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Abstract
Background: Integration of heterogeneous data types is a challenging problem, especially in
biology, where the number of databases and data types increase rapidly. Amongst the problems
that one has to face are integrity, consistency, redundancy, connectivity, expressiveness and
updatability.

Description: Here we present a system (Biozon) that addresses these problems, and offers
biologists a new knowledge resource to navigate through and explore. Biozon unifies multiple
biological databases consisting of a variety of data types (such as DNA sequences, proteins,
interactions and cellular pathways). It is fundamentally different from previous efforts as it uses a
single extensive and tightly connected graph schema wrapped with hierarchical ontology of
documents and relations. Beyond warehousing existing data, Biozon computes and stores novel
derived data, such as similarity relationships and functional predictions. The integration of similarity
data allows propagation of knowledge through inference and fuzzy searches. Sophisticated methods
of query that span multiple data types were implemented and first-of-a-kind biological ranking
systems were explored and integrated.

Conclusion: The Biozon system is an extensive knowledge resource of heterogeneous biological
data. Currently, it holds more than 100 million biological documents and 6.5 billion relations
between them. The database is accessible through an advanced web interface that supports
complex queries, "fuzzy" searches, data materialization and more, online at http://biozon.org.

Background
High throughput technologies such as microarrays and
mass spectrometry, as well as fast sequencing techniques
produce biological data at an ever increasing rate. The
sheer volume of new data exposes new processes and
complex phenomena in biological systems. Conse-
quently, the focus is shifting from exploring single mole-
cules to complexes of molecules or pathways involving
multiple proteins and other subcellular agents. Often, the
study of one entity is tightly coupled to the study of other,

related entities. For example, by studying individual pro-
teins we wish to better understand their role in cellular
processes, and by studying cellular processes, we hope to
better understand cellular "computations", and to gain
insight into the functions of the constituent molecules.

With the constant flow of new data, biological data anal-
ysis becomes a major challenge. The massive amount of
available data rules out comprehensive experimental
research of all known proteins, pathways and other bio-
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logical entities. In this view, advanced and automatic
tools to organize and analyze this data become a neces-
sity. Acknowledging this need more than two decades ago,
efforts have been made at collecting and storing biological
data on digital media, and today there are many databases
that warehouse a variety of biological knowledge. Some
are collections of fundamental biological entities and
annotations, such as the protein sequence databases
SwissProt [1] and PIR [2] or the Genbank database of
DNA and RNA sequences [3]. Databases of protein inter-
actions such as BIND [4] or DIP [5] provide insight into
the basic processes of the cell, while sources such as the
metabolic pathway databases EcoCyc [6] and KEGG [7]
describe systems that are comprised of these basic proc-
esses, and other cellular agents. This is a just a short list of
the many biological databases that are available today
(see NAR database issue at [8]). Existing databases are typ-
ically highly focused, containing raw data of a specific
type and annotations from recent scientific research and
publications. However, entities that are stored in different
databases can be strongly related and mutually dependent
on each other, and to fully understand the role of an indi-
vidual entity one has to know which and how other entities
are related to it. For example, the function of genes
depends on their broader biological context: their rela-
tions to other genes, the set of interactions they form, the
pathways they are involved in, their expression under var-
ious conditions, and so on. In a similar manner, the bio-
logical function of an interaction is a function of the
interacting partners. Utilizing this interrelated informa-
tion is key to an effective and accurate analysis of biologi-
cal entities.

To retrieve the broader context of an entity, a biologist
usually has to search multiple databases, facing several
obstacles. Most of the data in these databases is publicly
available as semi-structured text files or custom web inter-
faces, and to obtain the relevant data one has to query
each database independently (online or by downloading
and parsing text files) and then unify this knowledge into
a consistent and non-redundant set. This task is time-con-
suming and can be surprisingly difficult. Existing data-
bases use explicit references by accession number or a
mutual ontology to identify entities, and each database
uses its own set of identifiers. Some databases relate and
cross link elements from other databases based on these
identifiers, but this information is very partial. Moreover,
these links are not always established in coordination
between databases. As biological databases change rap-
idly, this inevitably creates problems of consistency, syn-
chronization and updatability. Therefore, even if possible
manually on a small scale (for a given protein or interac-
tion, for example), data integration becomes a daunting
task for anything that involves more than a few individual
entities.

The problem of data integration is most pronounced
when querying data. Given the distributed nature of the
source data, and the lack of structured mechanisms for
forming cross-links between them, it is difficult to mine
biological data while leveraging from the mutual depend-
ency between entities. To overcome this limitation it is
necessary to create an infrastructure for a unified biologi-
cal knowledge resource that would seamlessly integrate
data from different resources and aspects of biological sys-
tems. A gold standard of biological data integration
should allow one to see an instance of such data in its full
biological context. More importantly it would allow for
complex searches that span multiple data types from a
heterogeneous set of sources and allow for arbitrary com-
putations on that data.

Integration of biological databases has been an ongoing
research problem. There are several approaches and
degrees of freedom in designing a practical system, as
detailed in [9,10], including the degree of federation and
the choice of warehoused, instantiated data vs. views on
distributed, independent sources. Current methods differ
greatly in their aims and scope. As was noted in [11], solu-
tions in this area can be generally classified into three
main categories: portal, mediator, and warehouse. Portal
oriented systems are mainly navigational. These systems
perform fast, indexed keyword searches over a flat set but
do not actually integrate the data itself and relationships
between data items in these tend to be link driven. Exam-
ples of such systems are SRS [12] and Entrez [13]. Mediator
oriented systems use a mediated schema and/or wrappers
to distribute queries amongst different sources, integrat-
ing the information in a middle layer. Examples are Dis-
coveryLink [14], BioMediator [15], TAMBIS [16], OPM
[17] and others [18-22].

These systems provide a qualified mediated schema onto
which sources are mapped, or a single interface or lan-
guage for access and operations on data from heterogene-
ous sources, such as CPL [23] or sSQL. However,
efficiency, speed, and data availability are major issues
with all mediated solutions. This is a substantial drawback
when such performance criteria are significant. Large joins
in particular are almost always guaranteed to be slow in
non-warehoused environments, and unfortunately these
are usually important when executing complex queries
over large result sets. Warehouse oriented systems integrate
data into a locally warehoused environment. This is the
category that Biozon belongs to, and it includes a few
other efforts such as GUS [18] and its derivatives [24].
Warehouse systems enable more control over query opti-
mization and execution, and allow data manipulation
and exploration to an extent that is not possible with
other approaches (a detailed discussion appears in the the
'Related Studies' section of the Supplementary Material).
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While a great first step to increasing the utility of the avail-
able data, currently existing methods are not entirely com-
plete. To the best of our knowledge, no current solution
implements integration to its full extent such that the
overlapping nature of the data is addressed. Indeed, most
existing solutions achieve "horizontal integration", which
treats data sources as mostly complimentary, and ignores
issues that are associated with data aggregation [11]. Our
challenge was to develop a database infrastructure that
addresses all the aforementioned issues and that considers
the overlapping nature of data such as to expose the
broader biological context of entities. Furthermore, our
goal was to design a system that enables methods of com-
plex query and navigation, including realtime execution
of "fuzzy" queries that rely on similarity relations and
ranking engines that exploit high-order structure in the
data.

In the next sections we lay out the main elements of Bio-
zon. We start with a description of the data model and
design choices, and follow with our specific integration
methodology. With these principles established, we con-
tinue on to discuss current applications such as complex
and fuzzy queries on the graph data, graph topologies,
and analysis of graph edges that allows for ranking of
search results. Lastly, we conclude with a brief mention of
our implementation, discussion, and identify areas for
future research or added capability. A description of the
user interface and the main database features appears in
[25].

Construction and content
There are at least two degrees of freedom when designing
a system for data integration: Where and how the data is
accessed (a view over external federated sources vs locally
stored, instantiated data), and the specificity of the overall
schema (loose vs. tight highly-structured schema). The
combination of a tightly integrated schema with locally
instantiated data produces the greatest benefits [9],
although at the added cost of storage and maintenance.
Practically, complex searches and large scale computa-
tions on live and changing data are only feasible with a
tightly integrated schema where data from all sources are
present in a single location. Since our goal was to be able
to store the results of expensive computations on source
data as well as allowing advanced search and navigation
across data types, we were compelled to adopt such a
scheme.

There are several main elements that guide our design. We
seek a data model that (1) tightly integrates multiple data
types (2) that can be easily expanded to represent new
data types (3) that is consistent with the source databases,
and (4) that is highly expressive, allowing complex
searches and data propagation. Additionally, the model

needs to be simple enough such that it can be relatively
easily implemented and extended, and shared by the sci-
entific community.

