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Abstract
Background: Understanding gene regulatory networks has become one of the central research
problems in bioinformatics. More than thirty algorithms have been proposed to identify DNA
regulatory sites during the past thirty years. However, the prediction accuracy of these algorithms
is still quite low. Ensemble algorithms have emerged as an effective strategy in bioinformatics for
improving the prediction accuracy by exploiting the synergetic prediction capability of multiple
algorithms.

Results: We proposed a novel clustering-based ensemble algorithm named EMD for de novo motif
discovery by combining multiple predictions from multiple runs of one or more base component
algorithms. The ensemble approach is applied to the motif discovery problem for the first time. The
algorithm is tested on a benchmark dataset generated from E. coli RegulonDB. The EMD algorithm
has achieved 22.4% improvement in terms of the nucleotide level prediction accuracy over the best
stand-alone component algorithm. The advantage of the EMD algorithm is more significant for
shorter input sequences, but most importantly, it always outperforms or at least stays at the same
performance level of the stand-alone component algorithms even for longer sequences.

Conclusion: We proposed an ensemble approach for the motif discovery problem by taking
advantage of the availability of a large number of motif discovery programs. We have shown that
the ensemble approach is an effective strategy for improving both sensitivity and specificity, thus
the accuracy of the prediction. The advantage of the EMD algorithm is its flexibility in the sense
that a new powerful algorithm can be easily added to the system.

Background
Identifying gene regulatory and gene expression networks
has become a central problem of post-genomics biology
[1-3]. Computational prediction of DNA regulatory ele-
ments or binding sites of transcription factors is one of the
essential parts of the problem. This regulatory motif dis-
covery problem has been studied since the early years of

bioinformatics, resulting more than thirty algorithms pro-
posed, among which more than a dozen are publicly
available [4,5]. However, recent comprehensive evalua-
tions of existing motif discovery programs show that their
prediction accuracy is still very low [4,6].
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The technical difficulty resides in the low signal/noise
ratio of this problem. A straightforward direction to
improve the prediction accuracy is to use a better motif
model to capture characteristics of sequence patterns of
regulatory motifs (e.g. position-dependence information
can be captured by a Hidden Markov model [7] or by con-
sidering local pairwise nucleotide frequency [8], rather
than a conventional position specific scoring matrix [9])
and a better search algorithm in the sequence space (e.g.
Expectation Maximization [10] or Gibbs sampling [11]).
Another approach is to incorporate additional informa-
tion, such as phylogenetic trees or homologous sequences
[12-15]. Comparative genomics [16] and gene expression
data [17] have also been used to improve the specificity of
motif discovery.

Here, we introduce another practical and powerful strat-
egy for the motif discovery problem, that is, the ensemble
approach, which is also called the meta-server approach
or the jury-method. The fundamental idea of the ensem-
ble approach is to run several different programs (multi-
ple times) and summarize their outputs to generate the
final output. Ensemble algorithms have been applied in
several prediction methods in bioinformatics, such as
gene prediction [18], protein tertiary structure prediction
[19,20], protein domain prediction [21] and protein sec-
ondary structure prediction [22,23]. The most remarkable
success of the ensemble approach would be the several
meta-servers which participated in the biennial world-
wide protein structure prediction contest, CASP (Critical
Assessment of Techniques for Protein Structure Predic-
tion), in 2002 and 2004 [24-27], which dominated the
top ranks in the competition. The success of the ensemble
approaches has been attributed to several factors. Albrecht
et al. [22] referred their success to the noise-filtering prop-
erties of the ensemble approach, which damp the training
errors of single methods. Lundström et al. [28] discussed
that a key for the success of an ensemble approach is to
properly measure the similarity between the different
models. Most ensemble algorithms use the same type of
input data to make final predictions. In contrast, the
ensemble algorithm by Sen et al. [29] combined different
types of data, data mining results, threading, phylogenetic
tree-based conserved residue prediction, and the struc-
tural alignment based prediction method to predict a pro-
tein-protein interaction site in a query protein tertiary
structure. Despite the wide range of applications of the
ensemble approach in bioinformatics, to the best of our
knowledge, there is no extensive study of ensemble algo-
rithms for the motif discovery problem.

In our previous work [6], we showed anecdotal evidence
that a simple ensemble motif discovery algorithm, called
CEA, outperforms single stand-alone algorithms. At this
juncture, it would be appropriate to clarify the differences

between the previous work and the current work, called
the EMD algorithm. In the previous work, 1) only the
combination of multiple runs of an identical algorithm
was considered; and 2) only one data set with a short
sequence size (50 nt. long sequence added to both sides
of each of known target site) was used in the benchmark.
In this work: 1) We extend our ensemble approach by sys-
tematically combining predictions from five popular
motif discovery algorithms, namely, AlignACE [30], Bio-
Prospector [31], MDScan [32], MEME [33], and Motif-
Sampler [34]. In addition, we integrated Projection [35]
to seek further improvement in terms of the scalability of
EMD. All the possible combinations of one to five compo-
nent algorithms are examined. 2) To be able to combine
predictions of different runs from different component
algorithms, a novel ensemble algorithm, EMD, is devel-
oped. 3) EMD is tested on two different types of data sets.
One data set is generated from the intergenic regions of
the E. coli genome, and the other is input sequences of dif-
ferent lengths generated by adding margins of different
sizes to each known site. The best ensemble algorithm
performed 22.4% better than the best single component
algorithm in terms of the nucleotide level accuracy.

