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Abstract

Background: Biological tissues consist of various cell types that differentially contribute to
physiological and pathophysiological processes. Determining and analyzing cell type-specific gene
expression under diverse conditions is therefore a central aim of biomedical research. The present
study compares gene expression profiles in whole tissues and isolated cell fractions purified from
these tissues in patients with rheumatoid arthritis and osteoarthritis.

Results: The expression profiles of the whole tissues were compared to computationally
reconstituted expression profiles that combine the expression profiles of the isolated cell fractions
(macrophages, fibroblasts, and non-adherent cells) according to their relative mRNA proportions
in the tissue. The mRNA proportions were determined by trimmed robust regression using only
the most robustly-expressed genes (1/3 to 1/2 of all measured genes), i.e. those showing the most
similar expression in tissue and isolated cell fractions. The relative mRNA proportions were
determined using several different chip evaluation methods, among which the MAS 5.0 signal
algorithm appeared to be most robust. The computed mRNA proportions agreed well with the cell
proportions determined by immunohistochemistry except for a minor number of outliers. Genes
that were either regulated (i.e. differentially-expressed in tissue and isolated cell fractions) or
robustly-expressed in all patients were identified using different test statistics.

Conclusion: Robust Computational Reconstitution uses an intermediate number of robustly-
expressed genes to estimate the relative mRNA proportions. This avoids both the exclusive
dependence on the robust expression of individual, highly cell type-specific marker genes and the
bias towards an equal distribution upon inclusion of all genes for computation.
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Background

The comparative analysis of gene expression in diseased
tissues and its isolated cell fractions can be used to iden-
tify genes with potential pathophysiological relevance,
including those involved in interactions among different
cell types. In the present study 'isolated cell fractions' are
defined as cultivated cell populations of individual cell
types purified from the respective tissue samples. A direct
approach to the gene expression of specific cell types in
the tissue is their microdissection from the tissue. Isola-
tion and amplification of mRNA from microdissected sin-
gle cells or pure cell type subpopulations has recently
been established and described [1,2]. However, this
method is just emerging, still having technical problems
with reliable cell type markers, exact dissection, and repre-
sentative mRNA extraction and amplification [3,4]. There-
fore, instead of comparing gene expression profiles of
individual cell types between tissue and isolated cell frac-
tions, the present study compared the gene expression
profiles of whole tissues and computationally reconsti-
tuted expression profiles that combine the expression pro-
files of the isolated cell fractions according to their relative
mRNA proportions in the tissue. These relative mRNA
proportions were determined using trimmed robust
regression.

Methods for the reconstruction of cell type-specific expres-
sion profiles and relative proportions have already been
proposed in the literature. The marker gene approach
[5,6] determines the relative mRNA proportions from the
expression of highly cell type-specific marker genes. A
drawback of this method is its dependence on the robust
expression of single genes. Venet et al. [7], Stuart et al. 8],
and Lihdesmaeki et al. [9] identified cell type-specific
expression profiles from tissue samples differing in their
cell type composition. Venet et al. [7] and Lahdesmaeki et
al. [9] computed the cell type-specific expression profiles
and their corresponding relative proportions simultane-
ously (matrix factorization of the tissue gene expression
matrix), whereas Stuart et al. [8] determined the cell pro-
portions experimentally and then calculated the respec-
tive expression values (gene-wise regression). The method
of Lu et al. [10] and the present study are different from
the three previous approaches in that they use actually
measured, cell type-specific expression profiles and deter-
mine the relative mRNA proportions computationally
(tissue-wise regression). Whereas Lu et al. [10] compared
desynchronized yeast cell 'tissues' and five isolated cell
fractions consisting of synchronized yeast cells in the G,
S, G, M, and M/G; cell cycle phases, the present study
compares synovial tissues with the isolated cell fractions
of adherent macrophages, adherent fibroblasts. and non-
adherent cells. The study of Lu et al. [10], however, did not
address the relative importance of regulated gene expres-
sion resulting from the induction of cell cycle arrest. In
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contrast, the present study demonstrates for the first time
that in order to avoid a bias towards an equal distribution
of the computed mRNA proportions, as many regulated
genes as possible must be excluded from the analysis.
Here, 'regulated genes' are defined as showing a differen-
tial expression between tissue and isolated cell fractions,
whereas 'robustly-expressed genes' show a similar expres-
sion under both conditions. Differential gene expression
was also investigated in the study of Ghosh [11], in which
the gene expression of tumor tissue samples was com-
pared to that of normal tissue controls (probabilistic mix-
ture model). This study accounted for the varying relative
proportions of stromal tissue within the tumor samples
and assumed the gene expression in tumor and normal
tissue to be perfectly robust, i.e. independent of their rel-
ative proportions in the sample (as is also the case in the
studies of Venet et al. [7]. Stuart et al. [8], Lihdesmaeki et
al. [9], and Lu et al. [10]). Thus, differential expression in
the study of Ghosh [11] refers to expression differences
between tumor and normal tissue, whereas regulated
expression in the present study refers to expression differ-
ences between two conditions (tissue versus isolated cell
fractions).

Synovial membranes (inner aspect of the joint capsule)
consist of three main cell types: macrophages and fibrob-
lasts, both adhering to the culture vessel, and mixed non-
adherent cells. These cell types are expected to contribute
differentially to the pathogenesis of rheumatic diseases by
expressing pro-inflammatory and pro-destructive genes.
Therefore, gene expression profiles of the whole synovial
tissue and the respective isolated cell fractions of patients
with rheumatoid arthritis (RA) and osteoarthritis (OA)
were analyzed using Affymetrix GeneChip technology.
The performance of the newly developed reconstitution
algorithm was validated using two mRNA mixing experi-
ments performed by the authors and the mixing part of
the GeneLogic dilution study [12]. The computed mRNA
proportions were compared to the cell proportions deter-
mined by immunohistochemistry. Regulated and
robustly-expressed genes selected according to statistical
evidence and pathophysiological relevance are listed in
the supplementary material.

