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Abstract
Background: Channel current feature extraction methods, using Hidden Markov Models (HMMs)
have been designed for tracking individual-molecule conformational changes. This information is
derived from observation of changes in ionic channel current blockade "signal" upon that molecule's
interaction with (and occlusion of) a single nanometer-scale channel in a "nanopore detector". In
effect, a nanopore detector transduces single molecule events into channel current blockades.
HMM analysis tools described are used to help systematically explore DNA dinucleotide flexibility,
with particular focus on HIV's highly conserved (and highly flexible/reactive) viral DNA termini.
One of the most critical stages in HIV's attack is the binding between viral DNA and the retroviral
integrase, which is influenced by the dynamic-coupling induced high flexibility of a CA/TG
dinucleotide positioned precisely two base-pairs from the blunt terminus of the duplex viral DNA.
This suggests the study of a family of such CA/TG dinucleotide molecules via nanopore
measurement and cheminformatics analysis.

Results: HMMs are used for level identification on the current blockades, HMM/EM with boosted
variance emissions are used for level projection pre-processing, and time-domain FSAs are used to
parse the level-projected waveform for kinetic information. The observed state kinetics of the
DNA hairpins containing the CA/TG dinucleotide provides clear evidence for HIV's selection of a
peculiarly flexible/interactive DNA terminus.

Background
Fundamental hypothesis
HIV DNA is found to have a highly conserved CA dinucle-
otide step precisely two base-pairs from its blunt-end ter-

minus [1-7]. In preliminary nanopore studies the
blockade level lifetimes of the wild-type 3' end sequence
(-C-A-T-G-3') were found to be similar to (-C-A-A-A-3'),
consistent with their similarities in DNA conformation
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and ΔG. This similarly motivated the present study of a
small group of nine base-pair stem DNA hairpins consist-
ing of all adenosines on the 3' side of the molecule, except
for one cytosine-adenosine step (the "CA-step" set). Con-
trary to the differences (seemingly) indicated by nature,
the calculated ΔG° of hairpin formation (using mFold) is
the same for the CA-step set. It is hypothesized that the
highly conserved nature of the HIV DNA terminus corre-
sponds to some beneficial flexibility that increases reactiv-
ity with the HIV integrase prior to insertion into the host
DNA. A test of the hypothesized flexibility/reactivity is
sought via analysis of channel current statistics for signs of
notably different blockade kinetics between the blunt-
ended HIV DNA conformer and the other blunt-ended
hairpins in the CA-step set.

Sequence Dependent DNA Conformation
DNA conformation is dependent upon intrinsic proper-
ties of a given sequence and upon the environment in
which the molecule is studied [8]. Intrinsic sequence-
dependent properties include minor groove width [9,10],
propensity to undergo B-to-A transition [11-14], and cat-
ion localization in the major vs minor groove [15-26].

Sequence-dependent conformation influences nearly all
aspects of DNA biology including enzyme-dependent
functions such as replication, transcription, and recombi-
nation. Here it is important to distinguish between the
two general mechanisms by which enzymes recognize
DNA [27]: 1) recognition of functional groups on specific
bases in the major groove ('direct' readout); and 2) con-
formation-dependent enzyme recognition of DNA ('indi-
rect' readout). An example of indirect readout is DNA
binding by E. coli Integration Host Factor (IHF). This het-
erodimeric protein binds to DNA in a sequence-specific
manner that causes a 160 degree bend. This bend is
required for recombination and transcription. Impor-
tantly, IHF contacts the phosphate backbone and the
minor groove only, therefore its sequence-specificity must
be conformation dependent.

Traditionally, efforts to explain DNA conformation have
focused on the propensity of nucleotides to adopt C2'
endo vs C3' endo sugar pucker, base stacking, groove
hydration, and the preferred geometries of GC vs AT pairs
(e.g. propeller twist) [28-33]. An interesting (and contro-
versial) new hypothesis holds that sequence-dependent
cation position in the minor or major groove determines
DNA conformation [34]. In either case, the structural pre-
dictions used to formulate and test hypotheses have relied
upon angstrom precision measurements by X-ray diffrac-
tion analysis of oligonucleotide crystals and heteronu-
clear NMR spectrosocopy of DNA in solution.

Structural predictions based on X-ray crystallography and 
NMR spectroscopy
The first X-ray crystal structure of a DNA oligomer (the
'Dickerson dodecamer') was published in 1981 (Drew
and Dickerson [28]). It established substantial deviation
among base pairs in terms of propeller twist, rise per base
pair, and sugar pucker. Numerous attempts have been
made to understand the structural basis for these differ-
ences. As is true for models used to predict thermody-
namic stability of duplexes [35], models based on
dinucleotide steps have been reasonably successful. For
example, Hassan used structural data from sixty oligomer
crystals to establish features of dinucleotide steps that cor-
relate with DNA flexibility. Pyrimidine-purine dinucle-
otide steps that are known to be flexible (e. g. TA and CA)
were associated with little propeller twist and a variety of
slide positions whereas steps that are known to be rigid
(notably AA steps) were high in propeller twist and they
had a limited range of slide. But others argue that dinucle-
otide steps are inadequate to describe sequence depend-
ent structure and dynamics because context can strongly
influence their behavior. This is illustrated in a study by
Packer and Hunter [36] who used a similar crystal struc-
ture database to examine the effect of neighboring base
pairs on dinucleotide flexibility (as measured by slide and
shift). Their results indicate that some dinucleotide steps
adopt conformations that are entirely independent of
neighboring base pairs (e.g. AA, AT, TA), while others are
weakly context dependent (e.g. AC, AG, CA, GA), and still
others are strongly context dependent (CG, GC, CC).