Results
We developed a series of the EMD algorithms with all the
possible combinations of two to five component algo-
rithms. An EMD algorithm runs its component algo-
rithms multiple times independently, and summarizes
their results basically by majority (Fig. 1). The potential of
an EMD algorithm lies in the fact that it could take advan-
tage of superb predictions of every component algorithm.
The five component algorithms used are AlignACE (AL)
[30], BioProspector (BP) [31], MDScan (MD) [32], MEME
(ME) [33], and MotifSampler (MS) [34]. Below in the
manuscript EMD-X denotes a set of EMD algorithms with
all the possible combinations of X number of component
algorithms. A multi-restart algorithm and random algo-
rithm are also included as comparison bases. We name
different ensemble algorithms by concatenating the
abbreviations of the component algorithms: For example,
AL-BP is an EMD algorithm with AlignACE (AL) and Bio-
Prospector (BP) used as the component algorithms.

Results of EMD on ECRDB62A intergenic sequence data 
set
In Table 1, the performance of the best ensemble algo-
rithm in EMD-2 to EMD-5 is compared with that of the
five stand-alone component algorithms, five multi-restart
algorithms (RS-XX) and a random algorithm on the inter-
genic sequence data set. The performance is evaluated by
the nucleotide level and site level accuracy in terms of the
performance coefficient (n/sPC), sensitivity (n/sSn) and
specificity (n/sSp). First, the nucleotide level performance
coefficient (nPC) is very low for single component algo-
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rithms. Even for the best algorithm, BioProspector, nPC
does not exceed 0.18. It is remarkable that all of the four
ensemble algorithms outperform the best single compo-
nent algorithm in terms of nPC. EMD-AL-BP-MD is the
best ensemble algorithm, achieving an nPC score of
0.213. This is a 22.4% improvement over the best single
algorithm, BioProspector, whose nPC is 0.174. Note here
that the improvement of EMD over its component algo-
rithms comes from an increase of both the sensitivity and
specificity. Surprisingly, the performance of the multi-
restart algorithms is worse than that of the corresponding
single component algorithm in each case (e.g. RS-AL is
worse than AlignACE). nPC, nSn and nSp all dropped.
This is because the score given to predicted motifs by the
algorithms does not always reflect the accuracy well [6]
and also collecting the highest-scoring motifs from multi-

ple runs can result in only picking up similar or identical
motif predictions and neglecting the sub-optimal motifs.
This observation highlights the necessity of reporting mul-
tiple top-scored motif predictions rather than reporting a
single top predicted motif. The comparison of the EMD
algorithms with the multiple-restart algorithms illustrates
that the improved performance of the EMD algorithms is
not simply due to the increased number of runs of com-
ponent algorithms but a synergetic effect of the multiple
runs.

At the site level, the EMD-AL-BP-MD again achieves the
highest prediction performance in sPC, sSn, and sSp. All
of the EMD algorithms exceed 0.30 in terms of sPC. The
same arguments above for the nucleotide level accuracy
also hold for the site level performance.

Overview of the EMD algorithmFigure 1
Overview of the EMD algorithm. After each component algorithm is run R times for an input sequence data set, K motifs are 
collected from each run. The right side of the figure illustrates the grouping phase of the algorithm for the sequence number 1 
and the final prediction of sites for the site group number 1 of the input sequence No. 1. See the text for the details.
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Comparison of different combinations of component 
algorithms
With five component algorithms, there are a total of 31
unique combinations to compose an ensemble algo-
rithm. Table 2 shows the nPC scores for EMD algorithms
with all possible combinations of component algorithms
tested on ECRDB61B-200 data set (200 nt placed on both
sides of known sites). Note that the four EMD algorithms
in Table 1 are the best EMD algorithms amongst those
with the same number of employed component algo-
rithms benchmarked on ECRDB62A dataset. Please also
note that the algorithms shown in Table 2 are all EMD
algorithms even if some EMD algorithms only employ a
single component algorithm; e.g. EMD-AL in Table 2,
results of 20 runs of AlignACE are combined.

Firstly, on average the accuracy improves as the number of
component algorithms increases (Table 2). The average
accuracy of EMD algorithms with a single component
algorithm is 0.202, and the average accuracy monotoni-
cally increases up to 0.254 by the EMD algorithm with five
component algorithms. Secondly, the standard deviation
of the accuracy among the EMD algorithms with the same
number of component algorithms is small, which ranges
from 0.008 (EMD-4) to 0.015 (EMD-1). These results
prove the positive effect of the ensemble approach in the
motif discovery problem. The standard deviation of EMD-
X algorithms decreases as the number of component algo-
rithms increases. It is observed that MD, which is the best
algorithm in constructing EMD algorithms with a single
component algorithm, is always involved in the best EMD

algorithm among those with a higher number of compo-
nent algorithms (EMD-2 to EMD-4). Interestingly, AL,
which performed the worst in the single component EMD
algorithm with nPC of 0.178, can contribute to improved
accuracy. Indeed AL-MD-ME performed the best among
the EMD-3. These results vividly show the synergetic effect
of the EMD algorithm. Note here that the standard error
of each EMD algorithm is very small. Indeed it is less than
0.003 for all of the cases, measured from twenty inde-
pendent runs. This is consistent with our previous obser-
vation that the standard deviation of results (nPC) of the
single component algorithms is very small [6].

Number of runs of component algorithms on EMD 
performance
The number of runs of each component algorithms is an
important parameter in an EMD algorithm. It can affect
the prediction performance and it also determines the
required computational time. We examined the effect of
the number of different runs of component algorithms in
terms of the nucleotide level prediction accuracy (nPC)
(Table 3). In Table 3, the number of runs of the EMD algo-
rithms composed of two component algorithms is
changed from 5 to 20 with an interval of 5 runs. More gen-
erally, any combinations of different number of runs can
be assigned to each component algorithm. However, the
exhaustive combinations of different number of runs have
not been tried here because the current study would be
enough to observe the behavior of EMD algorithms and
also because it is too computationally expensive.

