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Abstract

Background: Mammalian antimicrobial peptides (AMPs) are effectors of the innate immune response. A multitude of
signals coming from pathways of mammalian pathogen/pattern recognition receptors and other proteins affect the
expression of AMP-coding genes (AMPcgs). For many AMPcgs the promoter elements and transcription factors that
control their tissue cell-specific expression have yet to be fully identified and characterized.

Results: Based upon the RIKEN full-length cDNA and public sequence data derived from human, mouse and rat, we
identified 178 candidate AMP transcripts derived from 61 genes belonging to 29 AMP families. However, only for 31
mouse genes belonging to 22 AMP families we were able to determine true orthologous relationships with 30 human
and |5 rat sequences. We screened the promoter regions of AMPcgs in the three species for motifs by an ab initio motif
finding method and analyzed the derived promoter characteristics. Promoter models were developed for alpha-
defensins, penk and zap AMP families. The results suggest a core set of transcription factors (TFs) that regulate the
transcription of AMPcg families in mouse, rat and human. The three most frequent core TFs groups include liver, nervous
system-specific and nuclear hormone receptors (NHRs). Out of 440 motifs analyzed, we found that three represent
potentially novel TF-binding motifs enriched in promoters of AMPcgs, while the other four motifs appear to be species-
specific.
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Conclusion: Our large-scale computational analysis of promoters of 22 families of AMPcgs across three mammalian
species suggests that their key transcriptional regulators are likely to be TFs of the liver-, nervous system-specific and
NHR groups. The computationally inferred promoter elements and potential TF binding motifs provide a rich resource
for targeted experimental validation of TF binding and signaling studies that aim at the regulation of mouse, rat or human

AMPcgs.

Background

Antimicrobial peptides (AMPs) comprise an important
component of the innate immune system in protecting
the host from microorganisms. Mammals produce many
different antimicrobial peptides that are active against a
broad spectrum of pathogens, including gram-positive
and gram-negative bacteria, protozoans, fungi and some
viruses [1]. The AMPs may either exhibit their antimicro-
bial activity directly as gene encoded products or after
processing from longer precursor proteins by proteolytic
cleavage. Many AMPs are also involved in functions that
are not directly associated with the innate immune
response. Under normal physiological conditions hepci-
din is an important regulator of iron homeostasis in the
liver and macrophages [2,3], but it can also acts as micro-
bicidal and fungicidal AMP [4]. Another AMP, the neu-
trophil granule derived peptide cap37, which binds to
gram-negative bacterial endotoxins, can also act as signal-
ing molecule causing the up-regulation of protein kinase
C activity [5].

Individual AMPs may have distinct functions in different
locations, for example at mucosal surfaces or in phago-
cytes, and must be differentially regulated depending on
the presence or absence of a pathogen challenge. AMPs
may also need to be expressed in a concerted manner.
Although AMPs are intensely studied on protein level [6-
8] data and progress on transcriptional control mecha-
nism of AMPs is limited to a few families such as beta-
defensins and cathelicidins [9,10]. Therefore, we aim in
this study at the computational identification of AMP pro-
moter elements (PEs), followed by the characterization of
commonalities and differences of PEs among AMPcg fam-
ilies within one species and across different species. Since
the study was conducted within the framework of the
FANTOMS3 [11,12] project, our sequence sources are
RIKEN mouse full-length c¢DNAs (flcDNAs). These
sequences were used to extract the promoter regions from
mouse alpha-defensin, apoa2, beta-defensin, bpi, spagl1,
cathelicidin, calgranulin, dbi, slpi, granulin, hepcidin,
histone2a, lactoferrin, lysozyme, mbp, melanotropin
alpha, proenkaphalin, secretogranin, spyy, vasostatin, vip
and zap AMPcg families and their human and rat
orthologs.

Results and Discussion

Extraction of AMPcgs and their promoter sequences

The initial steps of this AMPcg promoter study comprise
the identification of AMPcg cDNAs in the FANTOM3 data
set and their orthologous human or rat sequences. AMPcg
transcripts can be identified by keyword, gene ontology
term, motif or sequence similarity searches or combina-
tions thereof. Since the identification of AMPcg RIKEN
mouse flcDNAs started during the FANTOM3 annotation
when gene names and gene ontology were not yet stable,
we extracted candidate sequences using TBLASTN [13]
sequence similarity search against a set of known AMP
sequences (Fig. 1) [14]. Of 183 mouse candidates with
sequence identities equal or greater than 60% to known
AMPs over the length of 100 residues and with E-values of
0.01 or less, five were recognized as false positives by
checking their stable gene name and gene ontology anno-
tations. In total, we identified 178 AMPcg sequences.
When subtracting previously published FANTOM1 and 2
sequences we obtained 103 mouse AMPs members that
were new in FANTOM3. The sequences belonged to 28
families (alpha-defensin, alpha2casein, apoa2, beta-
defensin, spagl1, bpi, calgranulin, cathelicidin, catheps-
inG, dbi, slpi, enhancer of rudimentary homolog, granu-
lin, hepcidin, histone2a, IFN-inducible antiviral protein
Mx, lactoferrin, lysozyme, mbp, melanotropin alpha, ovo-
transferrin, proenkephalin 1, sap2, secretogranin, skiv2l,
spyy, vasostatin, vip and zap). The majority of new mouse
AMP-coding cDNAs were derived from macrophage, adi-
pocyte and testis cDNA libraries.