Although crystal structures have provided fundamental
information that helps illuminate how DNA can bend
and twist when bound to proteins, the approach has lim-
itations. For instance, close packing of DNA in crystals is
known to alter structure relative to solution phase, and the
cryogenic temperatures used for high resolution may lead
to under-representation of conformers that are common
at physiological temperatures. NMR spectroscopy can
overcome these limitations because the experiments are
typically run at 1 mM concentration and ambient temper-
ature. This is illustrated by a recent comprehensive study
[8] which compared an NMR structure for the Dickerson
dodecamer with a high resolution crystal structure. There
were two basic conclusions: 1) The average AATT core
structure was very similar for the NMR-based and crystal-
based predictions, i.e. strong propeller twist and a narrow
minor groove. This is not surprising because the AATT
sequence is relatively inflexible [37], it has been exten-
sively studied [38], and it is constrained by four base pairs
at either end of the dodecamer; 2) by comparison, the pre-
dicted structures for the CGCG segments demonstrated a
profound variability. The authors attributed this differ-
ence to averaging of C3' -endo vs C2' -endo sugar pucker-
ing in the NMR structure, particularly among cytosines. At
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the cryogenic temperatures used for the high resolution
crystal structure, the higher energy state C3' -endo pucker
would be rarely observed. It is also likely that proximity to
the duplex terminus can account for some of the differ-
ence because the helix ends overlap in crystals but not in
solution [28]. Whether structural averaging by NMR or
approximation by a crystallized form, particularly near
the important DNA terminal regions, neither approach
provides a clear picture of the conformational history of a
free molecule in solution at physiological temperature, as
is described in what follows.

Structure and Dynamics of Duplex Ends
The structure and dynamics of DNA duplex ends can
influence numerous enzyme-dependent processes. Some
of the most biologically important of these are integration
of transposons and retroviral dsDNA into target chromo-
somes. Two well studied examples are transposition of the
phage Mu genome, and integration of HIV dsDNA copies
into target chromosomal DNA. In both cases, a consensus
CA dinucleotide step at or near the duplex terminus is
believed to confer flexibility on the viral DNA that is
required for processing and strand transfer.

DNA duplex ends are significantly under-represented in
NMR and crystal structure studies despite their critical
importance in biology. For example, Hassan and Calla-
dine's landmark study [32] was based on X-ray crystal
structures for 60 oligomers. A•T pairs appeared only twice
in the terminal dinucleotide step of the 120 duplex ends.
This under-representation may be due to a historical bias
since the Dickerson dodecamer contains only G•C pairs
in the four base pair termini. But it may also be due to rec-
ognition of a built in bias in crystal structures because the
helix ends are known to overlap [9], and interpretation of
their structure is therefore ambiguous. NMR studies of
DNA structure have also been biased toward the Dicker-
son dodecamer and its variants.

Analysis of Individual DNA Hairpin Molecules Using a 
Protein Pore
The α-hemolysin channel is a protein heptamer, formed
by seven identical 33 kD protein molecules secreted by
Staphylococcus aureus. The total channel length is 10 nm
and is comprised of a 5 nm trans-membrane domain and
a 5 nm vestibule that protrudes into the aqueous cis com-
partment [39]. The narrowest segment of the pore is a 1.5
nm-diameter aperture [39], see Fig. 1. By comparison, a
single strand of DNA is about 1.3 nm in diameter. Given
that water molecules are 0.15 nm in diameter, this means
that one hydration layer separates ssDNA from the amino
acids in the limiting aperture. This places the charged
phosphodiester backbone, hydrogen bond donors and
acceptors, and apolar rings of the DNA bases within one
Debye length (3 Å in 1 M KCl) of the pore wall (the 1.5

nm limiting aperture is circumscribed by lysine 147). Not
surprisingly, ssDNA and ssRNA strongly interact with the
α-hemolysin channel during translocation. Although
dsDNA is too large to translocate, about ten base-pairs at
one end can still be drawn into the large cis-side vestibule.
This actually permits the most sensitive experiments to
date, as the ends of "captured" dsDNA molecules can be
observed for long periods to resolve features [40-45]. In
1.0 M KCl (pH 8.0), a 120 mV applied potential produces
a steady open channel current (Io) of 120 ± 5 pA at 23°C
(a 1G Ohm resistor). Translocation of single-stranded lin-
ear DNA (Figure 1) reduces this current to I ≅ 14 pA (I/Io
= 12%). Each monomer within single stranded DNA
traverses the length of the 10-nm pore in 1 to 3 μs at ambi-
ent temperature.

