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Abstract
Background: Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding
functions of proteins. Major recurring biological concepts within such text corpora represent the
domains of this body of knowledge. The goal of this research is to identify the major biological
topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a
probabilistic topic model.

Results: The latent Dirichlet allocation (LDA) model was applied to the corpus. Based on the
Bayesian model selection, 300 major topics were extracted from the corpus. The majority of
identified topics/concepts was found to be semantically coherent and most represented biological
objects or concepts. The identified topics/concepts were further mapped to the controlled
vocabulary of the Gene Ontology (GO) terms based on mutual information.

Conclusion: The major and recurring biological concepts within a collection of MEDLINE
documents can be extracted by the LDA model. The identified topics/concepts provide
parsimonious and semantically-enriched representation of the texts in a semantic space with
reduced dimensionality and can be used to index text.

Background
An important task of bioinformatics research is to acquire
and represent biomedical knowledge in computable form
so that it can be efficiently stored, retrieved, and used for
discovery of new knowledge. For example, the Gene
Ontology (GO) Consortium [1] and the Gene Ontology
Annotation (GOA) project [2] are dedicated to the task of
representing biological knowledge with the controlled
vocabulary of GO terms. Knowledge of protein functions
serves as a cornerstone of modern biomedical knowledge.
Much of such knowledge is contained in the form of free
text in biomedical literature. A more compressed and
accessible representation of this same knowledge is con-
tained in bibliographic databases, e.g., MEDLINE. In addi-

tion to current manual annotation efforts, needs for
automatic knowledge acquisition and representation
exist, and a critical step of this process is to extract biolog-
ical concepts from free text.

The task of automatic knowledge acquisition from free
text is usually addressed within the frameworks of the nat-
ural language processing (NLP), information extraction
(IE), and information retrieval (IR) techniques [3-5],
which has been wide applied in bioinformatics setting, as
reviewed in [6-9]. Recent trend in text mining is to acquire
deeper semantic information from text, e.g., semantic
information has be used to cluster genes [10] and evaluate
the functional coherence of a group of genes [11-13].
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Extracting semantic information from free text requires
the capability of effectively dealing with the uncertainties
commonly associated with human language. To this end,
probabilistic semantic analyses serve as promising
approaches for handling such uncertainties and perform-
ing semantically enriched text mining.

In this paper, we report extraction of semantic topics/con-
cepts from a corpus of MEDLINE titles and abstracts using
a probabilistic topic model, the LDA model [14,15]. The
goal was to identify the major and recurring concepts that
represent the major knowledge domains of protein func-
tions. Furthermore, extraction of the semantic contents of
a document provides a parsimonious and concise repre-
sentation of that text. Such information can be used for
efficient indexing, information retrieval, and protein
annotation.

Results
Representing semantic topics with a probabilistic topic 
model
In a scientific article, a scientist will refer to multiple real
world objects and/or concepts, thus a paper usually con-
sists of multiple topics/subjects, e.g., a paper may discuss
a protein located in mitochondria and involved in the cel-
lular process of apoptosis. When discussing objects or con-
cepts, the author will choose certain words to convey the
semantic meaning. For instance, when discussing the
topic mitochondria, words like 'electron,' 'cytochrome,' and
'ATP' are commonly used, while words like 'apoptosis,'
'programmed,' 'death,' and 'caspase' are commonly used
to discuss the concept of apoptosis. Thus a document can
be treated as a mixture of words from multiple topics. The
LDA model represent such a notion by explicitly encoding
multi-topicality of a document with a topic-composition
variable and then simulating the "generation" of words by
accordingly mixing words from topics, which are repre-

sented as multinomial distributions over a vocabulary,
i.e., a word-usage pattern. Figure 1 shows how a topic can
be represented as word-usage pattern in a probabilistic
topic model. Given a corpus of text documents, the LDA
model is capable of extracting the topics by statistical
inference as described in the Methods section.