Data model
There are two common approaches toward representing
heterogeneous biological data. The first relies on hierar-
chical models [21,26] while the other on graph models
[6,7]. Hierarchical models have the advantage that entities
can inherit properties from the parent types, thus simpli-
fying maintenance and expandability. These structures are
also more amenable for certain types of searches and are
conceptually easier to comprehend because of the way
knowledge is delineated, classified and ordered. However,
hierarchical representation cannot fully encompass the
complexity observed in biological systems. A simple
example is the gene ontology database [26] that was cre-
ated by experts, in an attempt to standardize the nomen-
clature used for functional annotations of biological
entities. Despite the overall hierarchical structure, many
entries in this classification deviate from the traditional
tree hierarchy, and posses multiple parents, thus mitigat-
ing some of the advantages associated with strictly hierar-
chical models. Graph models, on the other hand, are
more general and can describe complex structures with
different types of dependencies other than just child-par-
ent. Interrelated life sciences data is especially well suited
to being represented as a graph, as is evidenced by projects
such as KEGG [7] or MetaCyc [6].

In this view, we chose to employ a synergistic approach
and base the Biozon infrastructure on a combination of a
more expressive core graph model supported with a class
hierarchy imposed on each graph element. These two
components serve to characterize different aspects of our
system (global structure of interrelated data vs. the nature
of individual data entities). The combined approach pro-
vides a flexible solution that can be adjusted in multiple
ways to best describe arbitrary biological entities. Each
biological entity can be expressed and characterized by
either introducing more constraints on its nature in the
hierarchy or on the structure of its relations to other enti-
ties on the graph.

Graph model: logical structure and schema design
The data in Biozon is represented as a graph in a design
that has parallels to an entity-relationship model. In the
data graph ∑, each node represents some entity (e.g. a
protein sequence, a pathway or a descriptor document)
and an edge between two nodes represents a relationship
between them. We use the term document to refer to a
graph node, and the term relation to refer to a graph edge.
Formally, ∑ = (V, E) where V = {v1, v2...} is the set of all
nodes (documents) in the graph, and E = {e1, e2...} is the
set of all edges E ⊂ V × V.
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Documents as graph nodes are a fundamental unit of data
in the Biozon database. Every document contains set of
attribute-value pairs that represent some unit of biological
data, and each document is assigned a globally unique
identifier called a docID. Relations are the edges that con-
nect the documents of the data graph, and likewise may
have attributes that define and refine the nature of the
relation. Relations in Biozon are directional, consisting of
a referring document and a referred document. A rela-
tion e between referring document v1 and referred docu-
ment v2 can thus be represented as an ordered pair e = (v1,
v2). Figure 1 shows an example of document instances
connected by a relation on the graph. Data from any given
source is represented in Biozon as a set of nodes and edges
on the Biozon graph. Figure 1 for example, indicates how
a single RefSeq [27] document is instantiated on the Bio-
zon graph as four interrelated documents.

While simple and straightforward, the graph representa-
tion is amenable to special operators and efficient graph
algorithms that can be used in data integration, mapping,
propagation, and updates, as is discussed in the next sec-
tions. Moreover, this structure can be easily expanded and

it is conducive to searches and queries that span multiple
data types that are related together through graph edges.

Hierarchical classification and semantics
The hierarchical element of our model is implemented as
a partial order over documents (nodes) and relations
(edges) that serve to organize domains of knowledge into
classes and subclasses, to aid in the development of new
classes and to simplify maintenance protocols.

Document types and document classification
There are different types of documents in Biozon, as listed
in Table 1 To define the biological context of documents
we construct a document classification hierarchy that cor-
responds to different domains of knowledge. Every class
of documents represents a distinct data type or a general-
ized data type, and every document is classified at some
level of this hierarchy (Fig. 2) based on its meaning, con-
tent or origin. Every class in the hierarchy tree relates to its
parent through an 'is a' relationship, and inherits the
properties of its ancestor class (for example, its set of
attributes). The inheritance also allows sharing functional
elements with ancestor document types. One such exam-

Document InstancesFigure 1
Document Instances. Abbreviated instances of an amino acid and nucleic acid sequence objects with their respective 
descriptors, as mapped to the Biozon data graph from a single RefSeq document. The two objects are related by an 'encodes' 
relation e = (136197753, 360896), and are each related to descriptor annotation separately through 'describes' relations.
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ple is object comparison operators, as discussed in the
'Data Integration' section.

The set of classes are determined by structural or semantic
differences between the data represented in each graph
part. We define the root node of the document class hier-
archy to be simply a 'Document'. The root Document class
has three attributes which are inherited by all other sub-
classes, namely 'docID', 'timeline' and 'marked'. The
docID is a globally unique identifier, while timeline is an
attribute that indicates the relevant time frame of the doc-
ument. This timeline defines the visible time context of an
object on the Biozon graph. Whenever an object is added

to the graph, a timeline is created that starts the moment
it was inserted, and extends to infinity. When it is deleted,
the timeline is ended. This allows viewing snapshots of
the database at any specified time. (The time context only
demarcates to a document's existence in Biozon, and it is
not related at all to a dataset's publication date or version
number. For more information, please refer to the Supple-
mentary Material.) The third attribute ('marked') is used
as part of the maintenance protocols when deleting docu-
ments, and is discussed in the Supplementary Material
(see section 'The primitive functions: maintaining inter-
nal consistency').

The first and perhaps most fundamental class difference
between documents as visible in Fig. 2 is between objects
and descriptors. Objects are documents that define a
physical entity (e.g. an amino acid sequence), a logical
entity (e.g domain), or a set thereof (e.g. a protein family).
They contain the minimal set of attributes that is sufficient
to define their physical properties and distinguish them
from other objects of the same data type. This has impor-
tant consequences in data integration and updates as dis-
cussed in the 'Data Integration' section. Descriptors, on
the other hand, contain facts, conjecture, measurements,
or other information that serves to describe some object
in Biozon. The data in descriptors originates from annota-
tion as well as raw measurements such as expression data
that is associated with an mRNA sequence. Additional lev-
els in this hierarchy refine classes based on physical or

Table 1: Document Types in Biozon. Each type is represented 
differently in Biozon's implementation. Each representation may 
be decomposed into a number of atomic units for the purpose of 
comparison.

Document type Representation Atomic units

protein sequence string amino acids
nucleic acid sequence string nucleic acids
protein family set proteins
pathway set protein families
domain ordered pair sequence coordinates
domain family set domains
interaction set proteins, nucleic acids
descriptor text characters
structure list 3D coordinates
unigene cluster set nucleic acids (ESTs)

A partial snapshot of the Biozon hierarchical document classification modelFigure 2
A partial snapshot of the Biozon hierarchical document classification model. A major distinction is made between 
descriptors and objects (see text for details). The presence of a particular class in the hierarchy can arise due to physical or 
semantic differences in the nature of the documents therein. For example, amino acids and nucleic acids are both stored as 
text strings in the database and their internal representations are identical (although over different alphabets). However, they 
represent fundamentally different real-world objects and should be classified as such. A special subclass of objects is locus. This 
type serves to localize information with respect to larger objects or to represent efficiently objects that are essentially sub-
entities of other existing objects (for example, a protein domain is a locus with respect to a protein sequence, with specific 
start and end positions).
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semantic differences. Beyond biological context, this clas-
sification serves additional purpose, as it can aid in
semantic schema mapping and integration. It provides a
guideline for expanding or refining the set of possible data
types when integrating new data into Biozon. By travers-
ing the tree, starting from the root node, one can map an
external data type to the closest semantically related class
and extend the hierarchy accordingly, if needed.

Relation types and classification
Knowing how two documents are related is just as impor-
tant as knowing that they are related. There are different
types of relations in the Biozon database, listed in Table 2.
To organize this knowledge in a modular way, we create a
classification hierarchy on the relations in much the same
way that we did for documents (Fig. 3), such that the
semantics of each relation is determined by its class. In a
similar fashion, we define the root node for this hierarchy
to be 'Relation', indicating only the most general fact that
two documents are related. This class is associated with
the attributes 'referring', 'referred', 'timeline' and 'author-
ity'. The authority attribute is important in updates and is
discussed in the Supplementary Material (section: 'The
primitive functions: maintaining internal consistency').
As with the document hierarchy, subclasses of relations
inherit the properties of their ancestors. Therefore, these
four basic attributes are inherited by all relation sub-
classes.