The definition of true orthology across species is difficult
in multigene families associated with innate immunity,
wherein gene duplication is a common feature of evolu-
tion. For example, we found that S100 (calgranulin) has
three human myeloid-associated family members
S100A8, A9 and A12, but only two (S100A8 and A9)
members in mice [15]. Similarly, we noticed that the
mouse AMP casein delta (csnd), defensin-related
sequence cryptidin peptide (Defcr-rs1), mast cell protease
family (mcpt2, mcpt4d, mcpt8), and histone2a
(Hist2h2aa2), did not have the corresponding family
members in human (Supplementary Table 1, Additonal
File 1). On the other hand, the Rnase A family member
Rnase 7 was found in human, but was absent in mouse.

Page 2 of 14

(page number not for citation purposes)



BMC Bioinformatics 2006, 7(Su

AMP DATA

GENBANK

Promoter sequences of
mouse, human and rat

AMP peptide
FANTOM
sequences MOUSE 1(1?:DNA
from ANTIMIC

database and

ppl 5):S8

TBLASTN

BLAST HITS SELECTED, MOUSE cDNA chosen

-

Corresponding orthologs from Human, Rat searched

-

Promoter regions extracted from PromoSer, FIE2, H-invitational
database (human), FANTOM3 (mouse)

f |

Ab-initio motif search DRAGOM MOTIF BUILDER

program

Motifs found by ab-initio

motif search
TRANSFAC DATABASE
Patch Program
Matched to — CREB ETS IRF-1
known TFBS
Promoter
medel
Y---------------------------—-: 1SS
S6]  — CREB W ETS eae— IRF-1 _r
seq2 CREB I ETS — IRF-1 _.r

Figure |

Distance between
adjacent motifs

TSS

Workflow of promoter sequence set preparation and analysis. AMP peptide sequences were collected from ANTI-
MIC and Genbank databases and searched with TBLASTN against FANTOM3 cDNA sequences applying a cut-off of equal or
greater than 60% identity. The promoter regions [-1000, +200 nt] of mouse AMPcg, human and rat orthologs were extracted
and submitted to Dragon Motif Builder (DMB) for ab initio motif searching. The resulting consensus motifs were passed to

TRANSFAC and compared witl

h known TFBSs using the PATCH program.

Page 3 of 14

(page number not for citation purposes)



BMC Bioinformatics 2006, 7(Suppl 5):S8

We restricted our analysis to mouse FANTOMS3, rat and
human sequence data because our approach aimed at
finding differences and similarities among mammalian
orthologs of mouse. Orthologs of mouse genes in frog,
fish or invertebrates are too distant for promoter analyses
and often lack accurate promoter sequence data. There-
fore we considered only a subset of bona fide orthologous
mouse, human and rat promoter sequences representing
only 22 out of 29 AMP families. Thirty-one promoter
region sequences were derived from mouse, 30 from
human orthologs and 15 from rat orthologs (Supplemen-
tary Table 2, Additional File 2). Mouse cryptidins were
included in the alpha-defensin family because they repre-
sent a subfamily of alpha-defensins [16].

Ab initio motif discovery in AMPcg promoter sequences

A commonly applied method for identifying motifs in
promoter regions of co-regulated genes utilizes predeter-
mined position-weight matrices for known TF binding
sites (TFBSs) of TRANSFAC [17], JASPAR [18] and other
databases. Another popular method for discovering
motifs enriched in co-regulated genes is biclustering of
genes and conditions [19]. In this study the ab initio motif
discovery method was used because it permits the
sequence context-dependent identification of both new
and known TFBS motifs. Although there are several ab ini-
tio motif discovery programs available [20], none of them
showed a distinct advantage over the others on all data
types. Therefore, we compared the performances of DMB
[21], an in-house developed program with two other pro-
grams, MEME [22] and Improbiser [23]. All three pro-
grams use ab initio motif discovery algorithms based on
expectation maximization. We used the promoter
sequences of the proenkephalin (penk) AMP group
(4922504009, HIX0007519.2, NM_017139), which has
been studied empirically in transfection assays. Penk pro-
moters are known to possess a TATA box and respond to
cyclic AMP, glucocorticoids and protein kinase C (AP1)
agonists [24,25]. Since Improbizer identified only six
motifs, we first considered the top six motifs produced by
each of these systems. Among the top six motifs, DMB-
reported three motifs (TATA, AP-2, AP-1) that may bind
TFs known to control the penk promoter [26,27]. MEME
reported one motif (TATA) and Improbiser two (NF-Y,
TATA) motifs. Since DMB and MEME can identify arbi-
trary number of motifs, we also compared the top 20
motifs generated by DMB and MEME. Seven DMB-derived
motifs coincided with known TFBSs (TATA, NF-kappaB,
AP-2, AP-1 NFI/CTF, NF-Y, MZF1, MIG1, MBP-1) [26,27]
known to control penk promoter. MEME vyielded only
three known penk promoter motifs (TATA, NFI/CTF, AP-
1). Considering the differences in performance and the
longer computation time of MEME we used DMB
throughout the entire analysis. The ab initio determined
known and new motifs and their distribution among