Results

The relative mRNA proportions of macrophages (p,,),
fibroblasts (p;), and non-adherent cells (py) were deter-
mined for each tissue sample by matching the measured
synovial tissue expression profile S and the computation-
ally reconstituted expression profile $* = p,, M + p.F + py
N, which in turn combines the measured expression pro-
files of the isolated cell fractions of macrophages (M),
fibroblasts (F), and non-adherent cells (N) according to
their relative mRNA proportions (Figure 1).
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Computational reconstitution. Schematic view of the gene expression in the synovial tissue (left) and the computationally

reconstituted tissue profile (right). The expression of the synovial tissue is composed of the expression of macrophages M,

fibroblasts F , and non-adherent cells N . The expression of the whole tissue is measured as the overall expression profile S.

The computationally reconstituted tissue profile $* is composed of the measured expression profiles of the isolated cell frac-
tions, i.e. of macrophages M, fibroblasts F, and non-adherent cells N. The relative mRNA proportions p,, pp, and py are deter-

mined by matching the computationally reconstituted profile S* with the measured tissue profile S, The measured expression

profiles are enframed using solid lines.

The matching of § and S* as a function of the relative
mRNA proportions was performed using trimmed robust
regression (Methods section, subsection Mathematical
model). Trimmed regression only uses part of the data in
order to exclude outliers that otherwise would bias the
result. Here, the result is given by the set of relative mRNA
proportions that minimize the differences between S and
S* as quantified by the regression objective function.
Solutions to trimmed regression problems are in general
not unique due to the data subset choice, however, the
solutions generally become more alike with increasing
subset size. In the present study, the trimmed regression
problem was solved for an increasing number of included
genes. For each such number the optimization routine
was initialized from several different starting values. The
standard deviation of the results obtained from these ran-
dom initializations was used to assess the similarity of the
solutions. The relative mRNA proportions were deter-
mined from the respective ensemble means at the mini-
mum number of included genes, for which the ensemble
standard deviations approached zero, i.e. for which the
solution was almost unique. This 'educated guess' (heuris-
tic) approach accounts for the fact that the solution is
completely indeterminate towards zero included genes

and increasingly biased towards an equal distribution
upon inclusion of all genes (Methods section, subsection
Mathematical model). The general performance of this
methodology is demonstrated in this first subsection. In
order to assess the effect of data preprocessing on the
present results the influence of different chip evaluation
methods was investigated (Different chip evaluation
methods subsection). The preliminary knowledge of the
true relative mRNA proportions in mRNA mixing experi-
ments was used to validate the present methodology as
well as the chip evaluation methods (Mixing experiments
subsection). In addition, the computed mRNA propor-
tions were compared to the cell proportions determined
by immunohistochemistry and those obtained using the
marker gene approach (Immunohistochemistry and
marker genes subsection). Finally, genes that were regu-
lated and robustly-expressed in all patients were identified
using different test statistics (Regulated and robustly-
expressed genes subsection).

General performance

The proposed method for the determination of the rela-
tive mRNA proportions is demonstrated using the data of
patient 2. Figure 2 shows how the means and standard

Page 3 of 16

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:369

deviations of the computed relative mRNA proportions of
macrophages (p,,), fibroblasts (pz), and non-adherent
cells (py) depend on the number k of genes included in
the trimmed regression approach (Methods section, sub-
section Mathematical model). The mean is variable for
small k. settles to a constant value for intermediate k and
shows a slow and incomplete convergence towards an
equal distribution (py, = pp = py = 1/3) for large k. The
respective standard deviations approach zero at an inter-
mediate number of included genes. This number was used
to determine the mRNA proportions from the respective
mean values. The solid curves correspond to data, for
which an additional local regression normalization was
performed for the measured and reconstituted tissue pro-
files in each algorithmic step (Methods section, subsec-
tion Data preparation). The decrease of the standard
deviation is faster for additional local regression normali-
zation in this case, but the resulting mRNA proportions
are similar.

The general curve progression in Figure 2 is similar to that
obtained from a probabilistic model described in Supple-
mentary Section A (Supplementary Figure A.2, see Addi-
tional file 1). However, the best estimate of the 'true'
tissue mRNA proportions assumed by the model was
obtained for the smallest number of included genes (in
contrast to an intermediate number in Figure 2). This dif-
ference can be attributed to the striking roughness and
overall flatness of the empirical objective function (3)
used for trimmed regression (Methods section, subsection
Mathematical model; Supplementary Figure A.3, see
Additional file 1), if only a small number of genes is
included. Hence, the means of the computed relative pro-
portions converge to an equal distribution towards both
ends. For increasing , this is due to the inclusion of more
and more regulated genes with expression levels non-cor-
related or negatively correlated between tissue and iso-
lated cell fractions (Supplementary Section A.2, see
Additional file 1). For decreasing k, this is due to the
increasing roughness (increasing number of local
minima) and overall flatness of the objective function
(Methods section, subsection Mathematical model; Sup-
plementary Section A.3, see Additional file 1). The relative
mRNA proportions of the tissue can be estimated from the
respective means of the computed mRNA proportions, as
soon as the respective standard deviations become suffi-
ciently small. The distribution of the individual mRNA
proportions can then be assumed to be symmetric, imply-
ing the equality of mean and global minimum [13]. The
drop of the standard deviation was indeed the most
important criterion, but the curve progression and the
agreement between the curves for the two different chip
normalization methods (with and without local regres-
sion) were also taken into account.

http://www.biomedcentral.com/1471-2105/7/369

Different chip evaluation methods

There is an ongoing discussion about the question which
probe set summary and which chip normalization
method proves optimal for evaluating oligonucleotide
microarrays. For assessing the effect of different chip eval-
uation methods on the results obtained by Robust Com-
putational Reconstitution, four different probe set
summaries were applied: MAS-S, MAS-C [14,15], RMA
[16], and MBEI [17] (Methods section, subsection Data
preparation). In addition, four different normalization
methods were tested for the MAS-S and MAS-C summa-
ries: trimmed mean only (t) [14,15], trimmed mean plus
cyclic local regression (clr) [18], quantile normalization
(9) [18,19], or centralization (c¢) [20] (Methods section,
subsection Data preparation). The results are summarized
in Table 1.