The main subclasses are logically defined based on the
type of the objects they relate. Relations of type 'transfor-
mation' (encodes, manifests) relate two different types of
objects such that one is obtained from the other. Relations
of type 'contains' relate an object that is a set to its mem-

ber objects. 'Similar' relates objects of the same type, while
'describes' relates descriptors to the objects they describe.
It should be noted that each relation holds true in both
directions although with different semantics. For exam-
ple, 'describes' relates a referring descriptor and a referred
object together and implies that the descriptor describes
the object. Read in the other direction, an object is
described by a descriptor.

As mentioned earlier, relations may have attributes that
refine the nature of the relation. For example, suppose a
protein is described by a Gene Ontology term. Most gene
ontology mappings are associated with some evidence
code. In Biozon, this information would be contained as
a field of a relation 'describes.go' is a subclass under the
'describes' relation. Likewise, relations are associated with

Table 2: Relation types in Biozon.

Relation type Referring document Referred document

manifests protein structure
describes descriptor any object
encodes.nucleic nucleic acid protein
encodes.unigene unigene cluster protein
similarity protein protein
contains.unigene unigene cluster nucleic acid
contains.interaction interaction protein, DNA
contains.pathway pathway enzyme family
contains.enzyme-family enzyme family protein
contains.domain-family domain family domain
comprises.domains domain protein
expresses.unigene unigene cluster tissue
hierarchy.go go term go term
describes.go go term protein

A partial snapshot of the Biozon hierarchical relation classification modelFigure 3
A partial snapshot of the Biozon hierarchical relation classification model. The primary motivation for the partition-
ing of the hierarchy is a difference in the semantic meaning of relationships between documents. Expansion of this hierarchy is 
expected as new relationships are added. Planned additions in the near future are shown as dashed lines.
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attributes that specify the significance and extent of the
similarity with respect to the related objects.

It is important to note at this point that the relation hier-
archy, the document hierarchy and the graph model are
all subject to certain perceptions on how biological data
should be organized. Unfortunately, there is no single
model that is generally accepted by all. Our design was
motivated by the goals that were laid out in the Back-
ground section and has many practical benefits as exem-
plified throughput this paper.

The use of three model elements result in a flexible design
that in practice has already proved capable of incorporat-
ing new data types.

Non-redundant object-centric model
Objects are the backbone of our data graph. Our database
objects are direct analogs to physical entities and sets of enti-
ties, since these are the essence of any biological system.
Indeed, any object that can be defined by its physical
properties is represented as such in Biozon and comprise
a non-redundant set based upon these physical 'keys'. As
an example, consider proteins and their representation in
Biozon. In this case, the relevant physical property that
distinguishes proteins is chosen to be the sequence of
amino acids. From a computational standpoint, this is a
natural choice (as sequences are the basis for many sorts
of analysis, such as sequence comparison, motif search
and domain analysis) and an effective way to process large
and highly overlapping datasets.

In the same spirit, protein families are entities that are
comprised of multiple physical objects. Pathways can be
composed of both sets (protein families) and individual
physical entities (specific proteins) and therefore comply
with our definition of an object as well.

Central to our approach to data unification is the require-
ment that all objects in Biozon are non-redundant on
their physical keys. We define the function object(v) that
returns the key that is associated with an object document
v. As an example, in the case of proteins, object() will
return a sequence string that may be compared with oth-
ers to determine equality. The return value can also be a
set of document IDs, for example when v is an interaction,
pathway or a protein family object that are defined
uniquely based on their constituents.

The reliance on physical entities and sets of physical enti-
ties as our backbone is especially useful for data integra-
tion since it allows unambiguous unification of many
entities from different databases based on their physical
properties, as is discussed in the 'Date Integration' section.
Such integration also results in a more comprehensive

knowledge resource, since characteristics that have been
identified for a certain object usually pertain to other
objects (e.g. in other species) of identical physical proper-
ties. Nevertheless, despite all the advantages that this
approach yields, it should be noted that from other view-
points, entities of identical physical properties are not
considered the same object. For example, even 100%
identical protein sequences in different species might
have different properties. This can be easily resolved by
projecting the data graph onto the organism of choice (see
Future Work in the Conclusion) and future versions of
Biozon will allow one to view an entity in its organism-
specific context, derived through such projections.

Source and derived data
A partial overview of the current schema is given in Fig. 4.
Much of the data in Biozon is gleaned from publicly avail-
able databases such as SwissProt PDB, Genbank, BIND,
KEGG, and more. We refer to this type of data as source
data. These sources provide the fundamental biological
objects in Biozon, many of the relationships that exist
between objects, and the annotation that makes it possi-
ble for humans to understand them. To avoid issues of
intellectual property we host only the data that is publicly
available, with proper credits and copyright endorse-
ments. There are some databases that have restrictions on
the use and distribution of their data, such as DIP and
HPRD. Data from these sources may be incorporated into
Biozon for research purposes in-house, but are not
allowed to be viewed by the public. Biozon is able to rep-
resent a minimal skeleton of protected (private) data with
links to the full details on its originating source in cases
where such a scheme is appropriate. To protect private
data Biozon uses a user account system where each user
belongs to one or more user classes. Each class is mapped
to a different subspace in Biozon and enables its members
to access documents only in that subspace.

Derived data encompasses any data that is produced as
the result of a computation or operation over some set of
existing data in Biozon, and is unavailable elsewhere. Cur-
rently, derived data available in Biozon consists of simi-
larity relations between protein sequences and protein
structures, domain structure of proteins and more (see
'Derived Data' section). A specific type of derived data is
derived relation. For example, classifying a protein to an
Enzyme family is often based on analysis of the descrip-
tors associated with that protein. Such an analysis creates
a relation ('contains.enzyme-family') between the
enzyme family and the protein. In general, a derived rela-
tion is of the form ed = f(σ), where f is some function that
accepts part of the graph σ ⊂ ∑ as an input and returns a
relation as output. Derived relations play an important
role in data integration in Biozon because they provide a
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concrete and materialized method of indicating relation-
ships that are otherwise not necessarily obvious.

As of October 2005 Biozon contains more than 42 mil-
lion DNA sequences (from Genbank and RefSeq), 2.8 mil-
lion protein sequences (from Swiss-Prot/TrEMBL,
Genpept, RefSeq, PDB, PIR, BIND), 123,000 protein-pro-
tein interactions (from BIND, PIR as well as predicted
interactions) and other entities. There are about 60 mil-
lion descriptors and more than 1.7 billion words indexed.
Biozon also contains more than 6.5 billion derived rela-
tions based on sequence, structure and expression similar-
ity. The complete list of source and derived data and their
origin is available at [25].

Data integration
Biozon employs a vertical integration approach, such that
sources are not only incorporated into a single schema but
are also integrated using a non-redundant object-centric
model. The implication of this approach is that data inte-
gration entails two major steps of schema mapping and

semantic data mapping. The first converts a source into a
large graph over the Biozon schema. The second serves to
map overlapping entities (nodes) into a non-redundant
set. This design choice has many benefits as is laid out in
this and the next sections.

Definitions

The schema level description of Biozon is a skeleton graph
as depicted in Fig. 4. Formally, schema∑ = (CV, CE), where

Cv = {  ...} is the set of document classes (for exam-

ple, Cv = {structures, interactions, protein sequences,
SwissProt documents, ...} as described in the section on

'Document Types and Classification') and CE = {  ...}

is a set of relation classes, such that each relation class ce ∈

CE relates two document classes ce = ( ) where 

∈ CV. We denote the subset of object data types by Co (Co

⊂ CV).

c cv v
1 2,

c ce e
1 2,

c ci
v

j
v, c ci

v
j
v,

Partial overview of the Biozon schemaFigure 4
Partial overview of the Biozon schema. Similarity relations are depicted with dashed lines. The database will be gradually 
extended to span both new source data types as well as new derived data.
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The Biozon data graph is the instance level graph ∑ = (V,
E) over schema∑. We denote the class of a specific instance
of a document v ∈ V or a relation e ∈ E by class(v) and
class(e) respectively. Each document must be classified to
one of the classes CV, i.e. ∀v ∈ V, class(v) ∈ CV. Similarly,
∀e ∈ E, class(e) ∈ CE.

Mapping
Each of the sources is referred to as a database D that is
comprised of a set of fundamental units of data referred to
as records or elements d, such that D = {d1, d2, ... }. Each
database might use a different data model, and in order to
be integrated into Biozon, D must be mapped to some
representation in our data graph ∑. This is a challenging
problem, especially so with the diverse data types that are
observed in biology, and to that end there are no algo-
rithms that can automatically match an arbitrary schema
over an arbitrary data model to another schema over a dif-
ferent data model [28].

