
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
HotSwap for bioinformatics: A STRAP tutorial
Christoph Gille*1 and Peter N Robinson2

Address: 1Institute for Biochemistry, Charité University Hospital, Humboldt University Berlin, Germany and 2Institute of Medical Genetics,
Charité University Hospital, Humboldt University Berlin, Germany

Email: Christoph Gille* - christoph.gille@charite.de; Peter N Robinson - peter.robinson@charite.de

* Corresponding author

Abstract
Background: Bioinformatics applications are now routinely used to analyze large amounts of data.
Application development often requires many cycles of optimization, compiling, and testing.
Repeatedly loading large datasets can significantly slow down the development process. We have
incorporated HotSwap functionality into the protein workbench STRAP, allowing developers to
create plugins using the Java HotSwap technique.

Results: Users can load multiple protein sequences or structures into the main STRAP user
interface, and simultaneously develop plugins using an editor of their choice such as Emacs. Saving
changes to the Java file causes STRAP to recompile the plugin and automatically update its user
interface without requiring recompilation of STRAP or reloading of protein data. This article
presents a tutorial on how to develop HotSwap plugins. STRAP is available at http://strapjava.de
and http://www.charite.de/bioinf/strap.

Conclusion: HotSwap is a useful and time-saving technique for bioinformatics developers.
HotSwap can be used to efficiently develop bioinformatics applications that require loading large
amounts of data into memory.

Background
Bioinformatics applications now routinely analyze large
amounts of data. Development of programs thus often
involves repeated loading and testing of megabytes or
more of data to check program correctness or to optimize
algorithms and parameter settings. Compiled languages
such as C generally offer a much quicker execution time
than comparable programs written in scripting languages,
but each new compilation can mean loading and initializ-
ing the data into the program being developed, which can
significantly prolong development time. In general, it is
not possible to change program code at runtime.

Java is a compiled language that produces platform-inde-
pendent byte code that runs on a fast virtual machine on
nearly all modern architectures. The execution speed is
similar to that of the languages C or C++. The Java Hot-
Swap technique provides a mechanism that allows devel-
opers to keep program code and data in memory during
recompilation and thereby significantly accelerate and
simplify development of bioinformatics applications that
are intended to analyze large amounts of data. HotSwap
provides a dynamic class redefinition capability for the
Java virtual machine (JVM) that allows developers to
change a class inside the JVM at runtime [1,2]. This allows
developers to make changes at run time that they would
otherwise make off-line with subsequent recompilation.

Published: 09 February 2006

BMC Bioinformatics 2006, 7:64 doi:10.1186/1471-2105-7-64

Received: 06 October 2005
Accepted: 09 February 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/64

© 2006 Gille and Robinson; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16469097
http://www.biomedcentral.com/1471-2105/7/64
http://creativecommons.org/licenses/by/2.0
http://strapjava.de
http://www.charite.de/bioinf/strap
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:64 http://www.biomedcentral.com/1471-2105/7/64
This can significantly reduce development turnaround
time.

STRAP is a versatile workbench for protein analysis that
can be used to generate and refine multiple alignments, to
download PDB files from public ftp servers, visualize pro-
tein structural data with plugin or integrated protein struc-
ture viewers, and to map mutations onto three
dimensional protein structures [3-5]. STRAP allows users
to develop their own plugins that take advantage of the
STRAP infrastructure; that is, users do not need to write
code to load PDB files, to visualize alignments, to trans-

late nucleotides, but rather can concentrate on the logic of
the problem they would like to solve.

We have recently extended the capabilities of STRAP to
allow developers to use the Java HotSwap technique to
develop novel bioinformatics programs, either as plugins
for STRAP or as prototypes for independent applications.
We have extended the Inxar HotSwap implementation [6]
so that it is now additionally possible to use Java inner
classes. The techniques described in this work could also
be applied to other Java analysis tools for bioinformatics.
In the following, we provide a tutorial with a realistic

