used for learning. To
address this question, we produced a large number of
sequences with four different potentials, and checked
their ability to recognize the target fold, as measured by
the Z-score ratio or by the ranking of the target structure
in a fold recognition experiment. Indeed, an improve-
ment of specificity is observed when using better poten-
tials, suggesting that the method is effectively capturing
specific dependencies between the conformation and the
sequence of the proteins in the learning set, even for the
simple forms of potentials tested here. For the combined
(ε + α14ac + μ) potential, the average Z-score ratio of the
designed sequences is similar to what has been reported
for other protein design algorithms [46]. Conversely, this
also suggests that a more sophisticated potential may fur-
ther improve the specificity of the sequences designed
using our algorithm.

Conformation-dependent site-specific profiles
To compare natural protein sequences with those pre-
dicted by the optimized potentials, marginal, leave-one-
out and empirical profiles (see methods) were generated
for the 60 proteins used in the design specificity experi-
ment described above; the profiles obtained for the best
and the worst scoring structures are provided as supple-
mentary materials [see Additional file 7]. Overall, leave-
one-out profiles (figure 5a) and marginal profiles (figure
5b) do not display significant differences in the discrimi-
native power between sites: the mean Shannon entropy
per site is 0.743 ± 0.366 for marginal profiles, and 0.696
± 0.428 for leave-one-out profiles. It is worth noting that
the mean entropy per site for each protein, and the corre-
sponding standard deviation, i.e. the average amount of
information at each site and the variation between sites,
are both correlated with the performance of the particular
protein in the fold recognition experiment, and this, only
for the combined (ε + α14ac + μ) potential (Table 1).

A detailed analysis of the leave-one-out profiles for a par-
ticular case, an alpha-aminotransferase, may be useful to
understand which type of information is effectively cap-
tured by the potential, and which is not captured at all,
thereby suggesting possible ways of improving the current
form of potential.

First, regions of the protein that show little secondary
structure (such as in positions 32–40, 55–65 and 82–88)
contain less information (mean entropy per site = 0.756)
than regions with local structure (mean entropy per site =
0.856). This is not surprising, since these regions typically
have fewer contacts between residues, and thus the
amount of information included in the protein represen-
tation is lower.

Concerning regions with defined secondary structure, res-
idue polarity is the information most easily captured.
Charged residues are also distinctively inferred, as well as
glycines, to a lesser extent (e.g. glycine 64, 81 and 95 – the
latter predicted at position 94 or 95). In contrast, prolines
are rarely correctly predicted, which is expected, since the
properties most distinctive of prolines (such as phi-psi
dihedral angles or local secondary structure) are not
included in this particular form of potential.

Interestingly, some residues that have a crucial impor-
tance for the protein structure or function fail to be pre-
dicted, simply because the properties conferring their
importance are not included in the protein description.
This is the case of the amino acids that are in close inter-
action with a ligand (positions 34, 59, 96, 97).

Finally, the leave-one-out profiles display an interesting
behavior with respect to positions where the amino-acid
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(page number not for citation purposes)



BMC Bioinformatics 2006, 7:326 http://www.biomedcentral.com/1471-2105/7/326
present in the reference sequence is not at all conserved in
other members of the family. In some cases, they simply
do not predict anything (e.g. glycines 24 and 60, or leu-
cine 9, isoleucine 21, and alanine 23), which suggests that
their limited importance in structure stability or function
is recognized by the inverse potential. In other cases, the
natural profile is even reproduced in the leave-one-out
profile, instead of the amino acid of the reference
sequence; such is the case for phenylalanine 100.

Conclusion
As illustrated by the sequence logos and the fold recogni-
tion experiments performed above, the predictive power
of the models proposed here is encouraging, but neverthe-
less still weak. It is not yet clear to what extent this is due
to the specific choice made concerning the form of the sta-
tistical potential, to the approximation of ln Zs as a func-
tion of the sole composition of the sequence, or to yet
other reasons. Most probably, we are facing a combina-
tion of several factors. The methods proposed here can
now be used to address these difficult questions empiri-
cally.