Training of LDA model
The LDA model was applied to extract the semantic topics
from a corpus of MEDLINE titles and abstracts down-
loaded from the GOA project website as described in the
Methods section. The training of an LDA model requires
specification of the number of topics for the models, an
issue of interest from both semantic analysis and statisti-
cal learning view points. From a semantic analysis point
of view, this is equivalent to determining the granularity
of abstraction of the concepts that can be used to summa-
rize the semantic contents of the corpus. From the statisti-
cal learning point of view, this is equivalent to select
among the models with different complexity. A Bayesian
model selection framework was employed to determine
the "optimal" number of topics based on the posterior
probability of a model, p(M | w). To perform the Bayesian
model selection, samples of the latent semantic topics, z,
were collected for a model with a given number of topics,
T, and the approximate the posterior probabilities were
calculated according to equation (7) and plotted (Figure
2). The model with 300 topics had the highest approxi-
mated marginal likelihood and was thus used for the anal-
yses reported in this paper.

Evaluating semantic topics
A trained LDA model returns estimated distributions of
the following parameters and latent variables: (1) the
word-usage distribution, φt, for each topic; (2) the latent

Bayesian model selectionFigure 2
Bayesian model selection. The means of approximated 
evidence for different models are plotted; standard error 
bars are within the symbols.
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Representing concepts with word distributionsFigure 1
Representing concepts with word distributions. Two 
hypothetic topics are depicted. The bar lengths indicate the 
word usage preference in form of probability.
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topic labeling zi for each word wi; and (3) the topic-com-
position distribution θd for each document. The parame-
ter vector φt is a distribution representing a word-usage
pattern for the topic t. High probability words of each φt
can be thought as the words frequently used to discuss the
topics. In Table 1, the 10 most commonly observed topics
and their high probability words of the trained LDA
model are listed. The topics are sorted in descending order
according to the number of words assigned to them in the
corpus. High probability words of these topics constitute
clusters of words that coherently convey biological con-
cepts. For example, topic # 51 reflects the concept of lig-
and-activated receptors, and the topic # 156 is related to
serine/threonin kinase activity. Because the LDA model
attempts to capture the major topics that can be used to
"generate" the data, the concepts extracted by this model
should reflect the recurring themes of the corpus. Indeed,
when multiple models with 300 topics were trained with
different random-number seeds, similar major topics
were extracted although the index of the topics differed
among the models. Thus, the topics listed in Table 1 do
reflect common biological themes in our corpus.

Inferring the semantic content of a text

The instantiated latent variables zd indicates the semantic

contents of the document. For the text in the training data
set, the topic contents for each document were returned as
the estimated latent variables zd of the trained model. For

a newly observed text, the topic contents can be inferred
by invoke the sampling algorithm with the estimated
parameters as described in the Methods section. Figure 3
shows an example of a MEDLINE abstract, in which topic
assignment for the words were inferred using a trained
LDA model. This abstract discusses a protein referred to as
apoptosis inducing factor (AIF), a mitochondrial protein
that induces apoptosis. In this figure, the inferred seman-

tic topic for each word (excluding "stop" words) is shown
as the superscript numbers next to it. The abstract is asso-
ciated with the following GO terms: (1) GO:0008630,
DNA damage response, signal transduction resulting in
induction of apoptosis; (2) GO:0009055, electron carrier
activity; (3) GO:0005739, mitochondrion; and (4)
GO:0006309, DNA fragmentation during apoptosis. In
Figure 3, two major topics, # 73 and # 147, are the domi-
nant topics of the abstract. Topic # 73 is related to the
mitochondrion and topic # 147 reflects the concept of apop-
tosis. Interestingly, several words, which can belong to
multiple topics depending on context, were found in the
abstract, e.g., "space" and "outer." The LDA model has
captured their common occurrence in the context of mito-
chondrion and correctly assigned these common words to
this topic based on the context. With the inferred topics,
this abstract can be readily indexed with these two major
topics which agree well with the human GO annotations
of this abstract. Furthermore, a document can also be
indexed as a vector containing the counts of the words in

each topic or with the normalized estimated , which be

treated as a vector in the space spanned by the topics. Such
representation effectively projects the document from the
high dimensional vocabulary space onto the reduced-
dimensionality of topic space. Such information could be
used to automatically index the text.