The initial DNA hairpin experiments [45] involved a well-
characterized single-conformer DNA hairpin with a six-
base-pair stem and a four-deoxythymidine loop [46].
AMBER field [47] molecular dynamics simulation indi-
cated that the four-deoxythymidine loop would adopt
conformations that would prevent passage through the
cis-vestibule entry and this was also verified by studying
hairpin molecules with 4-dT loops at both ends (see [45]
for details). When captured within an α-hemolysin nano-
pore (with only one capture orientation or one "nanopore
epitope"), the six base-pair DNA hairpin molecule caused
a partial current blockade (or 'shoulder') lasting hundreds
of milliseconds followed by a rapid downward spike (last-
ing hundreds of microseconds). This "shoulder-spike" sig-
nature is consistent with two sequential steps: i) capture of
a hairpin stem in the vestibule, where the molecule rattles
in place because the hairpin loop cannot fit through the
2.6 nm aperture at the vestibule opening (and the duplex
stem cannot fit through the 1.5-nm diameter-limiting
aperture of the pore); and ii) simultaneous dissociation of
the six base pairs in the hairpin stem, thus allowing the
extended single-strand to traverse the channel. Building
from the six base-pair stem, each base pair addition
resulted in a measurable increase in blockade shoulder
lifetime that correlated with the calculated ΔG° of hairpin
formation (Figure 2) [45]. A downward trend in shoulder
current amplitude was also observed from I/Io equal to
68% for a 3 bp stem to I/Io equal to 32% for a 9 bp stem.
These results are consistent with greater obstruction of
ionic current as the hairpin stem extends further into the
vestibule with each additional base pair.

A New Method for Single Molecule Detection and 
Characterization
Channel current based nanopore cheminformatics pro-
vides an incredibly versatile method for transducing sin-
gle molecule events into channel current blockade states
(see Figure 1). Single biomolecules and the ends of
biopolymers such as DNA have been examined in solu-
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A nanopore device based on the α-hemolysin channel (from [41])Figure 1
A nanopore device based on the α-hemolysin channel (from [41]). a) Diagram of a horizontal bilayer apparatus used in the 
UNO-RIC laboratory. One α-hemolysin channel is intercalated in a horizontal bilayer. The bilayer is supported on a 25-
micron-diameter conical aperture at the end of a U-shaped Teflon tube. The tube connects two 70 μl volume baths filled with 
1 M KCl buffered at pH 8.0. b) Two-dimensional diagram of a 9 bp hairpin captured in the pore vestibule. The stick figure in 
blue is a two dimensional section of the α-hemolysin pore derived from X-ray crystallographic data. c) Representative block-
ade of ionic current caused by a 9 bp DNA hairpin (9 bpC•G). Open channel current (Io) is typically 120 pA at 120 mV and 
23.0°C. In the case of 9 bp hairpins, the residual current transitions between four levels.
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tion with nanometer-scale precision [40-45]. In work
described above [45], it was found that complete base-
pair dissociations of dsDNA to ssDNA, "melting", could
be observed for sufficiently short DNA hairpins. In later
work [42,44], the nanopore detector was used to "read"
the ends of dsDNA molecules, and was operated as a
chemical mixture tester. In recent work [40,41,43], the
nanopore detector has been used to observe the confor-
mational kinetics at the termini of single DNA molecules.
And in the most recent work, reported here, the nanopore
is used to measure conformational kinetics of a family of
DNA molecules consisting of variations of the HIV DNA
consensus terminus.

The channel current cheminformatics architecture
Figure 3 shows the signal processing architecture that is
used. The prototype architecture and preliminary modifi-
cations are described in detail in [40-43]. Recent additions
to the software, and their application, are described. The
processing is designed to rapidly extract useful informa-
tion from noisy blockade signals using feature extraction
protocols, wavelet analysis, Hidden Markov Models
(HMMs) and Support Vector Machines (SVMs). A Finite
State Automaton (FSA) [48] approach is used for blockade
signal acquisition and simple, time-domain, feature-
extraction. The FSA is based on variety of threshold
parameters, the tuning of which is very minimal (one
round of parameter tuning sufficed for the acquisition of
all the different types of channel blockade described

here). The utility of a time-domain approach at the front-
end of the signal analysis is that it permits precision con-
trol of the acquisition as well as extraction of fast time-
scale signal characteristics. A generic HMM [42] is then
used to characterize current blockades by identifying a
sequence of sub-blockades as a sequence of state emis-
sions [49-51]. The parameters of the generic-HMM can
then be estimated using a method called Expectation/
Maximization (or just "EM") [52] to effect de-noising.

Classification of feature vectors obtained by the HMM
(for each individual blockade event) is then done using
SVMs, an approach which automatically provides a confi-
dence measure on each classification (see Figure 4). SVMs
are fast, easily trained discriminators [53,54] for which
strong discrimination is possible without the over-fitting
complications common to neural net discriminators [53].
In [42], novel information-theoretic kernels were intro-
duced for notably better performance over standard ker-
nels (with discrete probability distributions as part of
feature vector data).

The classification approach adopted in [42] is designed to
scale well to multi-species classification (or a few species
in a very noisy environment). The scaling is possible due
to use of a decision tree architecture and an SVM approach
that permits rejection on weak data. SVMs are usually
implemented as binary classifiers but may be grouped in
a decision tree to arrive at a Multi-class discriminator.

Influence of hairpin stem length on current impedance (from [45])Figure 2
Influence of hairpin stem length on current impedance (from [45]). In the plot at left, each point represents the amplitude and 
duration for translocation of one DNA hairpin molecule. The duplex stems ranged from 3 bp to 8 bp. In the plot at right, aver-
age blockade durations are plotted as a function of duplex hairpin stability in kcal mol calculated using 'Mfold'. ''6bpA14' is a 6 
bp hairpin with an A•A mismatch.
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SVMs are much less susceptible to over-training than neu-
ral nets [53]. This allows for a much more hands-off train-
ing process and provides a more stable classifier.