The computed mRNA fractions vary considerably among
different probe set summaries and, for MAS-S and MAS-C,
among different normalization methods. The methodo-
logical scatter differed among patients. It was quantified
in terms of the pooled Mean Absolute Deviation (MAD)
of the relative proportions across methods calculated with
regard to the respective mean values, i.e. MAD =

S 1 b l/ImllCl, in which

Pc = Zmp(cm) /| m| denotes the mean across methods

(m) for a given cell type (C) (Table 2). The hybridization
for patient 1 was repeated two times. Using the original
tissue chip (HG-U95A), an MAD of 15% (in absolute
value) was calculated. It was reduced to 5% and 9% using
the second and third tissue chip replicate (HG-U95Av2),
respectively (Table 2). Considering only the four different
chip normalization methods applied to the MAS-S sum-
maries resulted in a lower MAD for all patients, except for
patient 2. Additional stepwise local regression normaliza-
tion (Ir) had little effect when all methods were consid-
ered, however, the MAD was greatly reduced by Ir for the
MAS-S normalization methods (all within 1-3%, Table
2).

The MAS-S summaries were preferred to the MAS-C, RMA,
and MBEI summaries in this study because the agreement
between the curves with and without stepwise local regres-
sion normalization (Ir) was generally better for the MAS-S
summaries (Figure 2 and Supplementary Figures C.1 and
C.2, see Additional file 1). In addition. RMA, MBEI, and
MAS-C tended to more extreme proportions close to
100% for patients 2, 5, and 6 (Table 1 and Supplementary
Table C.1, see Additional file 1). In view of the relative cell
proportions determined by immunohistochemistry (see
subsection Immunohistochemistry and marker genes),
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Figure 2

Results for patient 2. Mean and standard deviation of the computed relative mRNA proportions for macrophages (macro),
fibroblasts (fibro) and non-adherent cells (nadc) for patient 2 as a function of the number k of genes included in the trimmed
regression approach (Methods section, subsection Mathematical model). The measured expression profiles are MAS-S probe
set summaries normalized by a symmetric trimmed mean (t) (Methods section, subsection Data preparation). The reconsti-
tuted tissue profile is either not normalized (dashed) or normalized by stepwise local regression (Ir, solid) (Methods section,
Data preparation). The proportions are determined from the respective means at the number of genes for which the standard
deviations approach zero. The chosen numbers are indicated by the dashed and solid (Ir) vertical lines, respectively. The con-
vergence is faster for additional local regression (Ir), but the resulting proportions are similar. The mRNA proportions are esti-
mated to be p,, = 0.82/0.79 (Ir) for macrophages, p = 0.09/0.06 (Ir) for fibroblasts and p,,= 0.10/0.15 (Ir) for non-adherent cells.
These values were determined at 6000 and 5000 (Ir) included genes, respectively.

the less extreme values obtained from MAS-S are more
plausible. Moreover, the use of MAS-C resulted in irregu-
lar curves for patient 1 (original tissue chip, Supplemen-
tary Figure C.2, see Additional file 1).

The results obtained by excluding weakly-expressed genes
(either < 100 or < 200 signal intensity) were within the
range of the values listed in Table 1. This was also true for
data filtering by Affymetrix present calls and transforma-
tion of the data according to the variance stabilization

method of Huber et al. [21,22] (this is presumably due to
the fact that the data are already corrected by MAS 5.0 in
order to avoid negative intensities). Masking of outliers as
performed by the MAS 5.0 software also did not alter the
results. This suggests that measurement errors associated
with weakly-expressed genes, outliers, or saturation of cer-
tain probe sets play a minor role for the estimation of the
relative mRNA proportions using trimmed robust regres-
sion.
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Table I: Computed relative mRNA proportions. Computed relative mRNA proportions p,, (macrophages) and p, (fibroblasts) for
patients 1-6 calculated for different chip evaluation methods. The proportion of non-adherent cells is py= | - py, - p¢- The primed | in
'patient I' (RA)' indicates the use of the second tissue chip replicate for patient |. Additional stepwise local regression normalization is
indicated by Ir. The proportions are given in percent. Probe set summaries: MAS-S: Microarray Suite 5.0 signal algorithm, RMA:
Robust Multiarray Analysis, MBEI: Model Based Expression Index, GP: GenePublisher (not available for HG-U95A chips, patient 1), the
R implementation of MBEI was used with the same settings as in GP. Normalization methods: t: trimmed mean, cir: cyclic local
regression, q: quantile normalization, c: centralization.

chip evaluation method  patient |' (RA) patient 2 (RA) patient 3 (RA) patient 4 (QA) patient 5 (QA) patient 6 (QA)

Ir Ir Ir Ir Ir Ir

M FM FM FM FM FM FM FM FM FM F M F M F

MAS-S t 29 16 29 19 8 9 79 6 64 27 64 29 57 24 57 27 72 21 69 20 8 I3 8 19
MAS-S t clr 32 18 29 22 90 10 8 5 66 30 64 33 65 25 64 30 74 21 68 25 78 22 74 26
MAS-Stq 31 14 24 22 92 8 93 6 69 30 63 34 66 23 63 30 8 07 71 22 71 29 67 33
MAS-S tc 31 I5 29 17 80 5 8 6 59 31 65 30 71 16 66 21 8 I3 8 Il 96 2 80 20
RMA 44 24 28 31 95 5 82 16 49 42 45 45 60 26 46 36 94 0 8 8 96 0 100 O
MBEI 44 I5 42 19 91 5 76 2 38 52 45 49 66 2 57 10 98 0 92 5 100 O 99 |
MBEI-GP - - - - 98 | 8 9 26 62 43 55 57 5 38 I8 92 0 94 0 100 O 100 O

The effect of the experimental chip quality was assessed by ~ derived from the mixing part of the GenelLogic dilution
correlating the MAD of the computed mRNA fractions  study [12].