Table 1: The prediction accuracy tested on ECRDB62A set.

Algorithm nPC nSn nSp sPC sSn sSp

BP-MD a) 0.183 0.215 0.280 0.303 0.428 0.407
AL-BP-MD 0.213 0.262 0.296 0.324 0.456 0.437
AL-BP-MD-MS 0.209 0.255 0.293 0.321 0.423 0.446
AL-BP-MD-ME-MS 0.197 0.238 0.286 0.316 0.438 0.437

AlignACE 0.141 0.218 0.171 0.264 0.351 0.396
BioProspector 0.174 0.205 0.268 0.287 0.415 0.369
MDScan 0.146 0.174 0.223 0.244 0.345 0.349
MEME 0.160 0.260 0.190 0.300 d) 0.440 0.430
MotifSampler 0.150 0.180 0.230 0.300 0.320 0.490

RS-AL b) 0.139 0.204 0.166 0.229 0.329 0.341
RS-BP 0.150 0.178 0.231 0.262 0.390 0.350
RS-MD 0.107 0.125 0.169 0.170 0.254 0.271
RS-ME 0.133 0.162 0.203 0.213 0.418 0.282
RS-MS 0.127 0.148 0.187 0.235 0.260 0.384

Random c) 0.050 0.061 0.083 0.100 0.161 0.146

a) The best algorithm among EMD-X (X = 2~5) are compared with component algorithms, b) the multi-restart algorithms, and c) the random 
algorithms. The best performances in terms of nPC or sPC among algorithms of a same category are highlighted in bold. d) Both MEME and 
MotifSampler are highlighted because they have the same performance in terms of sPC.
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From Table 3, it can be seen that on average, increasing the
number of runs contributes to the improvement of the
performance (see the average nPC value at the bottom
row). This general trend does not necessarily apply to a
particular EMD algorithm. The optimal number of runs
for a particular EMD algorithm may be reflecting charac-
teristics of component algorithms, and not very straight-
forward to determine. However, the general trend exists
that the more number of runs increases the accuracy, and
more importantly, the accuracy does not show a dramatic
degeneration when the number of runs increases. There-
fore, practically for the EMD algorithm, it is not inappro-
priate to set the number of runs to 20 times or probably
any number between 10 and 20.

Scalability
We examined the scalability of the EMD algorithms in
terms of the length of input sequences (Fig. 2). One algo-
rithm from each EMD-X (X ranges from 1 to 5) is exam-
ined. Input sequences of different length are prepared as
ECRDB61B data set with different margin sizes ranging
from 20 to 800 (these correspond to the sequence lengths
ranging from approximately 60 to 1620 nt, because the
sequence length is the total of two margins and a site
width). For comparison, the results of the best individual
component algorithm, MDScan (MD), and the best multi-
restart algorithm of BioProspector (RS-BP) are also
shown.

Figure 2 shows that all of the EMD algorithms outperform
MD and RS-BP in terms of nPC when the margin size is up
to 200. Note that error bars are not drawn because the
standard error of all EMD algorithms is less than 0.003
when computed over twenty runs. The performance of the
RS-BP algorithm drops sharply as the margin size
increases. This is consistent with the observation from
Table 1 that multi-restart algorithms perform the worst.
For the margin size of 300 or longer, the performance of
all the algorithms start to converge, and the performance
of the EMD algorithms does not show a large improve-
ment over single MD algorithm.

One possible reason for the ineffectiveness of EMD algo-
rithms for the data sets with longer sequences may be that
only 20 runs of the component algorithms are not suffi-
cient. To check whether increasing the number of runs can
improve the results, we run the AL-BP-MD-MS algorithm
with different numbers of runs ranging from 10 to 50 with
a step size of 10. The corresponding nPC scores were

Table 3: The performance (nPC) of EMD-2 algorithms with 
respect to the number of runs of its component algorithms a).

Algorithm\No. of Runs 5 10 15 20

AL-BP 0.219 0.216 0.219 0.213
AL-ME 0.231 0.231 0.241 0.240
AL-MS 0.182 0.208 0.203 0.203
BP-MD 0.190 0.206 0.197 0.208
BP-ME 0.240 0.242 0.238 0.241
ME-MS 0.210 0.216 0.214 0.213
BP-MS 0.208 0.207 0.207 0.207
MD-ME 0.222 0.233 0.227 0.235
AL-MD 0.236 0.236 0.236 0.250
MD-MS 0.195 0.225 0.220 0.220
Average 0.214 0.222 0.220 0.223

a) ECRDB61B-200 (margin size of 200) data set is used.
b) The nPC value is in bold if it is the best performance among tested 
for that EMD algorithm.

Table 2: Comparison of nucleotide level prediction accuracy (nPC) of EMD algorithms with different combinations of component 
algorithms a).