A multiclass implementation for an SVM is also possible
– where multiple hyperplanes are optimized simultane-
ously. A (single-optimization, multi-hyperplane) multi-
class SVM has a much more complicated implementation,
but the reward is a classifier that is much easier to tune
and train, especially when considering data rejection. The

(single) multiclass SVM, doesn't have as non-scalable a
throughput problem (with tree depth), and even appears
to offer a natural drop zone via its margin definition.
therefore it is being considered in further refinements of
the method (see [55] in this same issue for recent applica-
tions of these refinements to other channel current data).

The SVM discriminators are trained by the Sequential
Minimal Optimization (SMO) procedure [56]. A chunk-
ing [57,58] variant of SMO also is employed to manage

The signal acquisition was performed using a time-domain Finite State Automaton (FSA)Figure 3
The signal acquisition was performed using a time-domain Finite State Automaton (FSA). This was followed by adaptive pre-fil-
tering using a wavelet-domain FSA. Feature extraction on those acquired channel blockades was done by Hidden Markov 
Model (HMM) processing; and classification was done by Support Vector Machine (SVM). The optimal SVM architecture is 
shown for classification of five DNA hairpin molecules labeled 9CG, 9GC, 9TA, 9AT, and 8GC (the number denotes the stem 
length in base-pairs and the two-base entry denotes the 5'-3' termini). The linear tree multi-class SVM architecture benefits 
from strong signal skimming and weak signal rejection along the line of decision nodes. Scalability to larger multi-class problems 
is possible since the main on-line computational cost is at the HMM feature extraction stage. The accuracy shown is for single-
species mixture identification upon completing the 15th single molecule sampling/classification (in approx. 6 seconds).
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the large training task at each SVM node. The multi-class
SVM training generally involves thousands of blockade
signatures for each signal class.

Different tools are employed at each stage of the signal
analysis (as shown in Figure 3) in order to realize the
robust (and noise resistant) tools for knowledge discov-
ery, information extraction, and classification [42]. Statis-
tical methods for signal rejection using SVMs are also
employed in order to reject extremely noisy signals.

Role of DNA Conformation in HIV DNA Terminus 
Flexibility/Reactivity
DNA conformation plays a very important role in protein-
DNA complex formation [32]. In this process two of the
crucial factors are the environment in which the complex
is formed and the properties of the specific sequence inter-
acting with the protein or other DNA molecule [36].
Despite the multitude of crystallographic studies
[25,32,59] conducted on DNA, it is still difficult to trans-
late the sequence-directed curvature information
obtained through these tools to actual systems found in
solution. Information on the DNA molecule's variation in
structure and flexibility is important, however, to under-

standing the dynamically enhanced (naturally selected)
DNA complex formations that are found with strong
affinities to other, specific, DNA and protein molecules.
Crystallographic and NMR studies alone can't give a per-
spective about the dynamics of these molecules in envi-
ronments with similar physiological conditions.

Conformational kinetics of the HIV DNA termini
An important example of DNA conformational flexibility
is the HIV attack on T-cells. In the retroviral attack of HIV
one of the most critical stages is the integration process of
viral DNA into the host DNA [1]. The viral DNA sequence
critical to the attachment and insertion of viral DNA into
the host DNA is found at the terminus of the blunt-ended
viral DNA [2-5]. The integration process is influenced by
the dynamic-coupling induced by the high flexibility of a
CA/TG dinucleotide positioned precisely two base-pairs
from the blunt terminus of the duplex viral DNA [6]. The
CA/TG dinucleotide presence is a universal characteristic
of retroviral genomes. Deletion of these base pairs
impedes the integration process [7] and it is believed that
the unusual flexibility imparted by this base-pair on the
terminus geometry is necessary for the binding to inte-
grase. Once bound to integrase the viral DNA molecule is
modified by removal of the two residues at the 3'-end
together with subsequent insertion into the host genome.
Our hypothesis is that the DNA hairpin with a CA/TG
dinucleotide positioned two base-pairs from the blunt ter-
minus will have channel current statistics differentiable
from the other DNA hairpins.

Results
In what follows kinetic feature extraction is done on two
types of channel current blockade events: (i) fixed level
blockades, and (ii) blockade "spikes" (anomalous deflec-
tions from a specified level). The spike detection, and thus
spike frequency, algorithm is FSA-based. The blockade
level lifetime analysis is primarily HMM-based, where
HMM/EM with boosted variance emissions is used for
level projection pre-processing, and time-domain FSAs
are used to parse the level-projected waveform for kinetic
information. This provides a robust kinetic feature extrac-
tion formalism with a minimal amount of FSA-level tun-
ing. Application of the spike detection tool permits strong
discrimination capability not otherwise possible between
DNA molecules with and without minor radiation dam-
age. Application of the HMM kinetic feature extraction
tool permits statistical differences to be discernible
between molecules in the study of HIV DNA (described in
what follows). The rich set of kinetic features obtained
allows for DNA terminus classification/clustering. An
SVM-based clustering method has been developed and
was applied to the control molecules to test this capabil-
ity. A Web-interface to the various software tools used is
also described.