(Table 2) with several relevant chip operating figures pro-

vided by the Affymetrix 'Expression Report' (Supplemen-  The target values for the mRNA proportions of the first
tary Section D, Supplementary Figures D.1 and D.2, see  two mixing experiments were set according to the range of
Additional file 1). Generally, the MAD was positively cor-  values computed for patient 2 (Table 1). Figure 3 shows
related with the noise and background level of the chips.  the results for the second mixing experiment using
However, due to the small number of patients the results  trimmed mean normalized MAS-S probe set summaries.
strongly depended on individual patients (inhomogene-  The proportions are virtually fixed from the beginning
ity correlation), in particular on patient 1 (original tissue  and the standard deviations drop at only a few thousand

chip). included genes. This picture was typical for all mixing
experiments, probe set summaries, and chip normaliza-
Mixing experiments tion methods of the present study. The number of

In mixing experiments, mRNA samples from different included genes, at which the computed mRNA propor-

sources are mixed together in defined proportions and  tions were determined, was between 2000 and 4000 in all

subsequently hybridized to chips. These experiments were  cases.

used to validate the present computational approach. Two

mixing experiments were performed by the authors with  Table 3 summarizes the results in terms of the pooled

material from patient 2. The other experimental data were =~ MAD of the relative mRNA proportions, calculated with
regard to the respective target values. All methods gave

Table 2: MAD of the computed mRNA proportions. Pooled better results for the second mixing experiment. This dif-

mean absolute deviation (MAD) of the relative mRNA ference cannot be explained by the experimental quality,

proportions across different chip evaluation methods, calculated because both chips had verv similar operating figures
with regard to the respective mean values. 'MAD all' refers to all p Ty p g hgures.

seven methods: the four different normalizations of MAS-S, as MAS-C tended to perform somewhat better than MAS-S,
well as RMA, MBEI, and MBEI-GP, whereas '"MAD MAS' only and both MAS-S and MAS-C gave better results than RMA,
refers to the four different normalization methods of MAS-S. MBEI, and MBEI-GP. In contrast to MAS-S and MAS-C, the
The additional application of stepwise local regression results for RMA, MBEI, and MBEI-GP were improved

normalization is indicated by Ir. The MAD refers to the

proportions of Table | (given in percent). (with one exception) by additional stepwise local regres-

sion normalization (Ir).

patient | I " 2 3 4 5 6

The GeneLogic dilution study contains 25 chips, in which
mﬁg a:: | :Z i ; ‘5' ; ; 2 ; mRNA samples from liver and SNB19 cells were mixed for
MAD ?’IArs 7 | 5 4 3 3 4 & SNB-proportions of 0. 0.25, 0.50. 0.75. and 1. and subse-
MAD MAS r | ) | 3 1 3 3 3 quently hybridized to HG-U95Av2 GeneChips. Replicas
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Results for mixing experiment 2. Mean and standard deviation of the computed mRNA proportions of macrophages
(macro), fibroblasts (fibro) and non-adherent cells (nadc) for the second mixing experiment as a function of the number of
included genes. This experiment corresponds to Figure 2, except that the tissue expression profile was not obtained by pre-
paring mRNA from the whole synovial tissue, but by mixing mRNA samples from the isolated cell fractions according to the
relative proportions py, = 0.86, p= 0.1 1, and py, = 0.03. These proportions were almost perfectly determined when no further
normalization of the reconstituted tissue profile was performed (dashed curves): p), = 0.86, p= 0.10, py, = 0.04. Applying addi-
tional stepwise normalization (Ir) (solid curves) resulted in py, = 0.85, p;= 0.13, p, = 0.02. All proportions were determined at

4000 included genes.

of these 5 mixes were processed by 5 different scanners
resulting in a total of 25 experiments.

Figure 4 shows mean, standard deviation, and MAD of the
computed mRNA proportions for SNB-proportions of
0.25, 0.5, and 0.75. The MADs were calculated with
respect to these nominal target values. The standard devi-
ations drop very early and the proportions were generally
determined at 2000 included genes, with very few excep-
tions. The MAD of mixes 25 and 50 is quite high (roughly
4-10%) for all chip evaluation methods possibly indicat-
ing some imprecision in sample weighing. The results

summarized in Table 4 show that, as in the mixing exper-
iments of the authors, MAS-C tended to perform some-
what better than MAS-S (except for some cases in mix 75).
The results for RMA and MBEI are similar to those for the
MAS summaries.

Immunohistochemistry and marker genes
Immunohistochemical staining was used to assess the cel-
lular composition in the synovial tissue samples. The

obtained cell type proportions of macrophages (pf,),

fibroblasts ( pf ), and non-adherent cells ( p%; ) (Table 5)
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Table 3: MAD for mixing experiments | and 2. Pooled MAD of
the computed relative mRNA proportions in mixing
experiments | and 2 for different chip evaluation methods. The
MAD is calculated with respect to the target values py, = 0.75, p
=0.11, py=10.14 (mix I) and py, = 0.86, p= 0.11, pyy=0.03 (mix
2). 'MAS-S mean' and 'MAS-C mean' denote the means with
respect to the four preceeding normalization methods. Notation
according to Table I.

Chip evaluation method mix | mix 2

Ir Ir
MAS-S t 1.2 22 0.8 1.3
MAS-S t clr 25 4.6 1.8 1.7
MAS-Stq 33 43 I.1 I.1
MAS-Stc 1.6 25 0.8 2.0
MAS-S mean 22 34 I.1 1.5
MAS-C t 0.6 1.9 0.5 I.1
MAS-C t clr 2.1 4.7 0.9 1.8
MAS-Ctq 22 5.4 0.8 1.8
MAS-Ctc 2.0 1.9 1.2 1.0
MAS-C mean 1.7 3.5 0.9 1.4
R.MA 9.7 6.8 2.6 2.9
MBEI 82 5.4 33 1.2
MBEI-GP 6.6 5.2 I.1 1.0

were compared to the respective mRNA proportions (p,,,
pr and py) as determined by Robust Computational

Reconstitution. For the comparison, each cell type C was
assumed to contain a specific amount of mRNA 7. The

mRNA proportions of the model thus read

L. Tope o :
Po(p®) = =EC— with p° = (pS,,pf, p% )- (1)
ZCTCP%

Table 4: MAD for the GeneLogic Dilution Study. Pooled MAD of
the computed relative mRNA proportions in mixing
experiments 25, 50, and 75 for different chip evaluation
methods. The respective MAD is calculated with regard to the
target values pg = 0.25, 0.50, and 0.75. Notation according to
Table 3.