Algorithm nPC Algorithm nPC Algorithm nPC

AL 0.178 AL-BP 0.213 AL-BP-MD 0.239
BP 0.201 AL-ME 0.203 AL-BP-ME 0.225
MD 0.228 AL-MS 0.208 AL-BP-MS 0.213
ME 0.199 BP-MD 0.241 AL-MD-ME 0.250
MS 0.206 BP-ME 0.214 AL-MD-MS 0.241
Average 0.202 ME-MS 0.220 AL-ME-MS 0.220

AL-BP-MD-ME 0.254 BP-MS 0.207 BP-MD-ME 0.243
AL-BP-MD-MS 0.244 MD-ME 0.235 BP-MD-MS 0.249
AL-BP-ME-MS 0.232 AL-MD 0.240 BP-ME-MS 0.223
AL-MD-ME-MS 0.252 MD-MS 0.250 MD-ME-MS 0.241
BP-MD-ME-MS 0.248 Average 0.223 Average 0.234

Average 0.246 AL-BP-MD-ME-MS 0.254

a) Tested on ECRDB61B-200 data set. b) The best EMD algorithms among those of a given number of component algorithms are highlighted in 
bold.
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0.183, 0.187, 0.181, 0.185, and 0.187, respectively. There-
fore, there is no significant performance improvement
observed when up to fifty runs are conducted for each of
the five component algorithms. To ameliorate the loss of
advantage for longer margins, we have also added another
algorithm, Projection [35], which has a good performance
at longer padding sequence length, to EMD-BP-MD-MS
algorithm (thus EMD-BP-MD-MS-PR algorithm is com-
posed). The EMD-BP-MD-MS-PR did perform the best for
a sequence of the margin size of 100, 200 and 300, but did
not show a superior performance for a longer margin size.

At this point, the scalability is still an issue for the future
work, but note that the majority of the intergenic regions
in E. coli are short. Indeed the average length of the inter-
genic regions of E. coli is 300 nt, and 95.2% of them are
shorter than 420 nt (which corresponds to the sequences
of a margin size of 200), where the EMD algorithms
showed their superiority over the component algorithm
(Fig 2).

Performance on the dataset with shuffled margin 
sequences
We have carried out additional testing on a dataset with
artificially shuffled margin sequences, named ECRDB61C
(Tab. 4). A drawback of the ECRDB62A and ECRDB61B
datasets used above is that some input sequences contain
multiple sites, so that the computed accuracy on the data-
sets may not precisely reflect the actual performance of the

algorithms. In contrast, sequences in the ECRDB61C set
has a target site in the middle of the sequence with artifi-
cially shuffled flanking sequences on both sides, thereby
it is guaranteed that only one target site exists in a
sequence. We tested AL-BP-MD-ME-MS, because this
combination achieved the best nPC on ECRDB61B-200
data set (Tab. 2). The results show that the algorithm per-
formed better on the shuffled margin sequences
(ECRDB61C) when the input sequence is short (the mar-
gin size of 100), but the performance difference vanishes
as the input sequence length increases. The better specifi-
city (nSp) largely contributed in the improvement in the
nPC for ECRDB61C-100.

Discussion
We have developed the EMD algorithm, a framework of
an ensemble algorithm for regulatory site motif discovery.
The ensemble approach has been successfully applied in
several prediction methods in bioinformatics
[19,22,28,36]. The importance of comparing results of
different programs is also recognized in the field of motif
discovery. Melina is a web-based tool which help visualize
and compare outputs of various DNA motif finding pro-
grams [37]. However, to the best of our knowledge, this is
the first extensive report of an ensemble approach for
DNA motif discovery, which combines component algo-
rithms to improved regulatory motif predictions. Using
the framework we developed, we have tested all the possi-
ble combinations of five component algorithms on a
benchmark dataset of experimentally verified regulatory
motifs in E. coli. In terms of the nucleotide level accuracy
(nPC) on intergenic region data set, the best EMD algo-
rithm, AL-BP-MD achieved about 4 points (or 22.4%) bet-
ter accuracy than that of the best component algorithm,
BioProspector (Table 1). Considering the low prediction
accuracy of current single component algorithms, this
improvement is significant. The advantage of the EMD
algorithms over the single algorithms decreases for a long
input sequence set. However, importantly, the perform-
ance (nPC) of the EMD algorithms was never worse than
single algorithms, therefore, users of the EMD algorithms
will never lose accuracy by using them.

The largest advantage of the EMD algorithm is its flexibil-
ity of incorporating new component algorithms. That is, if
a novel superior motif discovery algorithm is made avail-
able, it can be readily incorporated to the EMD algorithm
system. In this study, the five component algorithms we
employed were all sequence-based algorithms, because
they are easily available on the internet and the basis of
more recent algorithms. But there is no difficulty in incor-
porating advanced motif discovery algorithms which use
additional information such as a phylogenetic tree,
because the essence of the EMD algorithm is to combine
individual independent predictions. Another advantage

Scalability of the EMD algorithmsFigure 2
Scalability of the EMD algorithms. The nucleotide level pre-
diction performance was compared with the best base algo-
rithm MDscan (MD) and the best multi-restart algorithm 
(RS-BP). This evaluation is done on ECRDB61B-200 data set. 
The y-axis shows the nucleotide level accuracy (nPC). The 
error bars are not shown because the standard error is very 
small (less than 0.003).
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of the EMD algorithm is that it is particularly suitable for
running on a distributed computer system, such as a grid
computing or a Linux cluster, which will be certainly one
of the main computational powers in the next generation.

Below we discuss major considerations in designing a
good ensemble algorithm: 1) Consensus function: how to
combine predictions from different algorithms with dif-
ferent confidence levels; 2) Diversity of predictions: how
to select and run component algorithms to obtain diverse
predictions to ensure successful combination; and 3)
Strength of component predictions: ways to weight the
predictions from different algorithms.

Ensemble grouping and weighting
The key of an ensemble approach is how to assemble indi-
vidual independent predictions from different algo-
rithms. In the current implementation, predicted sites
from each algorithm are sorted and grouped first by their
score, then further grouped across the results from differ-
ent algorithms. The intention of this implementation is to
increase the specificity of the final prediction by consider-
ing the significance of predicted sites. Thus, commonly
predicted sites with a high score by different algorithms
will be picked up well. In this way, the weight to predicted
sites defined by the score is implicitly counted.