A sketch of the hyperplane separability heuristic for SVM binary classificationFigure 4
A sketch of the hyperplane separability heuristic for SVM 
binary classification. An SVM is trained to find an optimal 
hyperplane that separates positive and negative instances, 
while also constrained by structural risk minimization (SRM) 
criteria, which here manifests as the hyperplane having a 
thickness, or "margin," that is made as large as possible in 
seeking a separating hyperplane. A benefit of using SRM is 
much less complication due to overfitting (a common prob-
lem with Neural Network discrimination approaches).
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τ-FSA Blockade Acquisition and time-domain Feature 
Extraction
A Channel Current Spike Detector algorithm has been
developed to characterize the blockade "spike" behavior
observed for molecules when they strongly occlude the
pore. Together, the formulation of HMM-EM, FSAs and
Spike Detector provide a robust method for analysis of
channel current data. Application of these methods is
shown (Figure 5) for radiation damaged DNA signals
obtained by Dr. Wenonah Vercoutere at NASA-Ames. In
the radiated DNA study the "spike" feature, seen as the
anomalously deep blockades of channel current from the
LL blockade state, is used to successfully differentiate
between radiated and non-radiated DNA molecules.

The spike detector software is designed to count "anoma-
lous" spikes, i.e., spike noise not attributable to the gaus-
sian fluctuations about the mean of the dominant
blockade-level. Spike count plots are generated to show
increasing counts as cut-off thresholds are relaxed (to
where eventually any downward deflection will be
counted as a spike). The plots are automatically generated
and automatically fit with extrapolations of their linear
phases (at the group's CCCool-tools website). The extrap-
olations provide an estimate of "true" anomalous spike
counts – counts associated with terminus fraying in the
captured DNA hairpin (via mechanism discussed in [44]).
For the study above, the radiated form of the molecule
frayed 17.6 times a second, on average, while in the LL
state. The non-radiated molecule only frayed 3.58 times a
second, on average, from the LL state (see Figure 5). This
result is consistent with the weakened hydrogen bonding
at the terminus of the radiation-damaged molecule.

EVA Projection
The HMM method is based on a stationary set of emission
and transition probabilities. Emission broadening via
amplification of the emission state variances is a filtering
heuristic that leads to level-projection that strongly pre-
serves transition times between major levels (see Discus-
sion for details). Results from the emission variance
amplification (EVA) emission broadening method are
shown in Figure 6 (with varying amounts of variance
amplification). This approach does not require the user to
define the number of levels (classes). This is a major
advantage compared to existing tools that require the user
to determine the levels (classes) and perform a state pro-
jection. This allows kinetic features to be extracted with a
"simple" FSA that requires minimal tuning (see Figure 7
for kinetic features results and Figure 8 for the signal
processing architecture).

Cheminformatics analysis of DNA conformational kinetics
It was hypothesized that the highly conserved nature of
the HIV DNA terminus corresponds to some beneficial

flexibility and thus reactivity with HIV integrase prior to
insertion into the host DNA, and that this might lead to
some statistically discernable difference in their channel
blockade statistics. A test of the hypothesized flexibility/
reactivity was performed on the set of DNA hairpins with
a single CA dinucleotide step. Analysis of channel current
statistics (Fig. 7b) shows that the blunt-ended HIV DNA
conformer has notably different blockade kinetics than
the other blunt-ended hairpins in the CA set (see Fig. 7a).

SVM Clustering
Clustering will be necessary when the number of molecu-
lar classes under consideration grows too large (such as
conformational studies encompassing the last 4 base-
pairs: which comprise 44 = 256 classes). Preliminary
efforts to implement an external-SVM clustering algo-
rithm have begun. The prototype clustering approach
clusters data vectors with no a priori knowledge of each
vector's class or number of classes. The algorithm works
by first running a Binary SVM against a data set, with each
vector in the set randomly labeled, until the SVM con-
verges (see Figure 9 for more details). With sub-cluster
identification upon iterating the overall algorithm on the
positive and negative clusters (until the clusters are no
longer separable into sub-clusters), this method provides
a way to cluster data sets without prior knowledge of the
data's clustering characteristics, or the number of clusters.
Figure 10 and Figure 11 show clustering runs on a data set
with a mixture of the 8GC and 9GC control molecules
(described in the Methods). The test set consists of 400
elements (200 in each class). The SVM uses a Gaussian
Kernel and allows 3% mislabeled data for convergence.
See [54] for further details and the latest work along these
lines.

The unoSVM and CCCool Tools interfaces
Web-accessible machine-learning tools have been devel-
oped for general pattern recognition tasks, with specific
application to channel current analysis, DNA biophysical
analysis and computational genomics. The core machine
learning tools are primarily based on support vector
machine (SVM) algorithms, hidden Markov model
(HMM) algorithms, and finite state automata (FSAs).
Some of the Machine Learning web pages provide expert
interfaces to the machine learning tools (all model param-
eters accessible). This includes SVM web interfaces with a
number of algorithm and kernel variants, and classifica-
tion and clustering applications. The interface to this and
all other software described is available via the group
Home Page: http://logos.cs.uno.edu/~nano/ (see Figure
12).
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Panel (A) shows a 100 ms blockade trace with one blockade "spike" event, and the signal analysis that results from analysis of hundred of seconds of blockade data from the same species of moleculeFigure 5
Panel (A) shows a 100 ms blockade trace with one blockade "spike" event, and the signal analysis that results from analysis of 
hundred of seconds of blockade data from the same species of molecule. The molecule studied in (A) is 9 base-pair hairpin that 
is the radiation damaged DNA model (a terminal guanine is oxolated) of the molecule studied in (B), with terminal guanine 
unaltered in the "non-radiated" molecule. The spike count plots show increasing counts as spike cut-off thresholds are relaxed 
(to where eventually any downward deflection will be counted as a spike). Plots are automatically generated using gnuplot and 
automatically fit with extrapolations of their linear phases at the group's tools website. The extrapolations provide an estimate 
of "true" anomalous spike counts – counts associated with terminus fraying in the captured DNA hairpin (as shown in [44]). 
The radiated form of the molecule frayed 17.6 times on average (while in the LL state), while the non-radiated molecule only 
frayed 3.58 times a second, on average.