evaluation method mix 25 mix 50 mix 75
Ir Ir Ir
MAS-S t 77 6.9 73 8.4 0.2 3.4
MAS-S t clr 74 3.8 6.1 6.1 1.2 1.4
MAS-Stq 8.4 5.9 9.0 77 1.5 22
MAS-Stc 9.6 7.5 9.2 8.8 2.0 3.6
MAS-S mean 8.2 6.0 79 7.7 1.2 2.6
MAS-C t 6.0 57 6.2 7.2 2.0 22
MAS-C t clr 7.1 39 7.0 59 1.1 1.0
MAS-Ctq 78 37 7.8 6.5 1.7 2.6
MAS-Ctc 6.2 5.9 82 73 35 2.7
MAS-C mean 6.8 4.8 73 6.7 2.1 2.1
RMA 9.9 89 84 78 0.8 1.1
MBEI 8.0 8.2 8.1 7.5 1.7 1.0

http://www.biomedcentral.com/1471-2105/7/369

The model effectively contains two independent parame-
ters that were fitted by matching the mRNA proportions of

the model p. (p°) to the 18 mRNA proportions (6

patients, 3 proportions each) computed by Robust Com-
putational Reconstitution using least squares regression
(Table 1, MAS-S t; Figure 5). The computed mRNA and
cell proportions of non-adherent cells agreed almost one-
to-one. Hence, the mRNA content of macrophages r,, and

fibroblasts 1 were assessed relative to ry. Macrophages

appeared to contain four times as much mRNA as non-
adherent cells (r,, = 3.98 ry), whereas fibroblasts seemed

to contain only a quarter of it (r; = 0.25 ry). Excluding

patient 1 from the analysis somewhat improved the fit for
patients 2 to 6 (data not shown) but the resulting ratios
for macrophages (r,, = 4.56 ry) and fibroblasts (r;= 0.57

ry) were qualitatively similar. Part of the large apparent

differences in mRNA content between cell types can pos-
sibly be attributed to differential mRNA yield due to
experimental methodology, like mRNA extraction and
amplification [3,23]. For example, de Bruin et al. [3]
observed a 3.5-fold higher mRNA yield for tumor com-
pared to stroma cells. In addition, differential specificities
of the cell type markers used in immunohistochemistry
may result in over- or underestimation of the relative cell
proportions. The assumption that the mRNA content r is

independent of composition results from the usage of
robustly-expressed genes for calculating the relative
mRNA proportions. Nevertheless, the fit to the computed
mRNA proportions was somewhat improved by assuming
the mRNA content to depend on composition (linear
ansatz; data not shown). Although this result suggests a
possible dependence of the cellular mRNA content on the
cell type composition, data overfitting by inclusion of too
many adjustable parameters has to be avoided.

Cell type-specific marker genes allow to determine the
mRNA proportions from the ratio of the expression in the
synovial tissue (s;) and the respective isolated cell fraction
(e.g., py = si/m; for macrophages) provided the marker
gene (i) is very specific (no expression in fibroblasts and
non-adherent cells) and robust (same expression in tissue
and isolated cell fractions). In the present study, the rela-
tive mRNA proportions calculated using Robust Compu-
tational Reconstitution and marker genes showed a
markedly higher than random consistency only for
fibroblasts (Supplementary Table F.1, see Additional file
1). Obviously, the two premises required by the marker
gene approach, specificity and robustness, are not fulfilled
simultaneously, at least not for macrophages and non-
adherent cells (the former being known to be quite
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Figure 4

Results for the GeneLogic Dilution Study. Mean, standard deviation, and MAD of the computed mRNA proportions with
respect to the target SNB-proportions of 0.25, 0.5 and 0.75. The displayed values are averages across 5 replicas. The results
were calculated using trimmed mean (t) normalized MAS-S probe set summaries. Additional normalization by stepwise local
regression is indicated by Ir (solid curves). The proportions were determined at 3000 and 2000 (Ir) included genes.

responsive to stimulation and the latter being subject to a
confounding heterogeneity of their cell type composi-
tion).

Regulated and robustly-expressed genes
Regulated and robustly-expressed genes were identified
using six different test statistics and log-transformed
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Table 5: Cell proportions. Relative cell proportions of adherent macrophages M, adherent fibroblasts F, and non-adherent cells N for
peitients 1-6 obtained from immunohistochemistry by analyzing tissue samples in close vicinity to the sample from which the mRNA
was isolated. The fraction of non-adherent cells consists of T-cells (T), B-cells (B), plasma cells (P), and endothelial cells (E). If standard

deviations are given, three samples were analyzed. The proportions are given in percent.

patient | 2 3 4 5 6 mean
M 33+ 14 22 19+4 26+3 29 396 28
F 32+ 17 54 63+ 10 59+ 16 57 48+ 13 52
N 43+22 20 90 1211 12 1316 18
T 14+ 10 0 00 3%5 3 7+4 5
B 12+ 13 0 00 I +2 0 I +1 2
P 9+2 0 00 I +2 0 2+2 2
E 8+2 20 90 714 9 3+ 9

expression values of the measured (S) and reconstituted
(8*) tissues of patients 1 to 6. The first four methods are
well established techniques in the post-genomic era: Sig-
nificance Analysis of Microarrays (SAM) [24], one-sample
paired t-test (t-test]1), homoscedastic two-sample t-test (t-
test2) (being equivalent to one-way ANOVA for two
groups), and VERAandSAM (V&S) [25]. In addition, two
new criteria, #-test and MAD-test, were introduced in the
present study owing to the fact that SAM, t-test1, and t-
test2 tended to select robustly-expressed genes with low
expression strength (Supplementary Figure C.2, see Addi-
tional file 1). This bias is a result of the fact that the stand-

ard error appears in the denominator of these test statistics
and that weakly-expressed genes generally show a higher
standard error than strongly-expressed genes (log-trans-
formed data). As a consequence, the newly-defined x- and
MAD-test statistics, t, = f - /4, = mean(s - s*) and ty,p =
mean(|s - s*|), respectively. (s = log S, s* =log S*), do not
contain the standard error. The u-test, and also V&S,
appeared to be almost unbiased with respect to expression
strength. The MAD-test (most strongly related to the
regression objective function (3) in the Methods section,
subsection Mathematical model) showed a clear prefer-
ence for highly-expressed genes when applied to identify

fibro

1
nadc |0 cell
0.8 - ® - mRNA
R —A&— mRNA(c)
O o 0.6 '