For further improvement of the ensemble algorithm, we
discuss different strategies for clustering predicted sites. A
drawback of sorting predicted sites by their score is that
sites from different motifs in a sequence can be mixed and
clustered together, although it has an advantage of
increasing the specificity of the final prediction. Alterna-
tively, all predicted sites for a sequence can be placed on
the sequence and votes can be cast to sequence positions
occupied by predicted sites. Votes from a predicted site
can reflect its score assigned by the component algorithm.
Another idea is after grouping predicted sites by the score
for each algorithm as it is done in the current implemen-
tation, each group can be corresponded to other overlap-
ping groups (in terms of their location in sequence) from
a different algorithm, but not by the score rank.

Weighting predicted sites is another important issue in an
EMD algorithm. In the current implementation, all pre-
dicted sites have an equal weight of one, although as it is
mentioned above, the significance scores assigned to
them by each algorithm are implicitly counted in the clus-
tering phase. Generally, a weight to a predicted site will
originate from two sources, from the reliability of individ-
ual prediction indicated by the score and from the reliabil-
ity of the algorithm itself, which can be measured by the
overall prediction accuracy on a certain benchmark data-
set. The weighting of sites can be considered in the voting
phase in our implementation. Counting the two sources
of weights, a vote for a predicted site may be revised to
w1b*w2a instead of one, where w1 will be proportional to
the assigned score to a particular site, b, and w2 will be
proportional to the overall accuracy of the algorithm, a.
One way of doing this is to develop reasonable formulae
for w1 and w2 and see if the weights improve the overall
results or not. The difficulty lies especially in determining
weights for algorithms, w2a, because they depend on the
combination of component algorithms in an EMD algo-
rithm. As shown in Table 2, sometimes a combination of
a relatively more accurate algorithm and a relatively less
accurate one performs better than a combination of two
average ones, so the resulting performance of an EMD
algorithm depends on the compatibility of component
algorithms, not necessarily to the accuracy of individual
algorithms. Another way to change the strength of contri-
bution of an algorithm is to change the number of runs.

An alternative way to find appropriate weights will be to
use an optimization algorithm such as neural network or
genetic algorithm. The weights assigned to component
algorithms in an EMD algorithm, w2a, could be opti-
mized. As for the weight assigned to individual site predic-
tion, first a formula for w1b should be developed using
several adjustable parameters, and those parameters will
be optimized. An advantage of using an optimization
technique is that the other parameters such as the number
of runs and/or built-in parameters for each component
algorithm may be able to be optimized at the same time.
Again since the appropriate weights and the other param-
eters may totally depend on the combination of compo-

Table 4: The performance of AL-BP-MD-ME-MS on a dataset of shuffled margin sequences a).

nPC nSn nSp

Margin size (nt) 100 200 400 100 200 400 100 200 400
Original set b) 0.288 0.254 0.197 0.328 0.292 0.234 0.416 0.360 0.270
Shuffled set c) 0.317 0.255 0.187 0.340 0.275 0.201 0.481 0.375 0.266

a) To the both sides of known sites in the ECRDB61B data set, artificially shuffled sequences with the size of 100, 200, and 400 nt are attached. The 
statistics of the di-mer nucleotide frequency used to generate the shuffled margin sequences are taken from intergenic regions of the E. coli genome.
b) The performance on the original ECRDB61B-100, 200, 400 set.
c) The performance on the data set with shuffled margin sequences.
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nent algorithms, they should be optimized every time a
different combination is tried.

Diversity of predictions from component algorithms
To ensure that the predictions from component algo-
rithms cover most target motifs, it is desirable that diverse
predictions are generated from component algorithms.
Diversified predictions would contribute in increasing the
sensitivity of the final prediction. For stochastic algo-
rithms, multiple runs usually naturally generate multiple
different predictions. For deterministic algorithms like
MEME and MDScan, we changed some parameters
(named diversity parameters) to force them to generate
different predictions. This idea of the diversity parameter
is reasonable since the optimal parameter for a given
input data set cannot be estimated in advance. However,
a possible downside is that if the parameter is excessively
changed, the quality of the predictions can be significantly
deteriorated, resulting in a poor consensus building.
Another possible way to diversify predictions is to feed
different runs or algorithms with different subset data
sampled from the original input sequences, which is yet to
be explored.

Conclusion
We have introduced an ensemble approach to the motif
discovery problem. To the best of our knowledge, this is
the first time that an ensemble approach is used in the
motif discovery problem. By combining multiple predic-
tions from multiple runs of one or more component algo-
rithms, our ensemble algorithm showed good
improvement in the sensitivity and specificity and thus,
the overall accuracy over stand-alone component algo-
rithms. The EMD algorithm is scalable in the sense that
the EMD algorithms performed better, or at worst, equally
compared to individual component algorithms. The
improvement in the accuracy over the component algo-
rithm is more significant for shorter input sequences.
Considering the importance of the regulatory motif dis-
covery in gene expression analysis and the poor perform-
ance of the current individual motif discovery algorithms,
our EMD algorithms can be a very useful tool in the era of
systems biology.

Methods
Benchmark data sets
The benchmark data set is generated from RegulonDB
[38], which stores motif information of E. coli K12. Since
this benchmark set is basically the same as the one used in
our previous study [6], we only briefly describe it here.

Three types of data sets (Type A, B, and C) are prepared.
Type A data sets are generated from the intergenic regions
of E. coli genome. The intergenic region sequences are
taken from the KEGG database [39]. This set A contains 62

motif groups and is called ECRDB62A. It has the follow-
ing characteristics: the average number of sequences per
motif group is 12; the average number of sites per
sequence is 1.85; the average sequence length is 300 nt;
the average site width is 22.83.