  (A)

     (B) 
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Discussion
Emission Variance Amplification (EVA) Projection
It is hypothesized that emission variance amplification
(EVA) in a non-uniformly increasing transition probabil-
ity region leads to Viterbi path migration with each EM/
EVA iteration towards the dominant levels (regions of
high occupation probability), while strongly preserving
the transition times of level changes. The migration of
fluctuations is disrupted (and the method fails) if pre-
processing is done with a low-pass filter (using an N-sam-

ple moving average, for example, with N = 8). This may
provide a method for automatically tuning the low-pass
filter – by narrowing the pass band until the projection
method fails and tuning accordingly. This offers the pros-
pect of fewer tuning subtleties than the emergent-structure
tuning, via wavelet FSA, that is currently used.

HMM-with-duration Viterbi Implementation
HMM-with-duration directly incorporates sub-blockade
duration probabilities and provides a strong link to the

The HMM/EM EVA projection method, for kinetic feature extraction, does not require the user to define the number of levels (classes)Figure 6
The HMM/EM EVA projection method, for kinetic feature extraction, does not require the user to define the number of levels 
(classes). This is a major advantage compared to existing tools which require the user to determine the levels (classes) and per-
form a state projection. At a later stage, this allows kinetic features to be extracted with a "simple" FSA that requires minimal 
tuning.
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a. In preliminary nanopore studies the wild-type 3' end sequence (-C-A-T-G-3') was found to be similar to (-C-A-A-A-3'), which motivated the present study of a group of DNA hairpins consisting of all adenosines on the 3' side of the molecule, except for one cytosine-adenosine stepFigure 7
a. In preliminary nanopore studies the wild-type 3' end sequence (-C-A-T-G-3') was found to be similar to (-C-A-A-A-3'), 
which motivated the present study of a group of DNA hairpins consisting of all adenosines on the 3' side of the molecule, 
except for one cytosine-adenosine step. Contrary to the differences (seemingly) indicated by nature, the calculated ΔG° of 
hairpin formation (using mFold) is the same for the set of molecules described, with one CA step (the CA set).b. UL, the 
unbound terminus state, has shortest life for CA_3, i.e., CA_3 has strongest interaction with channel (and surroundings), 
neighboring variants (CA_2, CA_4) share this property to a lesser extent, and molecules with GC pairs more than 1 base-pair 
distant group very closely, the one molecule with no extra GC also separates with its own characteristic curve. This result is 
consistent with the increased reactivity of CA_3 to initiate complex formation [1], with weaker variants in CA_2 and CA_4, 
exactly as found experimentally [1-7].
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underlying kinetic (physical) information. It is parameter-
ized by the internal HMM signal representation (the emis-
sion and transition probabilities, and the duration
distributions on state lifetimes), and can be efficiently and
safely implemented (see [60] in this issue for further
details). By incorporating HMM-with-duration, feature
extraction will be more robust on long-lifetime states.

The Machine Learning Software Interface Project
The high volume and complexity of typical, noisy bioin-
formatics and cheminformatics (real-world) data moti-
vates the use of sophisticated, yet highly efficient machine
learning programs. The group website at http://
logos.cs.uno.edu/~nano/ provides interfaces to: (i) several
binary SVM variants (with novel kernel selections and
heuristics); (ii) a multiclass (internal) SVM; (iii) an SVM-

based Clustering tool; (iv) an FSA-based nanopore spike
detector; (v) an HMM-parameter channel current feature
extraction tool; and (vi) a kinetic feature extraction tool
(via channel current sub-level lifetimes). The website is
designed using HTML and CGI scripts that are executed to
process the data sent when a form filled in by the user is
received at the web server – results are then e-mailed to the
address indicated by the user.

SVM Kernel Selection
Given its geometric expression, it is not surprising that a
key construct in the SVM formulation (via the choice of
kernel) is the notion of "nearness" between instances or
nearness to the hyperplane, where it gives a measure of
confidence in the classification, i.e., instances further from
the decision hyperplane are called with greater confidence

The experimental architecture, with a focus on the signal processing components, is shown with modifications upon with the addition of Feature Extraction Stage II for the HMM/EM-EVA kinetic feature extractionFigure 8
The experimental architecture, with a focus on the signal processing components, is shown with modifications upon with the 
addition of Feature Extraction Stage II for the HMM/EM-EVA kinetic feature extraction. Use of this information at the kinetic 
information analyzer stage has been completed (as shown in the results in Fig. 7b). Incorporation of this information into the 
feature vectors packaged for online SVM classification, however, has not been completed (thus the linkage with notation on 
work-in-progress).
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(see Figure 4). Most notions of nearness explored in this
context have stayed with the geometric paradigm and are
known as "distance kernels." One example being the
familiar Gaussian kernel which is based on the Euclidean
distance: KGaussian(x,y) = exp(-DEucl.(x,y)2/2σ2), where
DEucl.(x,y) = [Σk(xk-yk)2]1/2 is the usual Euclidean dis-
tance. Those kernels are used in the signal pattern recogni-
tion analysis in Figure 3 along with a new class of kernels,
"divergence kernels," based on a notion of nearness
appropriate when comparing probability distributions (or
probability feature vectors). The main example of this is
the Entropic Divergence Kernel: KEntropic = exp(-DEntro-

pic.(x,y)2/2σ2), where DEntropic.(x,y) = D(x||y)+D(y||x) and
D(..||..) is the Kullback-Leibler Divergence (or relative
entropy) between x and y.