I 2

34 5 6

patient

Figure 5

Comparison of relative cell and mRNA proportions. Relative cell proportions determined by immunohistochemistry
(open circles; Table 5), relative mRNA proportions calculated by Robust Computational Reconstitution (solid squares; Table I,
MAS-S t), and relative mRNA proportions according to model equation (1) (solid triangles; fit to the computed relative mRNA
proportions). The square root of the coefficient of determination is R = 0.90. The regression p-value is p = 10-6 (least squares
regression of 18 values using 2 parameters). The fitted model mRNA proportions are similar to the cell proportions multiplied
by a constant factor reflecting the respective cellular mMRNA content. Part of the large apparent differences in cellular mMRNA
content can possibly be attributed to differential mRNA yield due to experimental methodology, like mRNA extraction and
amplification, or differential specificities of the cell type markers used in immunohistochemistry.
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robustly-expressed genes (Supplementary Figure G.2, see
Additional file 1). This may reflect the fact that in general
small differences in gene expression are observed for
highly-expressed genes (well known from so called M-A-
plots for log-transformed expression data). Also, highly-
expressed genes serving fundamental roles in the cell are
commonly used as housekeeping genes [23]. The p-values
of t-testl and t-test2 were calculated using both the Stu-
dent distribution and the permutation method described
in Storey and Tibshirani [26]. For the paired t-testl n, =
1000 permutations were used. For the unpaired t-test2 all
np= (6 out of 12)/2 = 462 possibilities for obtaining dif-
ferent absolute values of the test statistic were enumer-
ated. The Pearson correlation coefficient between the
respective p-values was ¢; = 0.999979 for t-testl and ¢, =
0.999986 for t-test2 suggesting that the gene expression
data of the present study are roughly log-normally distrib-
uted. Consequently, the Student distribution derived p-
values were used for t-testl and t-test2. The p-values of
SAM and MAD-test were calculated using the permutation
method and n, = 1000 permutations, those of /-test by
enumerating all n, = 462 possibilities. The A-values of V&S
are based on an expression level-dependent error model
[25]. The pairwise correlations between the six statistical
methods are shown in Supplementary Figure G.1 (see
Additional file 1). The best correspondence was observed
among SAM, t-testl, t-test2, and g-test (Pearson correla-
tion between 0.844 and 0.977). The MAD-test differed
most from all other methods (Pearson correlation
between 0.240 and 0.677). Also, this test statistic was the
only one showing a two-modal p-value distribution in
contrast to the uni-modal distributions assumed by the
method of Storey and Tibshirani [26] for calculating False
Discovery Rate (FDR)-related g-values. The other meth-
ods allowed to estimate the proportion of null-hypothesis
genes quite consistently (between 0.5 and 0.6). Regulated
and robustly-expressed genes were identified by 1.) apply-
ing each of the six individual test statistics independently
and 2.) selecting top-ranking genes with respect to patho-
physiological relevance (Supplementary Section G, Sup-
plementary Tables G.2 and G.3, see Additional file 1). A
total of 62 regulated and 48 robustly-expressed genes were
selected. Each method contributed some selected genes
and the approach of combining different complementary
test statistics for gene selection, as proposed in the present
study, may prove useful in future investigations.

Discussion

Determining and analyzing the gene expression profiles
of different tissue cell types under diverse physiological
and pathophysiological conditions is a central aim of bio-
medical research. However, microdissection of single cells
or pure cell types, as well as mRNA isolation and amplifi-
cation [1,2] still bears basic technical problems [3,4].
Therefore, gene expression profiles of whole tissue sam-
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ples and purified cell types were compared in the present
study. Using Robust Computational Reconstitution, the
required mRNA proportions and the set of robustly-
expressed genes that allow for their determination were
simultaneously identified.

The present results suggest that MAS-S provided the most
stable probe set summaries. This is in contrast to the study
of Irizarry et al. [16], but is in line with the results of Choe
et al. [27]. This discrepancy may be due to the data sets
used. Whereas in the study of Irizarry et al. [16] only few
spiked-in genes were present, Choe et al. [27] spiked-in
more than 1300 genes. Real world applications like the
present study possibly contain more biological and tech-
nical noise and the subtraction of the mismatch probes
from the perfect-match probes (MAS 5.0) may be appro-
priate in this case. Recent detailed sequence level studies
of Binder and Preibisch [28,29] resulted in similar conclu-
sions. However, when Shedden et al. [30] applied their
FDR-based pairwise comparison method to ovary and
colon tumor data, MAS 5.0 performed inferior to most
other methods.

Chip-wise (non-linear) averaging of the probes before
comparison to other chips (MAS-S) may also be less sus-
ceptible to the effects of outliers than the initial compari-
son of probes between different chips and subsequent
averaging of the differences (MAS-C). There were only few
differences in the present study among the different chip
normalization methods applied to the MAS-S and MAS-C
summaries. However, the application of quantile normal-
ization and also centralization resulted in more outliers
compared to the remaining normalization methods.
Quantile normalization also tended to perform subopti-
mally without additional local regression normalization
in the study of Choe et al. [27].

The accuracy of Robust Computational Reconstitution
depends on the fraction of robustly-expressed genes, the
quality of experimentation, and the appropriateness of
the chip evaluation method. The variance is estimated to
be in the range of 5-10% in absolute value based on the
variability of the computed mRNA proportions among
methods (Table 2) and the expected bias introduced by
the imperfect robustness of even the most robustly-
expressed genes (Supplementary Figures A.1 and A.2, see
Additional file 1). A sensitivity analysis (resampling of rel-
ative proportions) showed that the rank order of differen-
tially-expressed genes is only moderately affected by this
variance. However, the maximum shift in rank order was
always large indicating that some differentially-expressed
genes may be lost even from a moderately extended list of
top-ranking genes. This maximum rank shift was close to
that of random permutations but the third quartile of the
rank shift distribution was already much smaller than that
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observed for random permutations (rank shift of 60 com-
pared to 9300 for the 200 top-ranking genes and a resam-
pling standard deviation of 5%).

The results for patient 1 largely differed from all other
patients. On the one hand this may be due to the fact that
HG-U95A chips were used instead of HG-U95Av2 chips.
On the other hand patient 1 is the only type I RA patient
(patients 2 and 3 are type II RA) [31,32]. This was con-
firmed by immunohistochemistry and comparison with
synovial tissue gene expression profiles of 12 other classi-
fied RA patients (using the distance to the respective
expression means and Affymetrix' best-matches probe set
list for matching HG-U133A and HG-U95Av2 chips).
Hence, the differences between RA patient 1 and RA
patients 2 and 3 are substantial.