Table 1: STRAP HotSwap Plugin Types. This table gives an overview of some of the plugins that are already available in STRAP and
can be used as examples for development new plugins. STRAP plugins are defined by a Java interface with functions that users can
implement in order to have their plugin interact with STRAP. Protein Protein Distance returns values for all pairs of proteins in a set of
proteins. The values can be used for distance matrices. Sequence Aligner is used as a wrapper around programs such as clustalW to
perform multiple alignments and display them in the STRAP GUI. Likewise Protein Viewer is a wrapper around external protein
viewers such as rasmol or pymol. Superimpose3D is an interface for methods that superimpose one protein structure onto another by
calculating a 3 × 3 rotation matrix and a {dx, dy, dz} translation matrix. Value Of Residue is an interface for methods that return a float
value for each residue of a protein in order to plot a profile along the sequence of the protein. Value Of Protein is for plugins that
calculate a float value for individual proteins; the STRAP GUI will display these values as a bar chart. Fuller documentation of these
and other plugin types is available online. Each example plugin is already included in the main STRAP distribution, and source code can
be seen from within the STRAP GUI. The last column explains the purpose of the most important methods of the respective plugins.
In general, these methods are designed to interact with the rest of the STRAP GUI to display the results of the plugin's analysis. See
text for further details.

Plugin Type Example Methods in Interface

SoR CoiledCoil See text

Protein Protein Distance SequenceDisSimilarity-AsAligned • get Value Returns a real number
representing the degree of dissimilarity
between two or more proteins. In the example
class, it returns the proportion of aligned
residues that are identical. This information is
then used by the STRAP GUI to display a graph
or table with the results.

Sequence Aligner A variety of well-known algorithms are
implemented as plugins, for example "Multiple
AlignerClustalW"

• Get AlignedSequences Returns the results
of the alignment algorithm for display in the
STRAP GUI.

Protein Viewer Interfaces to rasmol, pymol, others • getProtein Returns a reference to the
associated STRAP protein object.
• getSelectedAminoAcids Causes selected
residues to be shown as selected by the
protein viewer.

Superimpose3D SuperimposeGoede • getRotation Returns a 3 × 3 rotation
matrix.
• getTranslation Returns a {dx, dy, dz}
translation vector.

Value Of Residue Solvent Accessibility • get Values Returns the values for each
residue which are then displayed by the STRAP
GUI as a profile.

Value Of Protein countResidues • get Value Returns a value for the protein
which is then displayed by the STRAP GUI as a
bar in a bar chart.
Page 2 of 7
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:64 http://www.biomedcentral.com/1471-2105/7/64
application to demonstrate the usefulness of HotSwap in
the development of bioinformatics applications.

Implementation
STRAP is implemented in the Java programming language
[7]. Users can develop their own plugins to perform spe-
cific types of analysis and also take advantage of the other
features of the STRAP workbench, including online
retrieval of sequence and structure data, sequence align-
ments, and structure visualization. We based our imple-
mentation of HotSwap on an open-source project of Inxar
[6] and added code to interact with STRAP.

Inner classes are a useful feature of Java since version 1.1.
We extended HotSwap support to inner classes, such that
the "swapped" classes can now contain inner classes. The
complete source code for HotSwap as well as the rest of
STRAP is freely available.

HotSwap can be used for all types of STRAP plugin. Even
if implemented interfaces are added or removed, and thus
changes are made to the public signature of the plugin, no
recompilation is needed. The HotSwap mechanism has
been implemented only for plugins, and any changes that
developers might make to the core STRAP classes will
require recompilation. The code used for implementing
HotSwap in STRAP can be used to implement HotSwap in
other applications. A complete example is available from
the homepage of the authors [8].

HotSwap for STRAP: A tutorial
In the following, we show how to develop a relatively sim-
ple, but useful plugin designed to predict coiled coil
regions in protein sequences. The development of such
plugins often involves many cycles of incremental
changes to the code. Normally, this would require recom-
pilation of the code for the entire program. Using STRAP's
HotSwap capabilities, developers can load multiple pro-
tein sequences into STRAP graphical user interface (GUI),
display the predicted sequences by highlighting the pre-
dicted sequence regions in the GUI, and make changes to
the code of the plugin. The hotswap facility recognizes
and recompiles the modified plugin source code and
"swaps " the new objects back into the main STRAP pro-
gram. Reloading the protein sequences or restarting
STRAP is not required. Any changes in the predictions of
the plugin are automatically displayed in the STRAP GUI.