Assessing biological relevance of topics
The LDA model simulates the "generation" of a corpus. By
its generative nature, it will incorporate topics needed to
capture the common characteristics in the corpus. How-
ever, some common features may not be necessarily rele-
vant to biology but merely reflect the linguistic feature of
the corpus. To determine the biological relevance of top-
ics, we further inspected the high probability words and

θ̂d

Table 1: The ten most common topics from a trained LDA model

Topic # Topic words

51 receptor coupl ligand agonist subtype pharmacolog antagonist orphan 
adrenerg desensit

156 kinas phosphoryl serin threonin pkc autophosphoryl casein akt catalyt 
ste20

136 cerevisia saccharomyc strain yeast plasmid multicopi lacz floccul 
auxotroph gal1

67 Famili member belong multigen subfamily mrg Dalton cabp28k 
heterogen transmembran

154 patient syndrom diseas disord autosom inherit recess ref caus clinic
124 cdna librari clone probe screen isol lambda obtain oligonucleotid gtl1
37 neuron axon migrat motor glial spinal cord neurit dendrite outgrowth
229 mutant defect doubl phenotyp fail rescu restor impair pleiotrop unable
112 exon intron genom kb flank region span upstream bp start
172 nuclear nucleu export cytoplasm nuclei pore ran hnrnp envelop import
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assigned a biological relevance score, ranging from 0
(indicating no biological relevance) to 5 (representing
strong biological relevance) to each topic. A histogram of
the assigned biological relevance scores (Panel A of Figure
4) indicates that most topics/concepts extracted from this
corpus were biologically relevant, with only a fraction
with biological relevance scores equal to zero, indicating
no biological relevance.

Each MEDLINE abstract from the GOA corpus was associ-
ated with one or more GO terms, providing an opportu-
nity to study the relationship between the semantic topics
extracted by the LDA model and the GO annotations. The
correlation between the semantic topic and the GO anno-
tation can be quantified by mutual information (MI)
between the latent topic and the annotated GO terms. MI
is a symmetric, non-negative quantity that measures the
relevance (amount of information) of one variable with
respect to another variable, which equals zero if and only
if the variables are independent. Since GO terms are
designed to represent biological objects/concepts, the top-
ics highly relevant to biological objects/concepts should
have high MI with some GO terms, while the topics irrel-
evant to biology should have low MI values for topic-GO
association. Indeed, as shown in Figure 4, the topics rated

low relevance have very low MI with any GO terms, while
topics with high relevance have the highest topic-GO MI
(Panel B). However, there were some topics that were
assigned high relevance scores but had low MI with GO
terms. This disparity was likely due to the way the MI for
a topic-GO association was calculated in this study, which
specifies that, if a document was annotated with a GO
term g, every word in the document was considered as
annotated with that GO term. This method was adopted
due to the lack of supervised training data specifying
which words in a document were responsible for the GO
annotations. MI calculated under this assumption is
skewed for the relatively uncommon topics in the corpus.
Nonetheless, the MI of topic-GO association serves as a
criterion of evaluating the biological relevance of a topic.
When a topic had a high MI value for a topic-GO associa-
tion, it usually reflected a coherent biological concept.
Interestingly, a topic with low biological relevance did not
mean that it was not a coherent semantic concept. For
example, topics # 224 and # 227 (Table 2) consisted of
common English words that therefore had the lowest MI
with any GO term. However, the topics did contain the
words that constitute coherent semantic concepts, e.g.,
topic # 224 contains words related to the concept of being
unique.

Semantic analysis for a MEDLINE abstract (PMID 9989411)Figure 3
Semantic analysis for a MEDLINE abstract (PMID 9989411). The topics associated with the words were inferred by 
the LDA model and are shown as the superscript number next to the words. The words from the topics # 73 and # 147 are 
highlighted with blue and red colors, respectively.

Mitochondria[73] play a key part[160] in the regulation[113] of apoptosis[147] (cell[200] death[147]). Their 
intermembrane[73] space[73] contains[131] several proteins[265] that are liberated[224] through the 
outer[73] membrane[219] in order[294] to participate[87] in the degradation[299] phase[209] of 
apoptosis[147]. Here we report[33] the identification[208] and cloning of an apoptosis[147]-inducing[147 ]

factor[19], AIF[147], which is sufficient[3] to induce[147] apoptosis[147] of isolated[76] nuclei[191].
AIF[147] is a flavoprotein[73] of relative[122] molecular[177] mass[185] 57,000 which shares[168]