Types B and C data sets include sequences with symmetric
margins on both sides of known sites. The difference
between the sets B and C is that actual flanking sequences
in the E. coli genome are used for margins for the set B,
whereas artificial sequences are used for the type C.

Set B is termed ECRDB61B-X, where X denotes the margin
size of the sequences. The length of the margins is
changed from 20 to 800, so that the scalability of algo-
rithms in terms of the input sequence length can be exam-
ined. Because margins are added on both sides of a site,
the actual length of an input sequence is the total of the
site width and two times the margin size. The number 61
denotes the number of motif groups available in this
benchmark set. When a large margin size is used, it some-
times happened that an extended sequence includes
another site of the same motif group, thus the two input
sequences contain the same set of two sites of the same
type. In such a case, one of the input sequences is
removed, and if this procedure reduces the number of
input sequence to one, the entire motif group is removed
from the benchmark dataset. It also happened that an
input sequence of a certain motif group contains another
site of a different type when a large margin size is used.
But since this case happens in a real situation, primarily
we kept these sequences in the dataset. In such a case,
because sites of a target motif are still abundant, we expect
an algorithm is able to pick the target sites as one of the
top K scoring motifs. We also observe that when the mar-
gin sizes are larger (e.g. >500 nt), some part of the
sequences are located in the coding regions. However, as
shown in the previous study [6], no significant influence
has been observed of these variations on the prediction
accuracy. In ECRDB62A and ECRDB61B-X dataset, there
are input sequences which have multiple identical motifs
(i.e. two AraC motifs on a sequence) on it. In those cases,
positions of both motifs are considered to be correct. And
the dataset is cleaned so that a certain motif position only
occurs once in a motif group. Also a motif group does not
contain different motifs multiple times, so that the motif
discovery algorithms do not confuse by them.

In addition to the type A and B sets, we have prepared the
type C set, where artificially shuffled sequences are used
for margins on both sides of known sites. This dataset is
termed ECRDB61C-X. X represents the length of the mar-
gin sequence. The same set of the known sites are used as
in ECRDB61B data set. Three different margin sizes, 100,
200, and 400 nt. are used. The margin sequences are arti-
Page 8 of 13
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ficially shuffled, while preserving the di-mer nucleotide
frequency of intergenic regions of the E. coli genome. The
motivation of using the type C set is to evaluate the per-
formance of the algorithms on sequences which surely
contain only one target regulatory site in a sequence. The
benchmark data sets are available at our web site [40].

Ensemble motif discovery algorithm
The Ensemble Motif Discovery (EMD) algorithm repre-
sents a family of motif discovery algorithms that combine
multiple results from individual component algorithms.
In this study, we primarily used five component algo-
rithms which are described in the next section. A certain
ensemble algorithm can be uniquely identified by the set
of component algorithms used, the number of times each
component algorithm is run (Ri, i denotes for a certain
component algorithm), the parameter set used to run
each component algorithm (Pi), and the number of top
scoring motifs considered from each run (Ti). Thus, an
EMD algorithm can be specified as EMD(-CAi-Ri-Pi-Ti)M,
where CAi denotes a certain component algorithm with
the conditions, Ri, Pi, Ti (i goes from 1 to M, M is the
number of different component algorithms combined).

More generally, Pi and Ti can be changed for each different
run of the algorithm i, which can introduce further varia-
tions to the EMD algorithms. However, since it is not pos-
sible to explore every possible condition, some of the
parameters are set to be the same. The number of motifs
to be reported from individual runs is set to five for all
runs of all the component algorithms (Ti = 5). The
number of runs (Ri) is set to 20 if not specified otherwise
for all component algorithms. For a single component
algorithm, the same parameter set is used for all the runs.
For deterministic algorithms, however, the parameter set
is changed for each run because otherwise they produce
identical results. For a deterministic algorithm, ten differ-
ent values are prepared for a tuning parameter (we call it
a diversity parameter), one of which is selected randomly
for each run. Since we don't change Ri and Ti for each dif-
ferent algorithm i, and the parameter set Pi is set to be
same in all the runs of the algorithm i, the notation of an
EMD algorithm can be simplified to be EMD(-CAi)M. Spe-
cifically, we denote EMD-X (X = 1~5) as the set of all the
possible combinations of X component algorithms.

Algorithm of the EMD
Suppose an EMD algorithm combines M component
algorithms, Ai, (i = 1..M). The EMD algorithm predicts
motifs in a set of N sequences, Si, (i = 1..N). Here a motif
is defined as a set of local regions (=sites) in input
sequences which are detected to be similar to each other.
In the other words, one or sometimes more sites are pre-
dicted in each input sequence, and all of the sites in an
input sequence set form a motif. The EMD algorithm has

five steps to generate its final prediction: collecting, group-
ing, voting, smoothing, and extracting. The overview of
the algorithm is provided in Figure 1.

(1) Collecting
Each algorithm Ai runs R times against an input dataset of
N sequences and reports top K scoring motifs for each run.
For a motif, a component algorithm Ai usually detects one
site per input sequence by a single run, resulting the total
of R*K predicted sites in a sequence. If an algorithm Ai
reports more than K motifs, only the top K scoring motifs
are considered. Oppositely, if less than K motifs are pre-
dicted by an algorithm, all of the motifs are considered.
Also since sometimes an algorithm picks more than one
site or no sites in a sequence, the total number of pre-
dicted sites in a sequences can be more or less than R*K.
Now for each combination of an input sequence and a
component algorithm, all the predicted sites are collected.
Figure 1 illustrates the collecting phase of sites in the input
sequence number 1 from all the algorithms, A1 to AM.