Coiled coil prediction
As an example, we have adapted a previously published
program for identification of coiled coils in protein
sequences [9]. Coiled coils are helical bundles of 2–5 α
helices with a distinctive packing of amino acid sidechains
at the helix-helix interfaces called "knobs-into-holes ".
Coiled coils are widespread protein motifs that form large,

mechanically rigid structures such as hair (keratin), blood
clots (fibrin), and extracellular matrices (laminin), and
also frequently provide oligomerization domains (leucine
zippers) [10,11]. The structure of the helix-helix interfaces
results in every seventh residue occupying an equivalent
position on the helix surface, so that the sequences of
coiled-coil proteins display a heptad periodicity in the
chemical nature of their sidechains, which is a main fea-
ture recognized by coiled-coil prediction programs [12].

STRAP plugins
STRAP provides standardized interfaces to its many func-
tions and windows. This simplifies the development of
plugins, because users only need to implement a few
methods in order to create code that interacts with STRAP.
The first step in creating a new plugin consists in choosing
one of the presupplied STRAP code skeletons (Java inter-
faces) (Table 1). Developers should be able to choose a
plugin skeleton that supports the data exchange and visu-
alization functionality needed by their application.

To choose a plugin type, users switch to STRAP's Java
plugin menu and switch to expert mode. STRAP creates a
new plugin if users mark the interface node that represent
the desired plugin type and click on the "new plugin"
icon. STRAP generates a skeleton class that implements
the desired interface as well as other interfaces and meth-
ods that provide additional functionality such as event lis-
tening or control panels. To see what methods need to be
implemented for a particular plugin type, the users acti-
vate the tree node of the interface and then can click on
the Java Source Code icon to view the code of the Java
interface. The generated class provides skeleton imple-
mentations of all required methods so that the program
already compiles and can be executed by pressing the
"apply or start plugin" button. Users can now add the
application-specific code.

SoR plugins: selection of residues
In the present example, we chose the SoR interface
because this plugin allows simple visualization of Selec-
tions of Residues. In our case, we will write code to predict
the presence of coiled coils in a protein sequence and will
use the SoR plugin type to visualize the coiled coils in the
amino acid sequence and in the corresponding three-
dimensional protein structure (if structure data is availa-
ble for the protein in question).

Once the user has pressed the "new plugin" button STRAP
provides skeleton code for the interface, including the
methods setProtein, getProtein, getSelectedAminoacids,
and setSelectedAminoacids. Depending on the applica-
tion, users will need to change this code to get the
required functionality. Furthermore, users need to define
their own methods to interact with these methods. In the
Page 3 of 7
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:64 http://www.biomedcentral.com/1471-2105/7/64
present example, we need to implement methods for
coiled-coil prediction; these methods need to get protein
sequences from STRAP and to return the results of analysis
in the form of an array of true or false values. We have
named the new plugin class CoiledCoil. The source code,
CoiledCoil.java, is available from the STRAP website.

set protein
This method is called automatically by the STRAP GUI to
communicate the protein object to the plugin immedi-
ately after the instance of the plugin class is created. Note
that one instance of the plugin is created for each protein
that is selected in the STRAP GUI, so that user code in the
plugin analyzes only a single protein. STRAP causes one
instance of the plugin to be executed for each protein
selected, so that multiple proteins can be analyzed.

User code can take advantage of the attributes and meth-
ods of StrapProtein objects. For instance, to get the codon
(triplet) coding for an amino acid, call

byte [3] = getResidueTriplet (idx, new byte [3])

, where idx is an integer value representing the position of
the amino acid in the protein chain. The three bases are

returned in an byte array. To avoid inefficiency due to the
frequently invoked method getResidueTriplet repeatedly
creating byte arrays, the calling code must provide mem-
ory space of three bytes with the second method argu-
ment. Thus the byte array can be created once and used
many times, which significantly improves performance.

As another example,

float z = getResidueCalphaZ (idx)

is used to get the z coordinate of the Cα atom of the resi-
due at position idx. If no coordinates are loaded for the
respective protein or the coordinates at the given index are
not resolved in the structure, NaN is returned. Javadoc
documentation of all methods and fields for the class
StrapProtein and other STRAP classes may be found at the
project website [13].