Conclusion
HMM kinetic feature extraction methods have been devel-
oped. Application of the channel current cheminformatics
tools to a set of DNA hairpins with single CA-dinucleotide
steps clearly reveals the peculiar flexibility and interactiv-
ity of the HIV DNA consensus terminus.

Methods
Nanopore Experiments
Each experiment is conducted using one α-hemolysin
channel inserted into a diphytanoyl-phosphatidylcho-
line/hexadecane bilayer across a 25-micron-diameter hor-
izontal Teflon aperture, as described previously [61].
Seventy microliter chambers on either side of the bilayer
contains 1.0 M KCl buffered at pH 8.0 (10 mM HEPES/

Shown is the schematic for an "external" SVM clustering algorithmFigure 9
Shown is the schematic for an "external" SVM clustering algorithm.

1. Label & Converge: 2. Change Weakest Labels: 

3. Converge on new Labels: 4. Iterate until Separability: 
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KOH) except in the case of buffer experiments where the
salt concentration, pH, or identity may be varied. Voltage
is applied across the bilayer between Ag-AgCl electrodes.
DNA control probes are added to the cis chamber at 10 or
20 μM final concentration. All experiments are main-
tained at room temperature (23 ± 0.1°C), using a Peltier
device.

Control probe design
Since the five DNA hairpins studied in the prototype
experiment have been carefully characterized, they are
used in further experiments as highly sensitive controls.
The nine base-pair hairpin molecules examined in the
prototype experiment share an eight base-pair hairpin
core sequence, with addition of one of the four permuta-
tions of Watson-Crick base-pairs that may exist at the
blunt end terminus, i.e., 5'-G•C-3', 5'-C•G-3', 5'-T•A-3',
and 5'-A•T-3'. Denoted 9GC, 9CG, 9TA, and 9AT, respec-
tively. The full sequence for the 9CG hairpin is 5' CTTC-
GAACGTTTTCGTTCGAAG 3', where the base-pairing
region is underlined. The eight base-pair DNA hairpin is
identical to the core nine base-pair subsequence, except
the terminal base-pair is 5'-G•C-3'. The prediction that
each hairpin would adopt one base-paired structure was
tested and confirmed using the DNA mfold server http://
bioinfo.math.rpi.edu/~mfold/dna/form1.cgi[47], which
is based in part on data from [35].

DNA hairpin design
Seven DNA molecules were designed to contain a CA/TG
dinucleotide at different positions along the DNA stem
(labeled CA_0 – CA_6). In the control molecule the stem
did not contain this base-pair, ignoring the CA at the loop
terminus, and based on crystallographic predictions the

stem was designed to be very rigid [32]. The DNA mole-
cules used for the experiments were designed with the aid
of the M-fold program [47]. Single stranded DNA
(ssDNA) molecules were obtained from IDTDNA as pow-
ders, resuspended in TE buffer at a 10 mM concentration
and stored at 4°C. The dsDNA molecules were obtained
by annealing the resuspended ssDNA molecules at the
required temperatures [35] and then were stored at the
same temperature as the ssDNA molecules for further
usage. The following ssDNA molecules were used to
obtain the dsDNA hairpin structures:

CA_0 5'-TTTTTTTTGTTTTCAAAAAAAA - 3'

CA_1 5'-TGTTTTTTGTTTTCAAAAAACA - 3'

CA_2 5'-TTGTTTTTGTTTTCAAAAACAA - 3'

CA_3 5'-TTTGTTTTGTTTTCAAAACAAA - 3'

CA_4 5'-TTTTGTTTGTTTTCAAACAAAA - 3'

CA_5 5'-TTTTTGTTGTTTTCAACAAAAA - 3'

CA_6 5'-TTTTTTGTGTTTTCACAAAAAA - 3'

Efforts are underway to slowly relax the restriction on number of mislabeled data points tolerated at each iteration of the external clustering algorithm, such that the conver-gence (clustering) process can be acceleratedFigure 11
Efforts are underway to slowly relax the restriction on 
number of mislabeled data points tolerated at each iteration 
of the external clustering algorithm, such that the conver-
gence (clustering) process can be accelerated. Here, misla-
beled data points are taken to be instances where one of the 
Karush-Kuhn-Tucker (KKT) conditions for a properly 
labeled data point is violated (a KKT violator). A slow tight-
ening in a parameter, sometimes in a dampened oscillatory 
manner, is an annealing process. As shown, zero KKT viola-
tor annealing is used to approximately halve the clustering 
time needed.
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parameters – with averages of the five test-runs used as rep-
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Data acquisition
Data is acquired and processed in two ways depending on
the experimental objectives. The first method uses com-
mercial software from Axon Instruments (Redwood City,
CA) to acquire data, where current will typically be filtered
at 50 kHz bandwidth using an analog low pass Bessel fil-

ter and recorded at 20 μs intervals using an Axopatch
200B amplifier (Axon Instruments, Foster City, CA) cou-
pled to an Axon Digidata 1200 digitizer. Applied potential
is 120 mV (trans side positive) unless otherwise noted. In
some experiments, semi-automated analysis of transition
level blockades, current, and duration are performed