Remarkably, the computed mRNA proportions consider-
ably differ from the cell proportions determined by
immunohistochemistry (Figure 5). Most striking is the
prevalence of macrophage mRNA over fibroblast mRNA
in contrast to the dominance of fibroblasts over macro-
phages in the cell composition, implying that macro-
phages produce 8 to 16 times as much mRNA as do
fibroblasts. The results for the mRNA proportions may be
biased because the isolated fractions of macrophages and
non-adherent cells were not perfectly pure with respect to
fibroblasts (resulting in apparently higher mRNA propor-
tions for macrophages). Also, the mRNA yield of different
cell types may be severalfold different due to experimental
methodology, e.g. mRNA extraction and amplification
[3,23]. Furthermore, the cell proportions as determined
by immunohistochemistry may be somewhat imprecise
due to the limited specificity of this semi-quantitative
method. Nevertheless, the augmented mRNA production
of macrophages compared to fibroblasts is expected to be
still valid under idealized experimental conditions. The
central aim addressed by the present study was the cell
type-specific gene expression in synovial tissue and its
dependence on cell type composition (purified cell frac-
tions representing an extreme case of composition). Cell
type-specific gene expression was also addressed by Venet
et al. [7], who assumed the individual expression profiles
to be largely uncorrelated. According to our own-experi-
ence (the correlation coefficients among the isolated cell
fractions showed values as high as 0.7 and 0.9), this is an
arguable assumption, as also admitted by Venet et al. [7]
themselves. Lihdesmaeki et al. [9] used different con-
straints in their least squares approach. Similar to Venet et
al. [7] and Lu et al. [10] and in contrast to the present
study, they included all genes in the sum of squares and
showed this to be appropriate in the case of mixing exper-
iments (as also demonstrated in the present study). How-
ever, their method, as well as the methods of Venet et al.
and Lu et al. (which is otherwise equivalent to the present
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approach), will give biased results in the presence of regu-
lated (i.e. composition-dependent) gene expression.
Using an intermediate number of robustly-expressed
genes (present study) avoids, on the one hand, the exclu-
sive dependence on the robust expression of individual
highly cell type-specific marker genes and, on the other
hand, the bias towards an equal distribution when includ-
ing all genes in matrix factorization or regression. This
statement remains valid despite the inability of all current
in silico microdissection methods (including our own;
Methods section, subsection Mathematical model and
Supplementary Section H, see Additional file 1) to directly
assign composition-dependent changes in gene expres-
sion to specific cell types.

Conclusion

The proposed method of Robust Computational Recon-
stitution is applicable if there is a sufficient number of
robustly-expressed genes whose expression is highly cor-
related between tissue and isolated cell fractions. The
existence of such housekeeping genes is plausible and
well-known [23] since many genes code for basic cell
functions that must be maintained across different envi-
ronmental conditions. The present approach improves
previously published methods for the determination of
the relative mRNA proportions of different cell types by
the exclusion of regulated genes that bias the result
towards an equal distribution. In addition, it can identify
robustly-expressed genes (representing basic metabolism
or persistent pathological changes) and responsive genes
that change their expression between tissue and isolated
cell fractions (possibly reflecting physiological or patho-
logical cell communication processes). Both are of bio-
medical interest and can be further screened for
pathophysiological relevance.

Evidently, microdissection of single cells or pure cell types
[1,2] is a promising experimental technique. However, it
is still under steady development and, for the time being,
the preferential use of macrodissection in combination
with in silico microdissection techniques has been recently
recommended [3]. The method of the present study can
thus be readily used as an effective research tool and a sup-
porting reference method for further studies.

Note added in proof

During the review process of the present manuscript Wang
et al. [33] also published a related paper dealing with the
cellular composition of complex tissues and the relative
contribution of the individual cell types to tissue gene
expression.
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Methods

Mathematical model

The proposed method for determining the cell type-spe-
cific mRNA composition of synovial tissue samples
(applicable to any other tissue) is based on a comparison
between the measured expression profile S of the whole
synovial tissue and the computationally reconstituted tis-
sue profile

S*=puM +p:F +pyN, (2)

which is composed of the measured expression profiles of
the isolated cell fractions, i.e. isolated adherent macro-
phages M, adherent fibroblasts F, and non-adherent cells
N, according to their respective computational mRNA
proportions p,,, p and py (Figure 1).

The proposed computational approach aims at the simul-
taneous identification of the cell type-specific mRNA pro-
portions and the particular set of robustly-expressed
genes, which allows to reliably determine these propor-
tions. This is achieved by minimizing the trimmed sum of
absolute differences

DM =3 |5 -5 | (3)

iEIk
between the gene expression in the measured and the
reconstituted tissue with respect to p,,and py, treating py, =
1 - pu - Pras a dependent variable (equivalently, an opti-
mization routine able of handling constraints could be
used with all three variables). In Equation (3) s; = log S;
and s; =log S; are log-transformed expression values in

S and S*, respectively, and k denotes the number of genes
included in the sum. For given values of p,, and p, the set

of gene indices I, is determined in order to minimize the
objective function ng) . More specifically, the genes are

sorted with respect to their absolute differences |s;- s; |, in

Table 6: Algorithmic Protocol
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which s; = s; (py, pr) depends on the current values of p,,
and p;. Subsequently, the first k differences are summed
up. Clearly, the proportions uniquely determine the rank
order of the genes, whereas k determines how many of the
sorted differences (genes) are used to calculate the objec-
tive function value. The described method is a trimmed
least modulus (L,) regression. It is similar to the trimmed
least squares (L,) regression described in [22] and [34],
but is considered to be more robust with respect to y-out-
liers (however, graphs of the L, and L, objective functions
as a function of p,, and p, looked alike and L,- and L,-
regression gave similar results; Figure 2 and Supplemen-
tary Figures A.3 and A.4. see Additional file 1). If only a
small number of genes is included in the sum, the optimi-
zation routine (simplex algorithm) is likely to end up in a
local minimum that depends on the starting values for p,,

and p;. This is because the trimmed sum ng) is very sim-

ilar for different proportions, if the included genes can be
chosen from a much larger set of genes providing a great
variety of suitable expression values (resulting in a vast
number of local minima for the present data; Supplemen-
tary Figure A.3, see Additional file 1). Increasing the
number of included genes results in more unique values
for the computed proportions (reduced number of local
minima, Supplementary Figure A.3, see Additional file 1).
However, the more regulated genes are included in the
sum, the more the proportions will be biased towards an
equal distribution (p,, = pr = py = 1/3) (Supplementary
Section A, see Additional file 1). For this reason, the
present study suggests to determine the mRNA propor-
tions as soon as the standard deviations of the computed
proportions approach zero, indicating the emergence of
an unique global minimum and thus an unequivocal
solution to the regression problem. The following simple
algorithmic protocol was developed for the computation
of the mRNA proportions (Table 6):

1) calculate the means and standard deviations of the computed mRNA proportions as a function of the number of included genes:

[0 increase the number of included genes k

* generate | random starting values {p? }j= 1, I, in which p? = (pl?Aj'PIgj'Pf%j)

O determine p;= (puy, Pr» Pr;) by minimizing the objective function ng) starting from p?