Note that since StrapProtein objects can be created from
PDB files, FASTA files, or translated Genbank nucleotide
files, user code should not assume that all attributes of a
StrapProtein object will have values; for instance, if a
StrapProtein object was constructed from a FASTA file,
only attributes related to the amino acid sequence will

Java code for the method getSelectedAminoacids()Figure 1
Java code for the method getSelectedAminoacids(). A. Initialize the local variable vers with the current version of the amino
acid sequence. This value is changed whenever the residue sequence changes. Before the analysis is performed, the value of
selectedResidues is null, so that the code following these lines will always be executed when the plugin is initialized; B. If the
residues have not been changed since the last analysis, just return the previously selected residues; C. We use the private class
method setSequence to alter the class variable seq, which holds the current amino acid sequence. The method getResidueType
of the class StrapProtein is used to retrieve the current amino acid sequence from the STRAP GUI; D. pred_coils performs the
analysis for coiled coil regions, and places the results of its analysis in the array selectedResidues; E. Finally, we return the array
selectedResidues to the STRAP GUI, which uses this information in order to mark the residues in amino acid sequences or
protein structures.

������ ������	
� ������������	�������� �

��	� ����������	�������	����������������� � �� �

�! �������������	������������ "" ���������������#�	����

����	 ���������������� � $� �

������	������������������

����%��	��������	������������������ � &� �

��������������� � �������������%�� � '� �

����	 ���������������� � (� �

)

Page 4 of 7
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:64 http://www.biomedcentral.com/1471-2105/7/64
have values, and calls to other methods such as getResi-
dueSolventAccessibility will return NULL.

In CoiledCoil.java, we have declared a member variable
private StrapProtein protein. The method public void set-
Protein() is called immediately after object creation and
initializes protein as one of the proteins selected in the
STRAP graphical user interface (GUI).

getProtein() is the counterpart to setProtein. Its task is to
return a reference to the protein to the STRAP GUI. Each
instance of SoR refers exactly to one protein.

getSelectedAminoacids
The purpose of getSelectedAminoAcids is to return an
array of boolean values. true at a given index indicates that
the corresponding amino acid residue is "selected"
according to the logic of the plugin (in our case, it indi-
cates that the residue is part of a predicted coiled coil).

Figure 1 shows the Java code for the method get Selecte-
dAminoacids(), and is typical of the way users can con-
nected their own code to STRAP. get SelectedAminoacids(
) calls the method pred_coils (), which performs the
actual prediction of coiled coil regions. The code of
pred_coils is closely based on the C program ncoils [9].
The method pred_coils calculates a value for each residue
and compares it to a threshold value for being in a coiled
coil region. If the value is above the threshold, the corre-
sponding position of selectedResidues is set to true:

if (P[i]>=min_P) selectedResidues [i]=true;

Before the calculation is started, the method checks
whether a previously calculated result can be returned
instead. This is the case if and only if the method was
called previously with exactly the same amino acid
sequence. The amino acid sequence of the protein may be
changed. For example, users can change the amino-acid
sequence directly. If the protein object was created from
genomic DNA sequence, altering the indicated intron-
exon boundaries will also change the predicted amino
acid sequence, and this will be reflected by corresponding
changes in the SoR instance. To decide whether the amino
acid sequence has been changed the version number can
be requested from the protein object using the method
long version_residueType ().

setSelectedAminoacids
STRAP has a button to add or remove a single residue
under the cursor to or from a selection. This feature is
designed for certain selections such as selections in 3D-
viewers. For the class CoiledCoil this feature is not
required and the method body is kept empty.

Listening to events in STRAP
The interface StrapListener is required for plugins which
need to be informed when data changes. For instance, if
the user changes the amino acid sequence of a protein in
the STRAP GUI, the plugin may need to be informed in
order to recalculate its analysis. In general, STRAP creates
a separate instance of each plugin class for each protein
being analyzed. To improve efficiency of the GUI, STRAP
creates one instance of the plugin just for the purpose of
listening for events that receives a message from the
STRAP GUI each time the sequence of one of the proteins
is changed.