We do not employ a single mapping language to represent
the mapping specification, but instead define a generic
data mapper/loader coupled with specific data transfor-
mation wrappers for each incorporated source. We first
analyze the schema and semantic meaning of D and trans-
form its data model to create an equivalent graph schema
schemaD that is composed of elements of Cv and CE and
thus can be represented in our data model. If D cannot be
mapped using existing classes of Biozon then the relevant
classes have to be added to schema∑ first.

This step of semantic schema matching is a one-time proc-
ess that requires decision making in order to resolve struc-
tural conflicts (as discussed in the 'Consistency' section of
the Supplementary Material). For any given D, there may
exist several seemingly valid ways for it to be represented
in S. However, it is generally desirable to transform D into
a form that overlaps with existing document types in Bio-
zon as much as possible. This is important from the per-
spective of data richness, as it will result in a graph that is
most tightly interconnected due to such overlaps. For
example, consider interactions. In Biozon, an interaction
is represented as a set of objects that interact. There is one
node on the graph representing this set, and all proteins
or nucleic acids that are involved in the interaction have a
relation connecting them to the interaction object. In the
design process, several alternative representations were
considered. For example, one alternative would be to rep-
resent interactions as 'interacts' relation between proteins.
The primary disadvantages of this representation is that it
would be impossible to represent interactions that involve
more than two interactors (e.g. complexes). Another
choice may be to keep the knowledge of interactions in

some descriptors of proteins. However, that representa-
tion would not exploit the primary advantage of the Bio-
zon model in encoding biological context in highly

connected graph structure. Once schemaD = ( , ) has

been determined (where  ⊂ Cv and  ⊂ CE), we use

these findings to construct a transformation function TD

that transforms the data instances from D onto ∑. For
example, a specific RefSeq entry d that is represented orig-
inally as a flat record with several attributes is transformed
into a small graph (as exemplified in Fig. 1) with four

nodes and three edges σ(d) = ({v1, v2, v3, v4}, {e1↔2, e2↔3,

e3↔4}), where v1 is an amino acid object, v2 is a RefSeq

peptide descriptor document that contains the attributes
specific to the protein sequence, v3 is nucleic acid

sequence object, and v4 is a RefSeq descriptor document

that contains all other attributes. Edges e1↔2 and e3↔4 are

'describes' relations, and e2↔3 is an 'encodes' relation.

Every element d in D has an analogue σ(d) ⊂ ∑. We define
D∑ as the projection of D onto ∑, i.e. D∑ is the set of all
subgraphs

and ∑ is the union of all subgraphs from all databases D

where set operations over graphs act separately on the
nodes and the edges of these subgraphs. For example, Fig.
5 demonstrates the union of several subgraphs obtained
from several different sources.

Semantic data matching and the identity problem
Since the source databases might highly overlap it is
important to address the problem of data redundancy.
Eliminating redundancy is relevant to data consistency as
well as database efficiency, both in terms of the space-
usage and computation time. This is important in opera-
tions such as protein alignments where maintaining
redundant similarity information would come at great
expense of computation and storage requirements. More
importantly, it helps to corroborate and complete the
information that is associated with the same physical
entity by different sources, thus compiling a more com-
prehensive and accurate context for each entity.

Our data model is non-redundant in the sense that iden-
tical source documents (in their Biozon representation)

CV
’ CE

’

CV
’ CE

’

D d
d D

∑
∈

= σ( )∪

∑ = =∑
∈

D d
d DDD

σ( )∪∪∪
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are mapped to the same document node in ∑. Conse-
quently, graph nodes of ∑ are frequently shared between
sources. Formally, we say that two elements d ∈ D and d'
∈ D' overlap if σ(d) = (v, e) and σ(d') = (v', e') and v n v'
≠ ∅, i.e. there exists a document vi ∈ v and a document vj
∈ v' such that vi = vj. In the context of data integration and
semantic data mapping, the concept of identity is particu-
larly relevant to objects, and the key to our protocols for
eliminating redundancy is the equivalence operators used
and the reliance on objects in what we call an object-centric
model (this is unlike most databases, where specific iden-
tifiers such as accession numbers are used to identify doc-
uments, not always uniquely). Specifically, two
documents vi, vj are considered identical if class(vi) =
class(vj) = c and c ∈ CO and object(vi) = object(vj). The
notion of identity depends on the object type, and for

each class c we define an equality operator ≡c that is able
to determine if two documents of that type are redundant
(vi ≡c vj). For example:

• For strings such as DNA sequences or protein sequences,
a string match operator is used to determine identity.

• For sets of physical objects (e.g. interaction), the set-
identity operator is used.

• For arbitrary subgraphs, graph isomorphism is used.

This non-redundant implementation unambiguously and
efficiently relates data sets together through shared
objects. The outcome of such non-redundant integration
is exemplified in Fig. 6. Our data integration protocols

Data integrationFigure 5
Data integration. Individual elements d from source databases are translated to their representation in Biozon as per the 
transformation function TD. The graph ∑ resulting from integration of these elements has non-redundant objects, serving to 
merge the data from disparate sources into a cohesive whole. As shown, six records from GenPept, SwissProt BIND and DIP 

are translated into Biozon graph form. Each record is transformed into a set of objects (e.g. ) and descriptors (e.g. ). 

Identical proteins from SwissProt and GenPept records,  and  respectively, are instantiated as a single non-redundant 

protein object P1 on the graph. Similarly,  and  are mapped to a single P2. As a result, the two interaction objects  

(BIND) and  (DIP) are mapped to the same object I1.
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extend beyond eliminating redundancy between physical
objects, and are applied in a more general form during
updates (See 'Updates' section of the supplementary
material) to compare all types of documents including
descriptors.

From a computational standpoint, knowing the physical
objects themselves is necessary, and is prerequisite for
mapping them onto the Biozon data graph. Unfortu-
nately, many types of source data do not include complete
object definitions, and instead contain only references

(e.g. DIP [5], InterPro [29]). To integrate such data into
Biozon, it is necessary to map accession numbers to the
physical objects they represent and create relations based
upon that mapping. This necessity exposes many of the
problems and uncertainties inherent in using accession
numbers or arbitrary identifiers to represent concrete bio-
logical objects. For example, databases such as SwissProt
and TrEMBL use accession numbers to refer to protein
sequence entries. However, sequences might change and
still retain their accession number. When the physical
sequence data is used by others (such as the protein

A subset of the Biozon data graphFigure 6
A subset of the Biozon data graph. Objects (rectangular shapes), descriptors (rounded boxes), and the relations between 
them form a typical subset of the Biozon data graph. The subgraph consists of two protein sequences that are described by a 
number of different descriptors and are related to a common Family object. Creating this graph requires data from a number 
of different databases or computations. Gathering data is a matter of traversing a portion of the graph and examining the 
nodes. For each node, it is possible to obtain a set of all relations connecting that document to another. Searches serve as an 
entry point to the data graph, from which the graph may be navigated to see the object's context.
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domain database InterPro) to derive meta-data, this
becomes a major issue. Since there is no easy way of track-
ing the original sequence entries that were used to gener-
ate the meta-data, conflicts arise as meta-data that was
associated with a specific sequence entry X may be
mapped to a different sequence entry Y based on the
accession number. To resolve that, InterPro introduces
CRC64 checksum codes that serve to indicate that there is
a conflict and a non-negligible number of these conflicts
do occur. [InterPro provides data from a number of
diverse sources such as PRINTS [30], ProDom [31] and
Pfam [32] that identify regions of proteins that represent
a particular domain or functional site. These regions are
detected by matching the sequence against a particular sig-
nature, such as a regular expression or hidden Markov
model. Each of the matching sequences are referred to by
an accession number, and a 64 bit CRC value for the
matching protein sequences is provided. Of the 4,727,510
mappings provided by InterPro version 8.0, 32,991 failed
to match the corresponding proteins in SwissProt and
TrEMBL versions 44.7 and 27.7 based on the CRC64
checksum codes. Most of these failures were due the fact
that the InterPro mappings were created with respect to
older versions of the SwissProt and TrEMBL databases. In
the five months InterPro version 8.0 was active, SwissProt
advanced from version 43.5 to 45.1, with similar advances
in TrEMBL.] In response to these conflicts, Biozon
employs various methods to map identifiers to concrete
objects, including retrieval of archived entries or the use of
CRC keys to search for possible matches, followed by
comparison of the sequence entries. Because these results
are materialized on the data graph, this operation needs to
be performed only once at the onset of integration.