In one direction, other approximations of ln Zs, less dras-
tic than the random energy model, but still accessible in
practice, can be investigated. For instance, following Deut-
sch and Kurozky (1996), the conditional probability of a
sequence could be defined as:

p(s | c) ∝ e-[�E(S,C)-E(S)�] p(s)    (37)

where the expectation �·� is taken over a pre-defined set of
decoy conformations. More sophisticated Monte Carlo
methods, jointly sampling the sequence and conforma-
tion spaces, can also be imagined, in order to get more
precise evaluations of ln Zs, while staying in the same glo-
bal maximum likelihood formalism.

On the other hand, all the many statistical potentials that
have been proposed over the last fifteen years may in prin-
ciple be investigated in the same way as we have done
here. In particular, distance-dependent potentials [47]
and main-chain dihedral angle potentials [48], which
imply a richer representation of the protein structure, may
result in models of greater predictive power. Other ways of
implicitly considering side-chain conformation may also
be easily incorporated into the model.

In a completely different perspective, it is possible to
devise probabilistic models that are not exclusively
defined in terms of a conformational free energy, even in
a formal way. For instance, additional terms, concerning
secondary structure aspects, interactions between succes-
sive positions along the sequence, or terms related to the
folding constraints, can all be combined in an additive

manner in the inverse potential. In fact, the model need
not even be formulated in terms of a Boltzmann distribu-
tion, as long as the parameters are fitted by ML, and the
predictive power of the resulting models is evaluated in a
systematic way. Altogether, this amounts to setting up a
robust statistical framework helping us to understand
how, and to what extent, the sequences of natural proteins
are determined by protein structure.

Methods
Structure representation
We used Miyazawa and Jernigan's definition of contacts
[17]: each residue is represented by the center of its side
chain atom positions; the positions of Cα atoms are used
for glycine. Residues whose centers are closer than 6.5Å
are defined to be in contact. The accessible surface of a res-
idue is defined as the atomic accessible area when a probe
of the radius of a molecule of water is rolled around the
Van der Waal's surface of the protein [49]. We used the
program Naccess [50] to make this calculation. When
treating PDB files with multiple chains, solvent accessibil-
ity was calculated taking into account all molecules in the
structure. The accessibility classes (percentage relative to
the accessibility in Ala-X-Ala fully extended tripeptide)
were defined so as to generate D equal-sized subsets of
sites. The complete definition of accessibility classes is
available as supporting material [see Additional file 1].

Monte Carlo implementation

In order to calculate the derivative of ω in the gradient
descent procedure, expectations with respect to p(S' | C,

θ)in equation 33 are evaluated numerically. A sample

 drawn from p(S | C, θ) is obtained by a

Gibbs sampling algorithm similar to that of Robinson et
al. [10]. The elementary cycle of our Gibbs sampler is as
follows: for each p = 1..P, and for each i = 1..NP, each of

the 20 amino acids is proposed at site i of protein p, by

successively setting  = a, for all a = 1..20; in each case,

the energy change ΔGa induced by this point substitution

is evaluated; then,  is set to amino acid a with probabil-

ity . After Q cycles of burnin, a series of h =

1..KEM cycles are performed, and after each cycle, the cur-

rent sequence, Sh, is recorded. Once the sample is

obtained, the expectation (32) is evaluated as

and the derivative of ω with respect to θ follows immedi-
ately.
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The overall gradient descent procedure runs as follows: we
start from a random potential θ0 and a random set of
sequences, and perform the following iterative scheme:

• perform Q Gibbs cycles for the burnin, and kEM addi-
tional cycles for the sampling itself. Keep the final
sequences as the starting point of the next cycle.

• update θ by gradient descent, based on the estimate of
the gradient obtained over the sample:

where . is a scalar product, and δθ is a step-vector. In prac-
tice, the coefficients of δθ are tuned empirically, allowing
three degrees of freedom, for the α, the ε, and the μ com-
ponent of the potential respectively.

• iterate.

As a stopping rule, we monitor the evolution of ω(θ)
itself, which we evaluate every 100 steps by a numerical
procedure (see below), and stop when ω(θ) has stabilized.
In practice, we used Q = 100 and kEM = 100. At first sight,
it would seem that a larger number of points kEM would be
needed to get a precise expectation, but in the present case
one can rely on the self-averaging of the derivatives across
the 100,000 sites of the database.