homology[212] with the bacterial[213] oxidoreductases[73]; it is normally[122] confined[123] to 
mitochondria[73] but translocates[166] to the nucleus[191] when apoptosis[147] is induced[147].
Recombinant[279] aif[147] causes[141] chromatin[51] condensation[279] in isolated[76] nuclei[191] and 
large-scale[41] fragmentation[174] of dna[126]. It induces[147] purified[213] mitochondria[73] to release[5]

the apoptogenic[147] proteins[265] cytochrome[73] c and caspase9[147]. Microinjection[217] of aif[147]

into the cytoplasm[81] of intact[257] cells[200] induces[147] condensation[279] of chromatin[51],
dissipation[292] of the mitochondrial[73] transmembrane[206] potential[64], and exposure[280] of 
phosphatidylserine[68] in the plasma[219] membrane[219]. None of these effects[257] is prevented[147]

by the wide-ranging[132] caspase[147] inhibitor[170] known[140] as zvad.fmk[172]. Overexpression[150]

of bcl2[147], which controls[113] the opening[101] of mitochondrial[73] permeability transition[209]

pores[191], prevents[147] the release[5] of aif[147] from the mitochondrion[73] but does not affect[257] its 
apoptogenic[147] activity[23]. These results[150] indicate[144] that aif[147] is a mitochondrial[73]

effector[147] of apoptotic[147] cell[200] death[147].
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Associating topic with GO terms
Studying the correlation between the topics and the GO
terms also allowed the mapping of topics to the control-
led vocabulary of GO terms, laying a foundation for pos-
sible future automatic annotation/indexing of MEDLINE
abstracts with the GO terms. While annotating a gene
product based on biomedical literature, a human curator
needs to extract and summarize the semantic concepts of
the literature, find a GO term that is semantically close to
the concepts, and assign that GO term to the gene prod-
uct. To identify the potential matching GO terms for each
topic, the MI values for all observed topic-GO associations
were calculated. Then, for each topic t, a GO term from
each of the three GO categories with the highest MI value
was treated as the candidate GO term matching the topic.
Table 2 shows examples of associating the extracted
semantic topics with the GO terms. The top 9 rows are the

topic-GO associations with high MI values, while the bot-
tom 2 rows are examples of topic-GO associations with
low MI. When MI values for topic-GO associations were
high, the definitions of the GO terms usually agreed well
with the semantic concepts contained in the latent topics.
Interestingly, the inference of the topics by the LDA model
mimics the process of identifying the biologic concepts
from the texts by a human curator; and determining the
MI ("the strength") of topic-GO association mimics the
process of mapping the biological concepts to the GO
terms. Thus, mapping latent topics to GO terms poten-
tially provides a means to automatically annotate a pro-
tein with GO terms based on the semantic concepts
contained in the associated literatures.

Clustering proteins according to their functional 
descriptions
In a topic that strongly related to a specific biological
object or process, i.e., when MI of topic-GO association
was high, the names of the proteins involved in that proc-
ess frequently appeared on the top of the word list for the
topics. For example, topic # 156 in Table 2 is related to
threonine/serine phosphorylation process, and the protein
names 'pkc,' 'akt,' and 'ste20' were among the most fre-
quent words of the topic, indicating that the LDA model
was capable of clustering gene/protein names according
to the concept of protein functions. Interestingly, cluster-
ing of these protein names did not require them to co-
occur within the same documents. The LDA model was
capable of clustering the gene/protein names simply
based on their associations with some common key words
of the biological concepts. This finding could be used as a
tool to cluster genes with similar functions from different
organisms based on their associated literatures. This find-
ing also agrees with a previous study by Homayouni et al
[10], in which proteins were represented as points in the
vocabulary space based on their associated literature, and
they were further projected onto a reduced-dimension
semantic space constructed with the LSI techniques. The
proteins with similar functions were form clusters within
semantic space.