The direct impact of our model and data integration pro-
tocols is clear; It creates a single resource whereby rela-
tionships between objects are explicit and unambiguous.
Eliminating object redundancy between diverse sources
makes observations on their overlapping domains of
knowledge efficient and programatically straightforward.
For example, a total of more than 4,000,000 proteins
from several databases (including SwissProt TrEMBL, PIR,
GenPept, SCOP, PDB, DBJ, PATAA, PRF and REF) were
reduced to a total of about 1.8 million sequences, after
removing exact duplicates. Similarly, about 101,000 inter-
actions that were derived from BIND, DIP and HPRD were
unified into 76,000 unique interactions, using the set-
identity operator [In BIND and DIP, interacting proteins
are expressed in terms of identifiers to database entries in
other databases. To identify redundancy in the interaction
data set, records in these databases were mapped first to
the physical sequences in Biozon.]

An additional substantial benefit is that by integrating
annotations from different source databases, an even

more comprehensive resource of knowledge is created,
since the accumulated information from several databases
can compensate for missing information in others. This
information is readily available from a single point of
access in Biozon. For example, consider SwissProt
:Q7RU07, which refers to a protein sequence with docID
363051 (We refer to entities using their unique and stable
Biozon 'docID'. To view an entry with docID x, follow the
URL http://biozon.org/Biozon/Profile/x). The definitions
contributed by different sources vary, including 'Small
membrane protein 1' and 'cervical cancer oncogene 9'.
This protein is also defined in some records as 'hypothet-
ical protein'. If one were to use these sources individually,
the functional information present in others is missed.
Moreover, data integration can also help to identify and
resolve conflicting annotations between different data-
bases, as is the case for SwissProt :ATPE_RICCN (docID
225475) that is assigned to two different enzyme families:
EC 3.6.3.14 (by SwissProt) and EC 3.6.1.34 (by PIR and
GenPept). Whether this is a typographical error or a fun-
damental difference in characterization is not known a
priori, but both conflicting annotations are visible to the
user. Most importantly, data integration serves to expose
the broader biological context of an entity; information
that can be very instrumental in functional analysis. For
example, SwissProt RPB9_YEAST (DNA-directed RNA
polymerase II) is linked to no less than 56 objects and 21
descriptors, as is depicted in Fig. 7. including interactions
with other ribosomal proteins and tRNA molecules, struc-
tures of complexes involving this protein and the path-
ways of purine and pyrimidine metabolism. Data
integration can also be useful in compiling missing infor-
mation at the relation level. For example, to relate DNA
sequences to their likely protein products we complement
the information that is provided by NCBI for UniGene
clusters by exploring other paths in the Biozon data graph
that can be established between DNA sequences and pro-
teins (e.g. through the 'substring' relation or through
other members of UniGene clusters that can be mapped
to proteins using the 'encodes' relation).

Despite all these advantages, it should be noted that from
other viewpoints, entities of identical physical properties
are not considered the same object. For example, even
100% identical protein sequences in different species
might have different properties. Future versions of Biozon
will allow one to view an entity in its organism-specific
context, derived by projecting the data graph onto the
organism of choice (see the section on Future Work in the
Conclusion).

Updates
Our choice of a tightly integrated schema with locally
warehoused data was motivated by the many advantages
that such a model possesses, as is exemplified throughout
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the paper. However, this choice has other consequences,
as special maintenance protocols have to be designed to
handle updates in the source data. These protocols must
be designed so as to guarantee consistency within Biozon
and between Biozon and the external sources. This is a dif-
ficult problem since the updates in external databases are
not synchronized with one another. Moreover, the
updates can potentially affect the status of derived data
Since the biological objects in Biozon are non-redundant,
we had to design methods to determine which operations
in an update should be undertaken to achieve the desired
effect without violating consistency. Besides considering
consistency with regard to source databases, we had to
consider staleness of derived data and initiate computa-
tions or delete derivations when appropriate. The Biozon
schema was designed to address all these issues and our
solutions are described in detail in the 'Updates' section of
the Supplementary Material.

Derived data
Biozon is more than a warehouse of existing data; it inte-
grates unique derived data that is computed in-house.
Several types of derived data currently exist in Biozon,
from similarity data between objects to modules that

expand existing data types based on inference, refine exist-
ing objects, or generate new data types obtained by
processing existing data types and other derived data.

Similarity data and inference
The similarity relation is central to functional inference in
biology. For example, the analysis of new genes usually
starts with a database search, and their biological function
is often predicted based on their sequence similarity with
other, well-characterized genes. To maximize the utility
and potential of computational functional inference, it is
important to consider similarity relations over biological
entities in addition to other explicit relations. These rela-
tions should be at the essence of any biological knowledge
resource. This is true not only for proteins, but for other
entities as well; one can think about similarity measures
over protein families [33], pathways [34] or organisms
[35].

Moreover, it is important to have access to multiple simi-
larity indices, based on different measures. Consider pro-
teins for example. Existing sequence comparison
algorithms can be sensitive to the choice of parameters
(e.g. the scoring function). Therefore, to detect homology,

The broader context of RPB9_YEAST as appears in BiozonFigure 7
The broader context of RPB9_YEAST as appears in Biozon. DocID is 262161
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it is sometimes necessary to compare proteins using mul-
tiple sets of parameters. Furthermore, sequence-based
measures often fail to recognize subtle similarities
between sequences that have diverged greatly. In these
cases it is necessary to use other methods of comparison
based on structure, expression data or other attributes.
However, obtaining these results requires access to algo-
rithms that for the most part are not readily available and
are too computationally intensive to be used on a daily
basis. The need for a system that will store optimal results
and accurate alignments based on multiple methods is
even more evident as new, more sophisticated compari-
son algorithms emerge.

We address these issues by generating extensive similarity
indices, based on a variety of comparison methods. Bio-
zon currently includes similarity relations based on
sequence (with more than 6 billion significant pairwise
similarities), structure (with more than 8 million signifi-
cant structural similarities), and similarities based on gene
expression data. Other similarity measures will be gradu-
ally integrated into the system. [Certain similarities are
computed using multiple algorithms. This is the case, for
example, when comparing protein structures. As opposed
to sequence similarity, there is no natural definition of
structural similarity. Consequently many different algo-
rithms were developed over the years, based on different
approaches and definitions, producing results that can
differ quite markedly. To address this problem we com-
pute structural similarities for all PDB structures using
three different algorithms: Structal [36], CE [37] and the
in house URMS-RMS algorithm [38]. The results of all
three algorithms are available at the Biozon website.]

The similarity data allows new and powerful modes of
data querying and extrapolation as discussed in the 'Util-
ity and Discussion' section. It enables propagation of
information from well studied genes to other, less charac-
terized genes, and facilitates fast transfer of knowledge to
entities untouched by experimentation so far. For exam-
ple, [TrEMBL: Q07992] (Biozon docID 272323) is an
uncharacterized Yeast ORF protein (documented as an
unnamed protein in GenPept and probable membrane
protein in PIR). However, examination of proteins with
similar expression profiles suggests that this protein pos-
sesses some ribosomal activity as it is strongly linked to
other ribosomal proteins. Biozon contains numerous
examples like that, of uncharacterized biological entities
that can be partially categorized based on sequence, struc-
ture or expression similarity.

Beyond functional inference, similarity data is used to
expand existing data types. For example, we are in process
of constructing 3D models for proteins of unknown struc-
tures based on sequence homology with proteins of

known structures (see [39]). We also use sequence similar-
ity data to extend experimentally verified data sets on pro-
tein-protein interactions. Furthermore, we employ
expression similarity to predict new relations between
genes, such as common pathways or common promoter
signatures, even when this information is not directly
available [40]. To ensure data quality, such predictions are
marked clearly, and users are provided with additional
information (e.g. significance of homology) to help assess
the validity of predictions (e.g. see Biozon profile of
docID 109069957).

Data refinement
The data that is integrated into Biozon often overlaps,
resulting in multiple descriptors that are associated with
the same object. A synergistic approach that builds on this
knowledge can often help to better characterize existing
objects. This is the basis for modules of derived data that
serve to refine instances of existing data. For example, all
the descriptors that are associated with a protein sequence
can be combined together to generate a more accurate or
a more detailed description of the protein object (on aver-
age, 2.5 descriptors and definitions are associated with
every protein object). Similarly, multiple descriptors can
help assess the quality or increase the confidence in the
existence of an object or a measurement, when the exper-
imental protocols are noisy (as is the case for protein-pro-
tein interactions, many of which are determined by high-
throughput techniques such as yeast two-hybrid that are
not always reliable).

New data types
Biozon also introduces new relations or new data types
that are generated by processing the source databases. For
example, we use the 'encodes' relation, together with sim-
ilarity data, UniGene clusters [41], and the 'substring' rela-
tion between DNA sequences to map human and mouse
EST sequences to their protein products http://bio
zon.org/tools/est/. As another example, we use the
descriptors associated with protein sequences to associate
proteins with Enzyme families, and a total of 156,276
proteins are classified into 3,944 families. Furthermore,
the underlying graph structure of Biozon can be mined in
itself to search for specific subnetworks of special interest.
One such example is interaction maps that provide a
bird's eye view of complex biological systems as is illus-
trated in Fig. 8. These maps are compiled from the inter-
actions that are stored in Biozon.