(2) Grouping
From the collecting phase above, for an input sequence Si
we have about R*K predicted sites from each of the algo-
rithm Ai. In the grouping phase, first, all the predicted sites
in an input sequence Si by a certain algorithm Ai are sorted
by the algorithm's major statistical score. Then the pre-
dicted sites are divided into K groups by the sorted score,
with each of the groups having an equal number of pre-
dicted sites. Because usually an input sequence has R*K
sites, most of the groups have R sites.

Then, the groups of the same score rank across the results
by M different algorithms are joined together. This results
in K groups of predicted sites from all predictions made by
all algorithms.

The reason for employing this sorting step is to take the
score assigned to predicted sites by the algorithm into
account. We have observed from prediction results of sin-
gle component algorithms that the correct site position is
frequently predicted within the top couple of score ranks
most of the time. Therefore, a local region predicted as the
target site consistently in every run by the algorithm
within the top scores can be considered to be more relia-
ble.

Basically, each of the K groups will finally produce a pre-
dicted site. Thus in total EMD outputs K predicted sites for
an input sequence. But if the average number of predicted
sites, Bi, for a given input sequence Si, is more than one,
there is an option to output Bi sites for the sequence Si
from each group. The subsequent steps of voting, smooth-
ing, and extracting steps explain how EMD construct final
predictions from the collected sites in each group.
Page 9 of 13
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(3) Voting
For each of the K predicted site groups in a sequence Si, all
the predicted sites in a group are placed on the sequence.
Then for each position p in a sequence, the number of
times the position p is included, or votes for the position
p, Vp, in the predicted sites is counted. Figure 1 shows the
number of votes Vp along the sequence position p for the
site group 1.

(4) Smoothing

The vote Vp along an input sequence is smoothed using a

sliding window of a width of Ws, which is half of the spec-

ified motif width W (W is a user specified parameter, the
default value is 15 and Ws is 8). The sliding window starts

from the left most position of the sequence, and the sum

of the votes in the window, , is placed in the center

position p of the window. In the case that Ws is even, the

smoothed score, , is placed at the q-th position in the

window, where q = (Ws/2)+1.

(5) Extracting final prediction of sites

The final stage is to pick up the top local peak (or the top

Bi local peaks) in the smoothed voting curve, . Then a

window of the length W is placed as the final prediction
of the site, with the center of the window positioned at the
peak.

The smoothing and the extracting phases are aimed to
decide the final site prediction by majority votes.
Although it may be possible that minority votes for differ-
ent motifs are not selected as one of the final predictions,
but this procedure will be superior in picking up sites
which are consistently predicted with a high score rank.
Alternative ways to combine different predictions are dis-
cussed in Discussion.

Component algorithms
There are several factors that need to be considered to
develop an ensemble algorithm. First, we have to identify
whether a component algorithm is a stochastic or deter-
ministic algorithm. In an ensemble algorithm, the com-
ponent algorithms are usually run multiple times and all
the results are combined together. We need a way to con-
trol the proportion of predictions from different algo-
rithms to avoid any bias. For deterministic component
algorithms, such as MDScan [32] and MEME [33], multi-
ple runs generate identical predictions, which will
strongly bias the final combined result. To address this
problem, we introduced the diversity parameter(s), which
is defined as one or more parameters of an algorithm that
one can tune to generate different predictions. In this

study, only one diversity parameter is chosen for the deter-
ministic algorithms, namely, MEME and MDScan.

Five motif discovery programs, namely, AlignACE [30],
MEME [33], BioProspector [31], MDScan [32], and Motif-
Sampler [34] are selected as the component algorithms
for composing the ensemble algorithms. These algorithms
only use DNA sequence information as input to identify
the regulatory motifs. These algorithms are selected
because of their wide use and being ready for download
from the internet, allowing us to do large scale local runs.
Below we describe the parameter setting of each algo-
rithm. A random algorithm is also introduced to evaluate
the statistical significance of the prediction accuracy of the
ensemble algorithm.

One difficulty in testing the performance of an algorithm
is to set optimal parameters. Here most of the parameters
for the component algorithms are set as default values
except those which can be easily estimated from general
biology knowledge, as we did in the previous study [6].
For example, we have chosen 15 as the expected motif
width for the component algorithms (except for MEME,
which can adjust motif width by itself), because 15 is the
approximate average between the default value of the
algorithms and the average motif width in ECRDB62A,
which is 21. The reason why we used default parameters
(except for the few parameters mentioned below) for the
component algorithms is that it is infeasible to try all the
possible combinations of parameters of multiple compo-
nent algorithms, and the default setting for an algorithm
should work reasonably well in most of the cases, because
it is set up by the authors of the algorithm. The parameter
set used for each component algorithms can be found at
our web site [40]. This is the same parameter set used in
the previous study [6].

AlignACE
AlignACE [30] is a stochastic motif discovery program
based on the widely adopted Gibbs Sampling method
[11]. Running parameters for AlignACE were set as the
default except for the background fractional GC content
gcback set to 0.5, which is calculated from the whole E.
coli genome. The expected motif width was set to 15. The
major statistical score in AlignACE is the MAP score, being
the larger is better.

BioProspector
BioProspector [31] is another variant of the Gibbs Sam-
pling algorithm, which has fifteen parameters to fine-tune
its prediction behavior. We used the default values for
most of these parameters except for: the motif width,
which was set to 15; the number of top motifs to report,
which was set to 5. The background frequency model was
generated using the whole E. coli genome and the third

Vp
s
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s

Vp
s
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order Markov model was used. The order of the back-
ground model and subsequent ones for MDScan, Motif-
Sampler and MEME was determined based on our
previous benchmark study of these component algo-
rithms [6]. BioProspector uses a maximum a posterior
(MAP) score to evaluate candidate motifs.