The appropriate answer to this message would be to tell
STRAP and all listeners that the residue selection might
have changed. As a consequence STRAP would redraw all
alignment windows and by doing so would request the
selected residues by calling get SelectedResidues () of the
CoiledCoil instances. The instance of CoiledCoil of the
changed protein would be forced to recompute the predic-
tion. The instances of the other proteins that did not
change would quickly return the previously calculated
prediction. However, since STRAP must redraw the align-
ment anyway when the residue sequence changes, the
interface StrapListener was omitted in CoiledCoil.

Catching errors
If an exception is thrown, the stack trace can be examined
by opening the debugging panel in the STRAP GUI
(Options menu, "finding errors").

Discussion
STRAP provides a number of plugin types that can be
extended by developers to perform specific kinds of anal-
ysis. In each case, Java interfaces are used to define meth-
ods required for interaction with the STRAP GUI, which
generally involves getting references to single or multiple
protein objects, and returning the results of analysis in a
way that can be displayed by the STRAP GUI. For instance,
the plugin type ValueOfProtein can be used to assign
numerical scores for proteins (according to a user-defined
analysis) and to display the results of analysis as bars in
the row header of the multiple sequence alignment. The
essential method that needs to be implemented by the
plugin developer is get Value (), which returns a numeric
value representing the results of the analysis of the protein
represented by the plugin instance. Further examples and
documentation are available at the project website.

The most important classes to learn in order to create use-
ful plugins are Strap Protein (which contains all data of a
protein such as the amino acid sequence, the name, the
nucleotide sequence, the secondary structure and the
coordinates), Strap Event (An instance of this class is
broadcasted whenever changes occur and provides meth-
Page 5 of 7
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:64 http://www.biomedcentral.com/1471-2105/7/64
ods to request the type of event and the event source), and
Strap Align (which is the root component and contains all
information of the alignment. It is used by plugins to
request all proteins or all selected proteins.)

HotSwap for bioinformatics
The full value of the HotSwap technique is apparent when
users are developing a new plugin, which often means
that various parts of the program code are repeatedly
changed during program debugging, testing, and optimi-
zation. To provide a first impression of the usefulness of
this technique, we suggest that interested readers load the
code for the CoiledCoil plugin from the STRAP website
into the plugin folder and import the multiple FASTA file
CoiledCoil.fasta, which contains multiple protein
sequences, some of which have coiled coil regions. Users
can use the plugin as provided to visualize the coiled coil
regions, and then open the Java code and make changes to
the pred_coil method or to the array HEPTAD_WEIGHT
which is used for the analysis. STRAP will automatically
recompile CoiledCoil.java, while maintaining all links to
the rest of the STRAP GUI. Users can then see any changes
in the "prediction" of the plugin immediately, without
having to recompile the entire STRAP application or
reload the protein sequences. Developers increasingly
make use of complex APIs for the development of new
applications. STRAP is able to automatically load numer-
ous Java archive (".jar") files on demand and can be
extended to load any archive file publically available over
the internet. One of the most useful archives at present is
the BioJava API [14]. Developers can use any of the classes
of BioJava to write STRAP HotSwap plugins. There are two
utility classes responsible for conversion between STRAP
and BioJava, BiojavaSequence2StrapProtein and
StrapProtein2BiojavaSequence. Example BioJava plugins
are available in the STRAP GUI and are referenced in the
online documentation for BioJava [15].

Conclusion
We have presented a tutorial on how to use HotSwap to
develop plugins for STRAP. HotSwap has been integrated
into recent versions of Java [16]. Although HotSwap was
originally conceived for applications that must run con-
tinuously without any interrupts, such as transaction
processors or air flight controllers, it has obvious utility
for the development of bioinformatics applications that
process large amounts of data and require extensive opti-
mization.

In STRAP, no additional work is required to use HotSwap
techniques. The functionality of STRAP allows users to
develop plugins that use STRAP's graphical user interface
to interact with various protein viewers, to translated
nucleotide sequences, to download files from a variety of
servers, among many others, so that users can concentrate

on the logic of the analysis they would like to develop
rather than on the framework.

Availability and requirements
Project Name

STRAP

Project Homepage

http://www.charite.de/bioinf/strap/

http://strapjava.de/

Operating Systems

Platform independent. STRAP is a Java application that
requires at least Java 1.4 to run. It can be run as a WebStart
application or downloaded and started locally. STRAP has
been tested under linux, Windows and MacOS X.