Discussion
Most biomedical knowledge is stored as free text in the
biomedical literature, and the size of the biomedical liter-
ature is increasing rapidly. There is an urgent need for
automatically acquiring and representing this body of
knowledge in a computable form to facilitate the discov-
ery of new knowledge, which requires the development of
computational methods to extract knowledge from the
text. The current state of the art of the text mining
approaches have applied to biomedical literature and
reported in several recent challenge evaluations, such as
the KDD, the BioCreative, and the TREC [7,9,16]. How-
ever, most of these approaches are within the conven-

Determining the biological relevance of the topicsFigure 4
Determining the biological relevance of the topics. 
Panel A. Histogram of human assigned biological relevance 
scores. A score of 0 indicates no biological relevance, while 
scores of 1 through 5 indicate increasingly relevant and 
coherent biological relevance. Panel B. Relationship 
between the human assigned biological relevance score and 
the topic-GO MI.
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tional NLP, IE, and IR framework, and the application of
probabilistic or non-probabilistic semantic modeling of
biomedical literature remains relatively sparse [10-12].

In this paper, we report the extraction of a set of semantic
topics from a corpus of protein-related MEDLINE titles
and abstracts with the LDA model. The key advantages of
applying an LDA model to perform statistical semantic
analysis includes, but is not necessarily limited to the fol-
lowing: (1) it model is capable of extracting major recur-
ring themes from a corpus of text in a unsupervised
manner; (2) the assumption that a document is a mixture
of topics naturally simulates real world text and allows
modeling of text at finer granularity; and (3) it can effec-
tively resolve many ambiguities commonly association
with natural language.

Recurring biological themes reflect knowledge domains
The LDA model identifies topics from a text corpus by cap-
turing the covariance of the words and organizes the
words that tend to co-occur into a structure that mimics a
topic. The inference algorithm for the model is unsuper-
vised, precluding the need of expensive, manually-anno-
tated data. The generative nature of the LDA model
ensures that the extracted topics/concepts reflect the recur-
ring themes within the corpus. We used a well-annotated
data set from the Uniprot database [17], thus the major
topics identified from the corpus arguably reflect the
major domains of our knowledge of proteins.

We applied a Bayesian model selection approach to deter-
mine the "optimal" number of topics for the purpose of
model fitting. The Bayesian model selection favors the

simplest model that explains data well [18]. With such a
preference, many of the 300 topics in our results reflect
the general themes of the corpus. However, the model is
also capable of capturing strong co-occurrence patterns
that are highly specific biological objects/concepts, as
demonstrated in Table 2. As more training data become
available, especially as full electronic texts of the biomed-
ical literature become available, the Bayesian model selec-
tion can accommodate more complex models thus
simulating the data with finer granularity. One limitation
of the LDA model is that it requires a specified number of
topics in order to model the data. However, it is a strong
assumption to specify that a corpus is generated with a
fixed number of topics, which may not be valid in the real
world. To address this issue, recent development in the
nonparametric approaches, such as the Dirichlet process
based methods may be more reasonable to model the
data without a specified number of topics, such as in the
Dirichlet process related models [19-21].

In the LDA model, a topic is represented as a distribution
reflecting the word-usage pattern. One key advantage of
the LDA model is that the extracted topics correspond to
real world objects or concepts that are readily understand-
able by people with domain knowledge. In comparison,
another extensively studied semantic analysis approach,
the latent semantic indexing (LSI) model [10,12,22-24],
cannot recover understandable semantic topics from text.
The LSI model also captures the covariance of the words
from a collection of text and identifies the major direc-
tions of the covariance space. It applies the singular value
decomposition (SVD) approach to identify the orthogo-
nal directions of semantic space spanned by the word vec-

Table 2: Examples of topic-GO associations

Topic # GO ID MI GO Category GO Term Most Frequent Topic Words

278 GO:0005730 0.001439 Component nucleolus ribosom rrna pre deplet process small nucleolar biogenesi 
accumul nucleolu

267 GO:0005681 0.001193 Component spliceosome complex splice altern pre snrnp mrna spliceosom u2 step sap snrna
105 GO:0005816 0.00119 Component spindle pole body microtubul spindl mitot tubulin kinetochor mitosi 

centrosom pole centromer bodi
236 GO:0006935 0.00186 Process chemotaxis lymphocyt macrophag chemokin monocyt neutrophil 

inflammatori leukocyt peripher mcp cd8
156 GO:0006468 0.001514 Process protein amino acid 

phosphorylation
kinas phosphoryl serin threonin pkc autophosphoryl 
casein akt catalyt ste20

267 GO:0000398 0.001404 Process nuclear mRNA splicing splice altern pre snrnp mrna spliceosom u2 step sap snrna
156 GO:0004674 0.001148 Function protein serine/threonine 

kinase activity
kinas phosphoryl serin threonin pkc autophosphoryl 
casein akt catalyt ste20