Utility and discussion
One of the major goals in Biozon's design is to provide
means to effectively search and understand the data
within it. The shape of the complete data graph is an
emergent property and by utilizing its link structure we
were able to develop and support new methods of query
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that improve data expressiveness in searches and repre-
sentation.

Complex searches
While all existing biological databases allow basic forms
of search (e.g. of definitions, keywords, etc) they rarely
allow one to search broad and complex biological con-
texts that span multiple data types. Specifically, it is diffi-
cult to form queries that search for interconnected sets.
However, such queries are fundamental to computational

and experimental studies in biology. Advanced cross-data-
source search capabilities can be found in a few tools such
as SRS [12], BioMediator [15], Columba [42], and Discov-
eryLink [14]. Most achieve such capability by effectively
creating joins between datasets based upon explicit cross
references found when one source references another.
Columba differs somewhat in that it also incorporates
crosslinks between SwissProt protein sequences and PDB
chains using similarity. Biozon offers a fundamentally dif-
ferent complex search mechanism that uses graph isomor-

An interaction map of Vaccinia virus proteinsFigure 8
An interaction map of Vaccinia virus proteins. The protein-protein interaction data in Biozon can be viewed as a sub-
graph, with many interconnected elements. From this graph we compiled the set of all connected components, and each com-
ponent was embedded in a two-dimensional Euclidean space, using the algorithm of 48 with the graph distances as input. The 
map shown is a subnetwork of Vaccinia virus proteins that seem to control its activity through a series of mediated interac-
tions or by forming a complex. For example, the inactivation of protein G2 (docID 507266) renders the virus dependent upon 
isatin-beta-thiosemicarbazone for growth. This protein interacts with Envelope protein H5 (docID 465934) that interacts with 
protein A49 (840436) whose function is unknown, as well with Viral DNA polymerase processivity factor. The latter interacts 
with UDG (Uracil-DNA glycosylase docID 502617), as well as with protein D5 (Putative DNA replication factor). Proteins that 
directly interact are positioned closely in this map, while proteins that are connected through mediated interactions are posi-
tioned farther apart. The set of 7 proteins in this connected component form an interesting subgraph that was exposed with 
the embedding algorithm.
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phism to find patterns of related objects that match a
given query that specifies relationships between objects in
addition to their own inherent properties. The graph
search space naturally contains all the edges on the Bio-
zon graph, which are determined by previously men-
tioned data integration principles, not explicit cross
references.

A complex query is comprised of a set of query nodes, a set
of constraints specified on those nodes, and the edges
connecting them. Queries, then, have a specified graph
structure referred to as the query graph. Nodes of a query
graph are labeled with the data type they represent, and
any constraints that must be met for a match to occur
(such as specifying a minimum length for an amino acid
sequence or an EC number for an enzyme family). Execut-
ing these queries entails performing a search over ∑ for
subgraphs of instances (instance graphs) that match the
query. A match requires graph homomorphism, such that
each node of the instance graph matches in type and con-
straints to the corresponding node in the query graph.
Currently in Biozon, the matching instance graphs are
projected on one of the query data types (referred to as the
query target), as specified by the user, resulting in a non-
redundant set of instances from that data type.

An example of a complex query would be: "human pro-
teins that are members of an enzyme family that is part of
a known pathway, and have a solved 3D structure". This
query represents a graph with four nodes: Structures, Pro-
teins, Enzyme families, and Pathways, and the query tar-
get is 'Proteins'. Edges are implicit in the sense that that are
determined from the Biozon data graph. (One of the com-
plications that arise when querying the Biozon data graph
is that there are multiple ways to connect instances of dif-
ferent data types. This is addressed by introducing the
notion of Data topologies, as discussed below.) Addition-
ally, there is a constraint that the proteins must be human
proteins. This query returns 105 results, out of 35261
structure to protein relations, 156276 protein to enzyme
relations, and 2955 pathway to enzyme family relations.
Another example would be "structures with resolution
higher than two angstroms, of proteins that are in the 2,
3-butanediol dehydrogenase enzyme family". Such query
involves the Structure, Protein, and Protein Family data
types and specifies properties for two. In our current
implementation, each data type and relation type is
instantiated as a table in a relational database, and com-
plex searches are translated into an SQL query that per-
forms graph homomorphism by way of joins on the
appropriate relations between interrelated objects. These
joins operate on the non-redundant backbone of objects
and use internal docID keys. Hence they are relatively sim-
ple to formulate in SQL and are efficient to execute (for

more details see the 'Interface and Query' section in Sup-
plementary Material).

Fuzzy searches
The integration of similarity data into the Biozon schema
allows for even more sophisticated methods of query.
Specifically, Biozon uniquely extends queries to support
fuzzy relationships by means of similarity. Fuzzy searches
greatly increase the impact of data integration, since infor-
mation is propagated from known objects that were stud-
ied experimentally, and were annotated extensively, to
new objects with similar physical properties that await
analysis. As such, fuzzy relations can make the difference
between an uninformative search and a successful one.

Every similarity relation is associated with a significance
or confidence value (e-value). This attribute can be speci-
fied in a fuzzy search, to limit the results to entities whose
similarity exceeds a certain significance threshold. As an
example, consider a simple fuzzy search over a single
entity such as the protein with the SwissProt ID of
'DORS_DROME', an embryonic polarity dorsal protein in
Drosophila. Initiating a fuzzy search for that protein with
an e-value of 1e-100 returns 8 results that are similar to
this protein within that threshold. Changing the thresh-
old to 1e-50 includes weaker matches, extending the
result count to 80. A fuzzy search over a single entity is
equivalent in principle to a BLAST search with that protein
as a query; but since we materialize the similarity relations
from BLAST, this search is done almost instantaneously in
Biozon.

However, the real power of fuzzy searches stems from the
combination of similarity relations with our ability to
search over sets. For example, one can search for the set of
all proteins that have Stromelysin in their definition or are
similar to any protein in this set. This query with a thresh-
old of le-100 returns 81 records, and 379 records with an
e-value threshold of 0.1 (as opposed to only 28 records
when similarity relations are ignored). This query is equiv-
alent to multiple BLAST searches over all proteins that
have 'Stromelysin' in their definition, followed by unifica-
tion of the results. Clearly, this would be a very time-con-
suming task if BLAST were to run in realtime over all these
protein queries. However in Biozon this query is a
straightforward generalization of a fuzzy search over a sin-
gle entity and is almost as fast.

Fuzzy complex queries
With the ability to produce similarity results from set
input, a natural progression is to combine this ability with
complex queries. A query or query part can be viewed as a
set in and of itself. Consequently, similarity relations may
be introduced at various points in a complex query. It is in
this ability that the impact of similarity relationships on
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Graphical representation of a fuzzy searchFigure 9
Graphical representation of a fuzzy search. (a) Complex searches find paths in the data graph. In this pictorial represen-
tation, nodes in result paths must occur where sets of objects satisfying different search constraints intersect. Introducing sim-
ilarity extends some query steps to include similar results, thus enabling the discovery of paths in the graph where none existed 
before. This graph illustrates a complex fuzzy search for structures of proteins that belong to enzyme family 1.1.1.1 and are 
involved in known interactions. Circles on the graph represent sets of matching documents, and where they intersect, there 
are matches. The dotted lines represent extensions to the sets based on similarity. Without similarity, the set of proteins with 
structures (Pstructures) intersects with the set of proteins in enzyme family 1.1.1.1 (P1.1.1.1), meaning that there exists a protein 
with a structure that is a 1.1.1.1 enzyme. Likewise, Pstructure intersects with Pinteraction. However, there is no intersection between 
the three sets, and therefore no proteins that are in family 1.1.1.1 and involved in an interaction. Creating a fuzzy search with 
threshold of 1e-100 extends the set of 1.1.1.1 proteins but there are still no matching results. Increasing the threshold to 1e-50 
produces the desired intersection, thus allowing connected paths spanning the entire query space. (b) Similarity may be intro-
duced at multiple graph steps, further increasing the solution space to a complex query. For example, a search for E. Coli pro-
teins that are members of enzyme families 1.1.1.145 and 5.3.3.1 returns no results. There are two possible areas in the query 
graph where similarity relations may be used to extend the query to fuzzy results: on proteins that are classified as 1.1.1.145, 
and on proteins that are classified as 5.3.3.1. When the evalue threshold is reduced to 1e-10 one protein (docID 737980) is 
returned with intriguing similarity to proteins that contain both domains. These proteins are observed in higher organisms as 
part of the estrogen, androgen and C21-Steroid hormone metabolism pathways.
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the results becomes immediately apparent, filling the gaps
of incomplete information.