Programming language

Java. STRAP is open source, and the source code can be
accessed directly from the STRAP GUI or with the file
strap.jar, which is available for download without restric-
tions. Some of the embedded applications in strap are
written in C/C++.

License

GNU General Public License.

Any restrictions to use by non-academics

There are no restrictions concerning the core STRAP code.
However, a few of the embedded applications do have
restrictions. Restricted applications are marked in the
STRAP GUI, and non-academics are advised to consult the
webpages of the respective applications to determine the
restrictions on use.

Authors' contributions
CG integrated HotSwap functionality into the STRAP pro-
tein workbench. PNR developed the CoiledCoil plugin
and wrote the manuscript. Both authors tested HotSwap
plugins, read, and approved the final manuscript.

Acknowledgements
The authors would like to thank Mark Schreiber of the BioJava project for
his help in integrating the BioJava API into the STRAP workbench.

References
1. Dmitriev M: Safe Class and Data Evolution in Large and Long-

Lived Java Applications. Tech Rep Sun Technical Report SMLI TR-
2001-98 2001.
Page 6 of 7
(page number not for citation purposes)

http://www.charite.de/bioinf/strap/
http://strapjava.de/

BMC Bioinformatics 2006, 7:64 http://www.biomedcentral.com/1471-2105/7/64
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

2. Dmitriev M: Towards Flexible and Safe Technology for Runt-
ime Evolution of Java Language Applications. In OOPSLA 2001
International Conference Tampa Bay, Florida; 2001.

3. Gille C, Frommel C: STRAP: editor for STRuctural Alignments
of Proteins. Bioinformatics 2001, 17(4):377-8.

4. Gille C, Lorenzen S, Michalsky E, Frommel C: KISS for STRAP:
user extensions for a protein alignment editor. Bioinformatics
2003, 19(18):2489-91.

5. Gille C: Structural interpretation of mutations and SNPs
using STRAP-NT. Protein Sci 2006, 15:208-10.

6. Inxar HotSwap [http://directory.fsf.org/libs/java/HotSwap.html]
7. Java [http://www.java.sun.com]
8. Keggano Homepage [http://www.charite.de/bioinf/strap/sysbio/

kegganno]
9. Lupas A, Van Dyke M, Stock J: Predicting coiled coils from pro-

tein sequences. Science 1991, 252(5010):1162-4.
10. Lupas A: Coiled coils: new structures and new functions.

Trends Biochem Sci 1996, 21(10):375-82.
11. Burkhard P, Stetefeld J, Strelkov SV: Coiled coils: a highly versatile

protein folding motif. Trends Cell Biol 2001, 11(2):82-88.
12. Lupas A: Predicting coiled-coil regions in proteins. Curr Opin

Struct Biol 1997, 7(3):388-93.
13. STRAP website. . http://strapjava.de and http://www.charite.de/

bioinf/strap
14. Mangalam H: The Bio* toolkits-a brief overview. Brief Bioinform

2002, 3(3):296-302.
15. BioJava cookbook, online documentation [http://www.bio

java.org/docs/bj_in_anger/index.htm]
16. See for instance [http://java.sun.com/j2se/1.4.2/docs/guide/jpda/

enhancements.html]
Page 7 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16322575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16322575
http://directory.fsf.org/libs/java/HotSwap.html
http://www.java.sun.com
http://www.charite.de/bioinf/strap/sysbio/kegganno
http://www.charite.de/bioinf/strap/sysbio/kegganno
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2031185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2031185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8918191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11166216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11166216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9204281
http://strapjava.de
http://www.charite.de/bioinf/strap
http://www.charite.de/bioinf/strap
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230038
http://www.biojava.org/docs/bj_in_anger/index.htm
http://www.biojava.org/docs/bj_in_anger/index.htm
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/enhancements.html
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/enhancements.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	HotSwap for STRAP: A tutorial
	Coiled coil prediction
	STRAP plugins
	SoR plugins: selection of residues
	set protein
	getSelectedAminoacids
	setSelectedAminoacids
	Listening to events in STRAP
	Catching errors

	Discussion
	HotSwap for bioinformatics

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