267 GO:0008248 0.001463 Function pre-mRNA splicing factor 
activity

splice altern pre snrnp mrna spliceosom u2 step sap snrna

236 GO:0008009 0.001093 Function chemokine activity lymphocyt macrophag chemokin monocyt neutrophil 
inflammatori leukocyt peripher mcp cd8

224 GO:0015671 5.05E-06 Process oxygen transport ha uniqu characterist featur extens character typic possess 
unusu exhibit

227 GO:0015213 5.00E-06 Function uridine transporter activity function defin unknown perform wide thei tissu repres 
consist creat
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tors of the documents and uses major directions to
represent the semantic space with a reduced rank. Thus, a
document can be represented as a vector in a reduced-rank
space spanned by few major directions – a process of
indexing the document with respect to semantic direc-
tions. However, restricting the semantic directions to be
orthogonal to each other, the LSI identifies the directions
that may not correspond to any human-understandable
topics, thus remaining "latent."

Semantic analysis and automatic indexing
As shown in Figure 3, the LDA model can be used to
extract semantic contents of an abstract, indicating that
the model should be useful for automatic document
indexing and information retrieval. In comparison to con-
ventional information retrieval by keyword indexing,
semantic indexing by LSI has been demonstrated to be
more accurate [5] due to the fact that semantic indexing
allows retrieval of documents whose semantic contents
align well with the semantic meanings of the query terms,
without requiring occurrence of the exact query terms in
the documents. Although not yet tested on as large a scale
as the LSI, the LDA model should have similar indexing
power due to the fact that the semantic concepts extracted
by the LDA aligns well with human perception.

We have shown that many of the topics extracted by the
LDA model can be mapped to the controlled vocabulary
of GO terms, potentially serving as a means of automati-
cally annotating a protein-related corpus. Currently, most
GO annotations are manually performed by PhD level
biologists at different centers of GO consortium.
Although accurate and specific, manual annotation is
labor-intensive and cannot be expected to keep up with
the pace of growth in the biomedical literature. Automatic
annotation of proteins based upon the biomedical litera-
ture is a growing and urgent task facing the bioinformatics
community that motivated the specific tasks in the recent
competitive evaluations [7,9,16]. Our results indicate that
it is possible to extract salient biological concepts from a
large amount of biomedical literature and map the con-
cepts to the controlled vocabulary. Although the mapping
between the latent topics from the LDA model to the GO
terms may not provide annotations as specific as manual
annotations, automatic annotation based on the LDA
should provide general and consistent descriptions of a
protein

Dealing with ambiguities of natural language
Human natural language is full of ambiguities confound-
ing the results of contemporary NLP, IE, and IR tech-
niques [3,4]. Most noticeably, the phenomena of
polysemy and synonym need to be effectively addressed
during NLP, IE, and IR. The LDA effectively handles the
uncertainties and ambiguities caused by the polysemes

and synonyms due to its probabilistic representation of
the topics. The distributional representation of concepts
allows the synonyms to be group into a common topic,
while a polyseme can participate in multiple concepts.
Such representation effectively captures the key relation-
ship between the words and semantic concepts: the con-
cept is conveyed by choice of words and sense of a word is
dependent on context. The inference algorithm of the
LDA model explicitly utilizes such relationships to infer
the topic for a word, so that the semantic topics of syno-
nyms and polysemes can be assigned based on the context
of text. This capability makes the LDA model a powerful
tool to enhance the performance of other NLP, IE and IR
techniques for text mining. The result shown in Figure 3
serves as a good example of the capability of the LDA
model to properly assign words to topics depending upon
context. Note that the words "space" and "induce" are
general words that fit into different semantic context, and
the LDA algorithm correctly associated them with the con-
cepts of mitochondria and apoptosis, respectively, based on
the semantic context of the document.

Conclusion
In summary, we extracted a set of major semantic con-
cepts from a protein-related corpus of text words from
MEDLINE titles and abstracts by applying the LDA model.
The identified concepts are semantically coherent, and
most of them are biologically relevant. The extracted bio-
logical topics reflect the major knowledge domains of cur-
rent knowledge of protein function contained in the
corpus. The semantic content of a document can be
inferred from a text and used for automatically indexing
the text. Future directions will be explored to extend the
current approach or to develop new techniques for
extracting biological concepts of finer granularity and
combining semantic analyses with conventional NLP, IE,
and IR techniques to map the topics to the controlled
vocabulary.