As a simple example, suppose one is researching the struc-
ture of butanediol dehydrogenase enzymes (EC 1.1.1.4).
A search on the PDB site on March 16 2005 returns no
matching structures. However, although no protein with a
defined structure has been mapped to that enzyme family,
it is likely that there exists a similar, possibly homologous
protein that does have a known structure, but has not yet
been completely annotated and characterized as a mem-
ber of the family. Indeed, a complex fuzzy search on the
Biozon data graph for structures of proteins in the 1.1.1.4
enzyme family or of similar proteins returns a non-empty
set. This complex fuzzy search first computes the set of
proteins known to be in enzyme family 1.1.1.4. From
there, it creates a larger set of every known protein that is
similar to at least one in the 1.1.1.4 set. The query returns
all structures that are related to proteins in this large, sim-
ilarity-extended set. Using an e-value threshold of 1e-90
returns a single structure, oxidoreductase: cryatal structure
analysis of meso-2, 3-butanediol dehydrogenase
([PDB:1GEG], biozon docID 8515367). As it turns out,
this structure is of a protein that is highly similar to
another protein (docID 550087) that is member of
enzyme family 1.1.1.4. Furthermore, increasing the e-
value threshold in the search to 1e-30 returns 5 matching
structures, and 1e-20 has 53 and so on. The extension of
sets based on similarity as part of fuzzy searches is demon-
strated in Fig. 9a. Note that complex queries can have an
arbitrary number of query nodes. Consequently it is pos-
sible to generate queries where similarity may be intro-
duced at multiple junctures, producing different result
sets (see Fig. 9b).

Finally, the similarity relation is not limited to sequence
similarities between proteins. Biozon currently stores sim-
ilarity relations between structures and similarities
between genes based on expression-profiles.

With that data materialized, one can search, for example,
for all proteins that are known to take part in a specific
pathway, or proteins with similar expression profiles
(associated with the corresponding mRNA sequences) to
these proteins.

Because the validity of a given fuzzy search result depends
greatly on the method of similarity employed (i.e. BLAST,
yeast expression profile similarity), as well as parameters
such as e-value, it is important to make the provenance of
all matches available for inspection. In response, each
search result that incorporates a fuzzy step is clearly
marked in the results page. By clicking on the markings,
the user is shown a representation of the exact instance
tuple that includes every similarity step used, with corre-

sponding links to the similarity data, such as a representa-
tion of a full Smith-Waterman alignment between two
protein sequences.

It should be noted that many similarity relations happen
to be local (e.g. multi-domain proteins might share only
one domain in common). Therefore, not always it is pos-
sible to propagate information and draw conclusions
based on similarity, as the functional features that are
associated with the proteins might be localized to parts
that are outside of the similar region. Biozon stores addi-
tional information on similarity relations that allows one
to localize the relations. However, rarely is the case that
functional features are localized and therefore it is cur-
rently difficult to take advantage of this capability of Bio-
zon.

Topologies
The Biozon graph is composed of many subnetworks with
differing document compositions. The connectivity of the
data graph has important consequences on searches, since
there are multiple ways to connect instances of different
data types. For example, proteins are connected to DNA
directly as well as through interactions. Unless the query
graph is explicitly specified, a query such as 'transcription
factor proteins that are related to DNAs in humans' can be
answered in many different ways, especially if considering
paths that use other data types that are not specified
explicitly in the query graph. Each path corresponds to a
different set of instance graphs, and to obtain comprehen-
sive results one has to consider all possible paths between
the query data types. There are many issues involved with
such queries, such as completeness and efficiency to name
a few. More importantly, each path implies a different set
of relations with a different biological meaning. There-
fore, the meaning of an instance graph is as much dictated
by the shape of the connected graph as by the contents of
the documents within it. We refer to the graph shapes that
occur within Biozon as topologies (Fig. 10).

Beyond querying the emergent structure of the Biozon
graph, topologies allow users to discover the emergent
structure by characterizing the paths that relate objects
together. For example, one may want to discover how a
particular cancer related protein relates to known struc-
tures and interactions, or if any protein-protein interac-
tions are involved in riboflavin metabolism. These can
help discover previously unknown or unspecified rela-
tionships between known objects. For example, in Fig. 11
we show some of topologies that are observed when enu-
merating all possible paths of length 4 between proteins
and DNA sequences (to view all such topologies, see
http://biozon.org/ftp/data/papers/topologies/graphs/).
These topologies reveal some interesting paths that can-
not be detected by means of regular queries that query just
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direct relations. Since data topologies aim at detecting
schema level graphs that are instantiated at the instance
level they are difficult to query and process efficiently, and
existing methods of query (such as traditional SQL or
search systems such as Discover [43]) do not provide
effective solutions. These and other issues are addressed in
[44], where we have formalized the notion of data topol-
ogies in the context of heterogeneous (biological) data
and present effective methods for querying topologies.

Ranking biological objects
Organizing and sorting search results is an important part
of information processing and extraction. The current sta-
tus of biological databases resembles that of the pre-
google days of the web. Existing methods for querying
biological data that are available on the web generate lists
of matches that are essentially random, or sorted based on
features that are irrelevant to the query (for example,
alphabetically). One would wish to have the results sorted
based on their importance or relevance to the query. How-
ever, a priori it is not obvious how to quantify the impor-
tance of a match.

The underlying graph structure of Biozon is especially use-
ful in that respect. By exploring this structure we can detect
subgraphs of objects that are tightly interconnected. We
view important or interesting instances in the result sets as
those that are linked to many other important entities.
This definition is motivated by one of our main goals: to
provide users with the broader biological context of each
individual entity. These subgraphs often share a common
theme, and we refer to them as Hubs of knowledge. To
detect these graphs and assign prominence values to the ele-
ments in the Biozon database we explored and tested
quantitatively several spectral methods, including Hubs

and Authorities [45], PageRank [46] and other models
(the results of this study are described in detail in [47]).
Our tests indicate that the PageRank method, similar to
the method implemented in Google [46], is both more
effective and more practical, compared to other models,
and we have integrated into Biozon a ranking system
which is based on that model. It should be noted that only
the graph structure is taken into account when assigning
ranks. Some data may possibly be viewed as inherently
noisy or less reliable (take high throughput yeast two
hybrid interactions, for example), others as immutable.
These factors currently play no role in determining ranks
in Biozon, though present an opportunity for future study
(see [47]). As an example of the effectiveness of ranking,
when searching Biozon for the query term 'cancer' we
detect 1977 objects that match the term. A spectral analy-
sis of this subgraph results in a ranking that returns as a
top match a BRCA1 gene, Breast cancer susceptibility pro-
tein (docID 1079763). Examining the top five results as
shown in Fig. 12 shows several other highly relevant pro-
teins such as a p53 gene (docID 802537) that is related to
multiple interactions and DNA sequences, all involved in
tumor suppressing activity. This ranking utility has clear
advantages over arbitrary orderings of result sets. For
example, it can direct biologists that study specific genes
or interactions to homologous genes or similar interac-
tions in other organisms that are associated with more
extensive experimental information, and expose them to
knowledge that could have been overlooked otherwise.

Implementation
This is a brief explanation of the current implementation
of Biozon. For a more complete description, please see the
section 'Implementation and practical implications' of the
Supplementary Material.

Different topology graphs over the same data typesFigure 10
Different topology graphs over the same data types. These topologies involve the same three data types, but have com-
pletely different biological meanings. The first corresponds to a protein that is encoded by a DNA sequence and interact with 
it as well. The second indicates that the protein and the DNA sequence are interacting. The third indicates that the DNA 
encodes for the protein and the protein is involved in an interaction with a third partner, and the fourth indicates that the 
DNA sequence both encodes a protein and is involved in an interaction.
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Observed graph topologies between proteins and nucleic acids with a maximum path length of 4Figure 11
Observed graph topologies between proteins and nucleic acids with a maximum path length of 4. The number of occurrences 
of each topology instance is visible below each topology, using data current as of September 2005.
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Hardware
The graph is managed by a single DBMS (PostgreSQL)
that is resident on a Sun V880 server, with four 1.2 GHz
UltraSPARC III CPUs and 8 Gb RAM. A 1TB of disk storage
is used to store the Biozon graph and supporting data. A
second backup server runs on a Sun V65x, with two 3 GHz
Intel Pentium IV processors and 6 GB RAM, connected to
a second 1TB array that contains a duplicated copy of the
Biozon data graph. Large-scale computations and online
analysis tools are run on a 50 node cluster comprised of
Dell PowerEdge machines, with dual Pentium IV CPUs
running at 1 or 2 GHz with 1 GB RAM each.