MDScan
MDScan [32] is an enumerative deterministic greedy algo-
rithm. Among its ten parameters, we only specified the
following parameters. The motif width was set to 15. The
background frequency model was generated using the
whole E. coli genome and the third order Markov model
was used. MDScan uses a maximum a posterior (MAP)
score to evaluate candidate motifs. We chose the -s param-
eter < the number of top motifs to scan and refine > as the
diversity parameter to generate different predictions for
multiple runs. It ranged from 10 to 100 with a step size of
10.

MEME
MEME (Multiple Expectation Maximization Estimation)
[33] is a deterministic algorithm based on the expectation
maximization (EM) technique. It is the only algorithm in
this evaluation that does not require a motif width param-
eter, because MEME can estimate by itself. MEME has 28
parameters. We set the maximum dataset size in charac-
ters to one million, the maximum running time to 3600
CPU seconds, the maximal number of motifs to find to
five, and the minimum number of sites for each motif to
one. The third order Markov model was used for the back-
ground frequency model. Default values were used for all
the other parameters. We chose the -maxw <maximum
motif width> as the diversity parameter, ranging from 10
to 19, with the step size of 1.

MotifSampler
MotifSampler [34] is another motif discovery program
based on Gibbs sampling. MotifSampler has seven major
parameters. We made the following adjustments to the
default parameter values. We searched five different
motifs of a width of fifteen. The number of repeating runs
was set to five. The background frequency model was gen-
erated using the intergenic region sequences of all E. coli
genome and the third order Markov model was used. We
used the consensus score as the statistical measure for the
quality of the predicted motifs.

The multi-restart algorithm
One interesting question for ensemble algorithms is
whether the performance improvement of the ensemble
algorithm is due to more number of runs or to synergetic
effect of multiple runs of multiple algorithms. We devel-
oped a multi-restart algorithm (RS) and compared its per-
formance against that of ensemble algorithms. The basic

idea of RS algorithm is to run a given algorithm multiple
times and use the highest scored predictions as the final
results. The multi-restart algorithm works as follows:

1) Run the component algorithm for R times, with each
run reporting top K motifs.

2) Collect all the predicted motifs and sort them by the
major statistical score of the algorithm.

3) Report the top K motifs among all the sorted motifs as
the final prediction.

The random algorithm
In a random motif algorithm, a certain number of sites are
randomly picked up as predictions of sites. The number of
sites picked up is decided for each input sequence as fol-
lows: First, conducted 10 runs of AlignACE, BioProspec-
tor, MotifSampler and one run of MEME to get the
minimum (nSiteMin) and the maximum number
(nSiteMax) of predicted sites. Then, the number of sites to
be predicted is randomly chosen between nSiteMin and
nSiteMax. The random algorithm is run 1000 times, and
the average performance is reported.

Measure of prediction accuracy
We use two levels of performance criteria: nucleotide and
site levels to measure the prediction accuracy. A more
detailed description is given in the previous study [6]. The
nucleotide level accuracy measures include the perform-
ance coefficient (nPC), the sensitivity (nSn) and the spe-
cificity (nSp). The site level accuracy measures include the
site level performance coefficient (sPC), the sensitivity
(sSn) and the specificity (sSp). As described above, an
EMD algorithm reports K (or sometimes less) motifs for a
given input dataset. In this study, we evaluated the accu-
racy of the best prediction out of the K motifs [6].

Nucleotide level accuracy
First, for each target site with overlapping predicted sites
in an input sequence, we define the following values to
calculate the accuracy metrics at the nucleotide level: nTP
(true positive), the number of target site positions pre-
dicted as site positions; nTN (true negative), the number
of non-site positions predicted as non-site positions; nFP
(false positive), the number of non-site positions pre-
dicted as site positions; nFN (false negative), the number
of target site positions predicted as non-site positions.

The nucleotide level performance coefficient (nPC), sensi-
tivity (nSn) and specificity (nSp) for a pair of target/pre-
dicted sites is defined as:

nPC
nTP

nTP nFP nFN
nS

nTP

nTP nFN
nS

nTP

nTP nFPn p=
+ +

=
+

=
+
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In addition to the accuracy score for target sites with over-
lapping predictions, we need to address the cases of tar-
geted sites which do not overlap with any predicted sites
or predicted sites without overlapping any targeted sites.
We define the number of non-overlapping target and pre-
dicted site pairs as the larger number among MT and MP,
where MT denotes for the number of missing targeted sites
and MP denotes for the number of wrong predictions. The
accuracy scores of these non-overlapping pairs are set to
zero. This definition will penalize algorithms that report
either too many or too few site predictions. Based on the
scores defined for the site pairs, the accuracy scores of a
motif discovery program are calculated as:

Thus, the score is first averaged over all site pairs in a
sequence, followed by averaging over all sequences in a
motif group, and finally averaging over all the motif
groups. Note that we allow multiple sites on a sequence as
targeted sites.

Site level accuracy
The site level accuracy indicates if predicted sites overlap
with true sites by one or more nucleotide position. We
define, sTP, sFP, and sFN as follows: sTP, the number of
predicted sites which overlaps with the true sites by at
least one nt; sFP, the number of predicted sites which have
no overlaps with the true sites; sFN, the number of true
sites that have no overlaps with any predicted sites.

For each input sequence, we define the site level perform-
ance coefficient (sPC), sensitivity (sSn), and specificity
(sSp) in the following way:

The site level accuracy score for an input sequence set (or
a motif group) is the average of the score over all the
sequences. The site level accuracy score of the entire
benchmark data set is the average of the scores for all
input sequence sets.
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