Likelihood evaluation
The difficult part in estimating the likelihood (or equiva-
lently ω(θ)), for a given value of θ, is to obtain an evalua-
tion of ln Y. We do this by thermodynamic integration, or
path sampling [51,52], using the quasi-static method
which we developed previously [53].

First, for 0 ≤ β ≤ 1, we define

The associated probability distribution is:

What we are looking for is In Y1. As for In Y0, it factors out,
and can be computed directly:

We can thus equivalently evaluate the difference ln Y1 – ln
Y0. To do this, we rely on the following identity:

where �·�β is the expectation over pβ(s' | c, θ).

In practice, the method consists in first equilibrating the

Gibbs sampler at β = 0, and then, performing a series of

KTh + 1 cycles, where at each step, the value of β is

increased by a small amount δβ = 1/KTh. The successive

values of  obtained during this quasi-static sampling

scheme are recorded, and their average is our estimate of
ln Y1 – ln Y0:

Note that these developments are for one protein, but the
generalization over the database is straightforward.

In the conditions of the present work, KTh = 1, 000 is suf-
ficient to obtain an estimate of ln Y1 – ln Y0 with an error
less than one natural unit of logarithm.

Model comparison
We measured the fit of each model using cross-validation
(CV): the potentials optimized on a first data set, i.e. the
learning set, (θL) are applied on the second data set (the
test set), and the log-likelihood is directly taken as a meas-
ure of fit. More precisely, for each model M,

CVM = -ln p(ST | CT, θL, M),   (47)

where ST and CT are the sequences and structures of the
test set. The difference with the CV score obtained for the
flat potential (μ) is reported: ΔCV = CVμ – CVM.

Sequence sampling: site-specific profiles

Once an optimal value of θ is obtained, sequences com-
patible with a given conformation can be sampled from

p(s | c, ) by Gibbs sampling, and then further investi-
gated. For instance, the frequency of each of the 20 amino
acids (a) at each position (i) can be computed (qi(a)),
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yielding a vector of site-specific marginal profiles, graphi-
cally displayed as sequence logos [54]. Alternatively, leave-
one-out profiles can be obtained by computing the proba-
bility of each of the 20 amino-acids at each site of the test
sequence, given the potential and the native sequence at
all other positions:

p(si = a | sj, j ≠ i, θ).   (48)

We measured the amount of information displayed by the
profiles using the site-specific Shannon entropy:

We compared both marginal and leave-one-out profiles to
the empirical profiles, i.e. profiles displayed by natural
sequences. We generated these empirical profiles from
multiple sequence alignments obtained from the Con-
Surf-HSSP database [55].

Sequence sampling: design specificity
As a test for specificity, designed sequences were submit-
ted to a fold recognition experiment, using the fold recog-
nition program THREADER [37]. In THREADER, the
compatibility of a sequence s for a given structure c is
measured by the Z-score:

where �E(S, C)� is the average of the THREADER statistical
potential over all conformations of the decoy set, and σ is
the corresponding standard deviation.

We randomly chose 70 structures of sizes ranging from
100 to 300 residues from the default THREADER dataset
[see Additional file 8]. Structures whose native sequences
produced a Z-score < 3 were discarded for the analysis. For

each structure, c, we sampled 20 sequences from p(s | c, )
by Gibbs sampling. These designed sequences were then
submitted to THREADER [37], and their specificity for the
target structure c was measured by the ranking of c among
all other structures, sorted by increasing Z-score.

A subset of 120 among the 1,200 sequences generated
with the combined (ε + α14ac + μ) potential (3–5
sequences for 23 distinct conformations, chosen at ran-
dom; [see Additional file 8]) were also submitted to
another fold recognition program, LOOPP [38], and the
presence of the native conformation c as the first hit or in
the first 10 hits was recorded.

Learning databases
We used proteins culled from the entire PDB according to
structure quality (resolution better than 2.0 Å) and with
less than 25% of mutual sequence identity [56]. Two sub-
sets of approximately equal size were obtained by parti-
tioning the proteins randomly: DS1, 449 proteins,
100,077 sites, and DS2, 465 proteins, 99,894 sites. The
final list of proteins is available as supporting material
[see Additional file 2] [see Additional file 3].
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