Core database software
The biozon data graph is managed by the PostgreSQL
DBMS (version 7.3). PostgreSQL was chosen because it is
open source (BSD license) and has the extensibility and
object-relational features that were necessary for develop-
ing Biozon. The schema is an exact analogue to the docu-
ment and relation hierarchies (Fig. 2, 3) whereby each
document or relation is instantiated as a table, and the
hierarchy is implemented in PostgreSQL's inheritance
model. Core data integrity, update, and data manipula-
tion functions are written as triggers or stored procedures
in C which are dynamically loaded at runtime (see Sup-
plementary Material for a detailed discussion on these
protocols).

Although not part of the DBMS itself, parsing and initial
loading of data is done through custom scripts mostly
written in Perl. These scripts are responsible for mostly
straightforward translation of the data in its original form
to a form suitable for loading directly into pre-loading
tables in Biozon. The graph update algorithms are exe-
cuted in the DBMS using functions written in C.

User interface software
The user web interface is provided by a series of perl mod-
ules run with the Apache web server using mod_perl. The
web interface is currently the only public mode of access
to the Biozon data. Complex and fuzzy searches are
implemented in this layer, whereby the user's query as
built on the site is transformed into a suitable SQL query
that is then executed by the DBMS. Currently, there is no
external API or formal query language, though these are
planned for a future release.

Public access to the source code to the interface is cur-
rently not available, as it is specific to our particular instal-
lation. Our primary focus has been in providing a service.
Nevertheless, certain standalone components (such as
some analysis tools) may be generally useful and there-
fore are available for download from the Biozon site. We
also plan to make the schema and the core database soft-
ware available.

Ranking of resultsFigure 12
Ranking of results. These are the top 5 ranked results of a search for proteins with 'cancer' in their definition. Results of high 
rank tend to be linked to many other entities.
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Analysis
There are essentially two modes of data analysis that Bio-
zon currently performs. The first, large scale batch process-
ing, occurs whenever the derived data in Biozon is
updated, such as in generating our all vs all alignments or
domain predictions. These jobs are launched across our
entire compute cluster of 50 nodes and may take days or
weeks to complete, depending on the nature of the com-
putation and the amount of data being processed. Single-
use analysis, as provided in the 'Analysis Tools' section of
Biozon http://www.biozon.org/tools/index.html are run
on demand on user-provided data. Submitted jobs are
scheduled on the least loaded cluster machines, and
where applicable, comparison is performed with respect
to the current version of the Biozon database. The soft-
ware used in these analyses are available for download in
the 'software downloads' section of Biozon http://
www.biozon.org/ftp/downloads.html;

Conclusion
We describe a system (Biozon) that unifies multiple data
types from multiple resources into a single knowledge
resource. Our system is based on a flexible non-redundant
graph model, unambiguous representation of biological
entities that relies on their physical properties, and main-
tenance protocols that are based on a set of modular
authorities. Combined all together, these elements serve
to complete and corroborate data, to detect conflicts
between source databases, and most importantly, to
expose the broad biological context of each entity. Data
archiving is addressed through the use of time stamps.
Thus data can be reproduced, browsed and materialized
as of arbitrary time points in the past. Most importantly,
the Biozon system was designed such that the biological
context itself can be efficiently searched against and
assessed. The intricate link structure of the data graph ena-
bles complex queries that span multiple data types, fuzzy
searches that utilize the many similarity relations in Bio-
zon, and a ranking system that is unique in the biological
knowledge domain. The combination of these features is
a first-of-kind in this field.

The amount of biological data available is increasing rap-
idly, especially due to the ongoing genome projects of
human and other organisms. The logical schema and data
model of Biozon was designed to accommodate this
expected expansion and to allow easy integration of other
data types and future databases by extending the existing
document hierarchy. Moreover, the database infrastruc-
ture was designed to be easily maintainable, using update
protocols that work to preserve consistency, both internal
and external. Our graph schema, the document class hier-
archy and the relation class hierarchy are based on physi-
cal, semantic, or logical differences between the types of
data represented in Biozon. That being said, the structure

of the schema and the hierarchies is not immutable; it is a
design choice that balances the semantic requirements of
the data in the source databases with current conventional
wisdom. Our design choices are sometimes subjective and
motivated by data availability, clarity and applications. As
the data set grows and as more knowledge accumulates,
this model can be expected to expand and change.

Beyond the development of advanced web based tools to
support complex and fuzzy searches, we also attempt to
channel the information directly from the source data-
bases to the end users. Since the outcome of one's research
is the input for another, users these days often want direct
access to search results and are interested in downloading
the data for further analysis. However, this is difficult for
complex queries that span multiple data types as it
requires access to multiple databases. Furthermore, gener-
ating interconnected data sets would require certain data
manipulation expertise and might take days or weeks,
depending on the user experience. Biozon's solution uti-
lizes the user account system, allowing users to material-
ize and download the results of their queries. Moreover,
since each document is associated with a timeline users
can re-materialize the results as of arbitrary times in the
past. This is especially useful if one is interested in repro-
ducing the same dataset that was obtained when a
research project was initiated based on the results of a cer-
tain query.

Biozon's user accounts serve additional purpose, as
another channel for data dissemination. In most cases the
data that is stored in databases is partial as it is extracted
only from published literature. However, even after dis-
coveries are made it might take years until the knowledge
is stored in databases, and most of the information is actu-
ally out there, intellectually held be individuals who study
closely specific biological entities. As a response, Biozon
enables researchers to submit and deposit comments on
specific genes, protein families, interactions or pathways,
in the 'expert comments' section.

Finally, Biozon strives to make the knowledge stored
within readily available to the whole scientific commu-
nity, and gradually also the means for others to deposit,
integrate and share their data. The Biozon database is
accompanied with a sophisticated web interface where
source data and computed data, and data analysis tools
converge into a single working environment, online at
http://biozon.org.

Future work
As Biozon continues to grow, a major focus on future
effort will be in keeping the Biozon data up to date and
incorporating new datasets. Currently, we update major
databases once every few months and are gradually work-
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ing towards more frequent and automated updates as
resources allow. New datasets are regularly added to Bio-
zon to fulfill specific needs or to create a more compre-
hensive list of the types of data represented (see release
notes at http://biozon.org/doc/release_notes.html).
Maintenance and expansion of data will always be a con-
stant goal. Based on user feedback and opportunities pre-
sented in exploration of the graph structure, we have
identified several areas for future research or development
beyond maintenance of data, and we make brief mention
of a few of them.

• General contextual views of the Biozon graph
We intend to allow users to specify the context in which
the graph will be searched and browsed (e.g. a specific
organism, tissue, cell or subcellular location). Graph
searching and browsing would be limited to a subset of
the Biozon graph that is deemed relevant in a given con-
text. For example, because proteins are unified based only
on sequence their profile page will show all information
relating to that sequence, regardless of species. A possible
outcome is that a linked interaction that is present in spe-
cies A but not species B will be linked to identical proteins
from species B. Viewing the entry and searching the graph
in the context of species B would ignore all information
that does not pertain to that particular species. Work must
be done to determine the contexts that users may be inter-
ested in, and developing tools to automatically project the
graph on the relevant context or filter each graph opera-
tion by the desired context.

• Queries based on uploaded data
Queries would incorporate a user-provided dataset that
would be used as a query node in a complex query. For
example, consider the query "Find all structures of proteins
that interact with proteins in the set S" where S is a set of user
data.

• Public access and API
Currently, the only public access to the Biozon database is
through its web interface. While the materialization
option gives users the ability to download the results of a
query for possible further analysis, there is no general pur-
pose API that would allow for the creation of third-party
software modules that interface with the Biozon query
engine or its graph directly. We plan to provide such
access, but development in that regard has not yet started.

• Topology queries and display
As it stands now, search results are returned as a list of
matching "target objects" that satisfy a given query, where
the search topology is spelled out explicitly. Each target
object is an instances of the specified topology. One par-
ticularly interesting idea is to create a search interface
whereby individual graph elements are specified in the

query, and the results are a set of topology instances that
relate the graph elements together. In other words, this
mode of search would discover paths in the graph
between specified objects.

Availability and requirements
Biozon can be accessed online at http://biozon.org.
Browsing of data, searching, and data analysis is accessible
to all users, though more advanced features such as saving
queries and commenting on objects require the user to
create an account. In order to effectively use Biozon, a
contemporary javascript-enabled browser is required. The
data itself is copyright to their original publishers, and use
granted under the terms set forth by each individual data
source.
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