Methods
Data set
The protein annotation data of the Uniprot database (Ver-
sion 22, October 2004) was downloaded from the GOA
project [2] web site of the European Bioinformatics Insti-
tute. In this data set, each protein was annotated with one
or more GO annotations. Many annotation entries con-
tained references to PubMed identification (PMID) num-
bers, presumably these annotations resulted from reading
the literature indexed by the PMID. All the PMIDs and
their associated GO terms were extracted from the Uni-
prot data set. The extracted data contained 6,565 unique
GO accession numbers (GOID) and 25,005 unique
PMIDs. The MEDLINE entries indexed by these PMID
were downloaded from the National Center for Biotech-
nology Information (NCBI) using the Entrez E-utility
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service, and their titles and abstracts were extracted. These
MEDLINE text data were preprocessed as follows: (1)
common words from a standard English "stop words" list
were removed; (2) words were stemmed using Porter's
stemmer [25]; (3) words that appeared fewer than 5 times
in the corpus were discarded. The processed data set is
referred to as GOA corpus and contained the preprocessed
MEDLINE text words and associated GO annotations.
After preprocessing, the vocabulary of the corpus con-
sisted of 25,143 unique terms.

LDA model
Model specification
The LDA model is a probabilistic topic model [14,15,26].
It is a hierarchical generative model that simulates the
process of writing a text. Let the corpus C = {d1, d2, ..., dD}
be a set of documents, where D denotes the number of
documents in the corpus; a document d = (w1, w2,..., wNd)
consists of a sequence of words; and w be a word that
takes a value from the vocabulary {v1, v2, ..., vV}. Let T be
the number of topics of a LDA model and V be the size of
the vocabulary of the corpus. The LDA model simulates
the generation of a document with following stochastic
processes:

• For each document, sample a topic proportion vector θ
= (θ1,θ2,...,θT)' from a Dirichlet distribution with parame-
ter α: θ ~ Dir(θ | α). This is equivalent to an author decid-
ing what topics to include in the paper.

• For each word in the document, sample a topic z accord-
ing to multinomial distribution governed by θ: z ~ Multi(z
| θ). This can be thought as assigning a word to a topic.

• Conditioning on z, sample a word w according multino-
mial distribution with parameter φz : w ~ Multi(w | φz, z).
This corresponds to picking words to represent the con-
cept.

• The parameter φt with t ∈ {1,2,...,T}, is a V-dimension
vector that defines the multinomial word distribution of a
topic. It is distributed as Dirichlet with parameter β: φt ~
Dir(φt | β).

The probabilistic directed acyclic graphical representation
of the LDA model is shown in Figure 5 in plate notation
[27]. In a probabilistic graph, nodes represent random
variables and edges represent the probabilistic relation-
ship, i.e., the conditional probability, between the varia-
bles. The shaded and un-shaded nodes represent the
observed and unobserved variables, respectively. Each rec-
tangular plate represents a replica of the data structure; the
number at the bottom right of each plate indicates the
number of the replicates. In this graph, each document is
associated with a topic composition variable θ and total of

Nd replicates of topic variable z and word w. The graph
also shows that there are T topic word distributions.

Statistical learning
Given the observed documents, the learning task is to
infer the topic-composition θd for each document; the
topic variable, zi, for each word,wi, within the document;
and the word distribution φt for each topic t. The exact
inference of these unobserved variables is intractable. A
Markov chain Monte Carlo (MCMC) [28] inference algo-
rithm by Griffiths and Steyvers [15] was adopted to per-
form approximate inference. Let z denote a vector of the
instances of all latent topic variables and w denote a vec-
tor of all the observed words of the corpus. The algorithm
concentrates on the joint probability p(w, z) and applies
Gibbs sampling to instantiate the latent topic variable for
each word. Gibbs sampling is a technique to generate
samples from a complex posterior distribution p(z | w) by
iteratively sampling and updating each component varia-
ble zi according to the conditional distribution p(zi| z-i, w),
where z-i denotes the current instantiation of all the latent
topic variables except zi, and w denotes the vector of all
observed words of the corpus. The Gibbs sampling proce-
dure follows these steps: (1) randomly initialize the latent
variables z; (2) each element zi of z is iteratively sampled
and updated; (3) repeat step (2) until the Markov chain
converges to the target posterior distribution p(z | w)
("burn in"); and (4) samples of z are collected from the
Markov chain. The conditional distribution p(zi | z-i, w) is
defined as follows:

In equation (1),  denotes the count of the words in

the corpus that are indexed by wi and assigned to the topic

j, excluding the word wi;  is the count of all words

assigned to the topic j, excluding the word wi;  is the

count of words assigned to the topic j in document di that

contains topic variable zi, excluding wi;  stands for the

count of all the words in that document excluding wi; and

α, β, V and T were defined previously. During training of
the LDA model, the values for the corpus level parameters

were set as follows: α = 1, β = 0.1.

Equation (1) has an intuitive explanation for how the
inference algorithm determines the topic label zi for the
observed word wi. The first term on the right side indicates
the likelihood of observing word wi if its topic zi = j, e.g.,
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the likelihood of observing word "death " if the topic is
apoptosis. The second term specifies the likelihood that a
word in the document belongs to topic j, based on the
context of the document. In plain English, the second
term would read: "the word wi more likely belongs to
topic j if many other words in the document belong to the
topics j." For example, the word "death" is more likely to
belong to the topic apoptosis, if there are other words in the
document, such as "apoptosis," "programmed," and
"cell," belonging to the same topic.

Once the vector of the latent topics z is instantiated by
sampling, the parameters governing the posterior distri-
bution of θ and φ can be estimated analytically as follows:

where  is the number of words assigned the topic j in

the document d; n.(d) is the total number of words in the

document d;  stands for number of times a word

indexed by v belongs to the topic j; and  denotes total

number of words assigned to the topic j.

Inference for new data

A trained model can be used to infer the latent topic vari-

ables z and estimate θd for a newly observed document.

This is achieved by sampling z from the posterior distribu-
tion with MCMC by invoking Equation (1). During the
sampling, the first term of equation (1) is replaced with

the previously learned  from equation (3), and only the

counts in the second terms are updated.

Model Selection

One objective of model training is to allow the model to
fit the data well while avoiding over fitting. From a statis-
tical learning point of view, this is a model selection prob-
lem that can be addressed within a Bayesian model

selection framework to select the optimal model  that
has the highest posterior probability conditioning on the
observed data w as follows:

Assuming an uninformative prior distribution p(M) for
the models, the model selection was determined by the
evidence (marginal likelihood) p(w | M), which can calcu-
lated by integrating out the latent parameters and varia-
bles:

The summation and integration in the equation (6) was
intractable. Instead, a Monte Carlo approximation for this
quantity was employed [15]. With the parameters α and β
fixed, the difference between the model Ml and Mk is the
number of the topics Tl and Tk. For a model with a given
number of topics, T, the evidence p(w | M) was approxi-
mated as follows: 40 samples of latent variable vectors,
{z1, z2, ..., z40}, were collected from 4 randomly initial-
ized Markov chains according equation (1). Then, the
conditional probability p(w | z, M) for each sample z was
evaluated by analytically integrating out φ:

The evidence p(w | M) was approximated with the har-
monic means of the sample conditional probabilities p(w
| z, M) [29]. The selection among the models with differ-
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ent T was carried out based on the approximated evi-
dence.

Mutual information
MI is a symmetric, non-negative quantity that measures
the amount of information one variable contains with
respect to another variable, and it equals zero if and only
if the variables are independent. The MI between a latent
topic and a GO term was calculated as follows:

where I(Ag, Lt) is the mutual information between the
annotation of a word with GO term g and labeling the
word with topic t; Ag and Lt are binary variables indicating
whether a word is annotated with the GO term g and
assigned to the topic t, respectively. The topic labeling of
a word was determined according to the inferred latent
variable samples z. We specified that each word within a
given document was annotated with a GO term g if the
document was annotated with the term g. Note that this is
a strong assumption, which may skew the MI value for
some uncommon topics. The joint and marginal proba-
bilities in equation (8) were estimated empirically by
counting the events
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