Several channel current cheminformatics tools are available for use via web interfaces at http://logos.cs.uno.edu/~nano/Figure 12
Several channel current cheminformatics tools are available for use via web interfaces at http://logos.cs.uno.edu/~nano/. These 
tools include a variety of SVM interfaces for classification and clustering (binary and multiclass), and HMM tools for feature 
extraction and structure identification (with applications to both channel current cheminformatics and computational genom-
ics).
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using Clampex (Axon Instruments, Foster City, CA). The
second method uses LabView-based experimental auto-
mation. In this case, ionic current is also acquired using an
Axopatch 200B patch clamp amplifier (Axon Instruments,
Foster City, CA), but it is then recorded using a NI-MIO-
16E-4 National Instruments data acquisition card
(National Instruments, Austin TX). In the LabView for-
mat, data is low-pass filtered by the amplifier unit at 50
kHz, and recorded at 20 μs intervals. In both fixed duty
cycle (i.e., not feedback controlled) data acquisition
approaches, the solution sampling protocol uses periodic
reversal of the applied potential to accomplish the capture
and ejection of single biomolecules. The biomolecules
captured are typically added to the cis chamber in 20 μM
concentrations. The time-domain finite state automaton
(FSA, [48]) used in the prototype is used to perform the
generic signal identification/acquisition for the first 100
msec of blockade signal (Acquisition Stage, Figure 8). The
effective duty cycle for acquiring 100 ms blockade meas-
urements, when found to be sufficient for classification
purposes, is adjusted to approximately one reading every
0.4 seconds by choice of analyte concentration. Further
details on the voltage toggling protocol and the time-
domain FSA are in [42].

Channel Current Signal Analysis & Pattern Recognition
Signal Preprocessing Details
Each 100 ms signal acquired by the time-domain FSA con-
sists of a sequence of 5000 sub-blockade levels (with the
20 μs analog-to-digital sampling). Signal preprocessing is
then used for adaptive low-pass filtering. For the data sets
examined, the preprocessing is expected to permit com-
pression on the sample sequence from 5000 to 625 sam-
ples (later HMM processing then only required
construction of a dynamic programming table with 625
columns). The signal preprocessing makes use of an off-
line wavelet stationarity analysis (Off-line Wavelet Sta-
tionarity Analysis, Figure 8, also see [62]).

HMMs and Supervised Feature Extraction Details
With completion of preprocessing, an HMM [52] is used
to remove noise from the acquired signals, and to extract
features from them (Feature Extraction Stage, Figure 8).
The HMM is, initially, implemented with fifty states, cor-
responding to current blockades in 1% increments rang-
ing from 20% residual current to 69% residual current.
The HMM states, numbered 0 to 49, corresponded to the
50 different current blockade levels in the sequences that
are processed. The state emission parameters of the HMM
are initially set so that the state j, 0 <= j <= 49 correspond-
ing to level L = j+20, can emit all possible levels, with the
probability distribution over emitted levels set to a discre-
tized Gaussian with mean L and unit variance. All transi-
tions between states are possible, and initially are equally
likely. Each blockade signature is de-noised by 5 rounds of

Expectation-Maximization (EM) training on the parame-
ters of the HMM. After the EM iterations, 150 parameters
are extracted from the HMM. The 150 feature vector com-
ponents are extracted from parameterized emission prob-
abilities, a compressed representation of transition
probabilities, and use of a posteriori information deriving
from the Viterbi path solution (further details in [42]).
This information elucidates the blockade levels (states)
characteristic of a given molecule, and the occupation
probabilities for those levels, but doesn't directly provide
kinetic information. The resulting parameter vector, nor-
malized such that vector components sum to unity, is
used to represent the acquired signal during discrimina-
tion at the Support Vector Machine stages.

Kinetic Feature Extraction
Extraction of kinetic information was done in two ways
(with equivalent feature extractions). The initial method
applied begins with identification of the main blockade
levels for the various blockade classes (off-line HMM
analysis). This information is then used to scan through
already labeled (classified) blockade data, with projection
of the blockade levels onto the levels previously identified
(for that class of molecule). A time-domain FSA performs
the above scan, and uses the information obtained to tab-
ulate the lifetimes of the various blockade levels. Once the
lifetimes of the various levels are obtained, information
about a variety of kinetic properties is accessible. The com-
plication of this "brute force" approach is that the FSA
needed to extract kinetic features from the noisy, level-
projected, waveform requires careful tuning.

Emission Variance Amplification (EVA) Projection
In the context of an HMM implementation with a station-
ary set of emission and transition probabilities, emission
broadening via amplification of the emission state vari-
ances is a filtering heuristic that leads to a level-projection
that strongly preserves transition times between major
levels. In other words, emission variance amplification
(EVA) highly preserves the transition macro-structure
between the significant blockade levels. This provides
robust kinetic feature extraction with minimal tuning at
the FSA kinetic feature extraction stage.
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