Ostore p;

« calculate the mean and standard deviation of {pj}j = |,...,l for the current value of k
2) determine the means of the computed mRNA proportions at the smallest number of included genes, for which the standard deviations approach

zZero.
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The results obtained from a statistical model for the expec-

tation value & [ng)] of the objective function in Equa-

tion (3) compare well with those for the patient data
(Figure 2 and Supplementary Figure A.2, see Additional
file 1). The statistical model assumes normal distributed
expression values. This is consistent with the fact that the
data appear to be roughly log-normally distributed as evi-
denced by the high Pearson correlation (> 0.99997)
between the t-test p-values determined by the Student dis-
tribution on the one hand and those p-values calculated
according to the permutational method of Storey and Tib-
shirani [26] on the other hand (Results section, subsec-
tion Regulated and robustly-expressed genes). The good
general correspondence between the patient data and the
statistical model corroborates the suitability of the pro-
posed method for estimating the relative mRNA propor-
tions.

The differences s; - s; in gene expression between the

whole tissue and the isolated cell fractions presumably
reflect transcriptional changes due to different environ-
mental conditions and it is desirable to know how each
individual cell type is actually responding to this change.
However, the cell type-specific changes in gene expression
can only be determined by either actually measuring the
gene expression of each cell type in the tissue (using e.g.
microdissection) or by applying appropriate statistical
estimates. Again, by using a normal distribution model
(Supplementary Section H, see Additional file 1) and
results obtained from the present study (Supplementary
Table H.1, see Additional file 1) it is demonstrated that
the distributional parameters of the model cannot be reli-
ably estimated based on the present gene expression data.
The inability to assign cell type-specific changes in gene
expression was also recognized in the study of Stuart et al.
[8], in which non-linear regression analysis revealed inter-
actions between different cell types. The suggestion of Stu-
art et al. [8] to attribute the observed expression change to
the cell type that expresses the respective gene most
strongly is, however, not necessarily appropriate in all
cases, e.g. for robustly-expressed marker genes [5].

Experiments

Synovial tissue samples were obtained from 3 RA [35] and
3 OA patients [36] and prepared as previously described
[31]. During the primary cell culture, non-adherent cells
were removed by medium exchange on day 1. After 7
days, synovial fibroblasts were purified by removal of
macrophages using anti-CD 14 magneto-beads. Total
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RNA was isolated and labeled according to the supplier's
(Qiagen) instructions. Gene expression was analyzed
using Affymetrix HG-U95A (patient 1) and HG-U95Av2
(patient 2-6) chips. The synovial tissue chip of patient 1
showed about twice as much noise as the other chips.
Therefore, the hybridization was repeated twice (using
HG-U95Av2 chips). Finally, the first repeat was selected
for analysis. Two mixing experiments were performed, in
which mRNA preparations of the isolated cell fractions of
patient 2 were mixed according to two representative sets
of relative mRNA proportions and subsequently hybrid-
ized to HG-U95Av2 chips. Immunohistochemical analy-
sis was performed on cryostat sections of synovial
membranes using marker antibodies for specific cell
types. For each patient, the cellular composition was
assessed for one to three different synovial tissue sections
from samples adjacent to those, from which the mRNA
was prepared (Table 5). Further details of the experimen-
tal materials and methods are given in the Supplementary
Sections B and E (see Additional file 1).

Data preparation

Microarrays were evaluated using four different probe set
summaries: 1) single chip (MAS-S); and 2) chip compari-
son (MAS-C) algorithm of Affymetrix' Microarray Suite
5.0 [14,15]; 3) Robust Multi-Array Analysis (RMA) devel-
oped by Irizarry et al. [16]; and 4) Model Based Expression
Index (MBEI) of Li and Wong [17] as implemented in R
and the GenePublisher web-interface [37]. In addition,
the MAS-S and MAS-C summaries were normalized using
four different globalization methods: i) 2%-symmetric
trimmed mean (t) [14,15]; ii) cyclic local regression (clr)
[18]; iii) quantile normalization (¢q) [18,19]; and iv) cen-
tralization (c) [20]. The computationally reconstituted tis-
sue profile S* was either not further normalized or
normalized by local regression. This method is based on
so called M-A-plots and normalizes two expression pro-
files, in this case S and S*, at the same time. The normali-
zation has to be done in each algorithmic step, i.e. for
every pair of relative proportions that is explored by the
optimization algorithm. It was chosen to be a 200-genes
symmetric moving average instead of the widely used
loess procedure [18,38] in order to achieve reasonable
computation times. The symmetric moving average was
also used for the cyclic local regression normalization
(cIr). Centralization (c) requires the selection of a set of
robustly-expressed genes that is used for normalization.
This set was chosen to consist of those 1000 genes, for
which at least one pairwise log-ratio was among the best
conserved (i.e. showed the lowest mean absolute devia-
tion) across the four chips per patient. The additive nature
of Equation (2) requires absolute expression values. How-
ever, the chip comparison algorithm (MAS-C) computes
log-ratios that compare a baseline experiment to different
other experiments in a pairwise manner. The absolute
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expression values were reconstructed from the baseline
experiment (S) and the respective log-ratios. The number
of random starting values for the relative mRNA propor-
tions (cf. algorithmic protocol. Table 6) was | = 25
throughout this study. The missing N-profile of patient 3
was substituted from patient 2 (both Type I RA) [32].
When HG-U95A and HG-U95Av2 chips were investigated
simultaneously, the analysis was restricted to the 12533
probe sets common to both chips (excluding controls).
For the RMA and MBEI summaries of patient 1 (tissue
repeats) the mixture CDF environment provided by Bol-
stad [39] was used.
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