AMPcg families are shown in Supplementary Table 3,
Additional File 3 and in Table 1, respectively. Forty-one
(59%) out of 70 experimentally confirmed AMPcg family-
associated TFs may bind to predicted known DMB-
derived motifs (Supplementary Table 3, Additional File
3). For each AMP family, motifs were discovered that did
not match any of the known TRANSFAC-contained motifs
and were reported as "unknown motifs". Another set of
motifs matched to known TFBS but were previously not
reported to control AMPcgs. These new AMPcg-associated
candidates are shown in Table 1.

Over-represented TF binding motifs that are conserved
among AMPcg families

The transcriptional regulation of AMPcg families varies
from family to family because of the different tissue cell-
specific expression and AMP characteristics. Thus, one
would not expect that different AMPcg families show sig-
nificant similarities in their promoter element organiza-
tion. To test whether similarities exist and which TFs may
control more than one AMPcg family we searched for
shared AMPcg family motifs (see Methods). We found
eight shared motif groups among 94 motif instances that
present 31 mouse, 30 human and 15 rat AMP promoter
sequences (Supplementary Table 4, Additional File 4).
These results indicate the existence of a core TF set that
may be part of the transcription activation mechanism in
the examined AMPcg families of all three species.

Each of the motif families is represented by a consensus
motif obtained from all motif instances in that family. The
consensus motif AGGAAA is known to be recognized by
the TFs PEA3, c-Ets1, E74A, PU.1, LyF-1, c-Ets-2, ISGF-3,
NF-AT1, NF-AT2, NF-AT4 and DEAF-1. Consensus motifs
ACAGCA and ATGGAG are specific for GR and Nkx2-1,
respectively. Consensus motif CCCGCCCC corresponds
to binding site for TFs Sp1/Sp3. TGGCATT is recognized
by NF-1.

The four consensus motifs found in mouse, rat and
human corresponded to published and experimentally
confirmed AMPcg-associated TFs. The GR transcription
factor motif ACAGCA was conserved among 32 genes of
ten different AMPcg families in mouse, rat and human.
PEA3, c-Ets1, PU.1, LyF-1, c-Ets-2, NF-AT1, NF-AT2 and
NF-AT4-specific motif AGGAAA was observed in 34 genes
belonging to 11 AMPcg families. Sp1 and Sp3-specifc
motif CCCGCCCC appeared in 15 genes derived from six
AMPcg families. NF-1 motif TGGCATT was present in 36
genes of nine AMPcg families (see Supplementary Table 4,
Additional File 4). Consensus motif CCAGGG was
observed in 24 genes of eight AMPcg families; ACCTGG
was present in 28 genes of seven AMPcg families; TCTTTC
motif occurred in 26 genes of nine AMPcg families. These
findings imply the presence of common PEs that may

Page 4 of 14

(page number not for citation purposes)



BMC Bioinformatics 2006, 7(Suppl 5):S8

Table I: Total number of motifs found in each AMP family

AMP family New AMPcg- associated TFs Unknown motifs Total
Alpha-defensin 73 3 77
Apoa2 36 6 42
BPI 113 4 120
Beta-defensin 78 8 89
Spagl | 75 3 78
Calgranulin 162 4 166
Cathelicidin 75 3 8l
DBl 53 | 59
Granulin 67 3 70
Hepcidin 59 3 63
Histone 2A 83 12 97
Lactoferrin 46 4 52
Lysozyme 30 9 41
MBP 67 2 70
Melanotropin alpha 8l | 84
Proenkaphalin| 54 3 85
SPYY 58 5 63
Secretogranin | 31 6 39
Slpi 94 5 101
VIP 54 3 60
Vasostatin 19 9 30
ZAP 77 5 82

form part of a core transcription initiation control pro-
gram for AMPcg families.

Another four motifs appeared to be species or lineage-spe-
cific in the context of regulation of individual AMPcg
familes, but we cannot draw general conclusion on this
issue due to the limited dataset. For example, the motif
AGGAAA occurred only in three rodent genes of the lys-
ozyme family, but not present in the human. CCAGGG
was absent in genes of the human Spagll family.
TGGCATT motif was absent in human genes of the Apoa2
and Spyy families. CCCGCCCC was not found in mouse
genes of the Apoa2 family (see Supplementary Table 4,
Additional File 4). Similar species-specific differences
were reported for the promoter of mouse and human Toll-
like receptor 3 and its expression pattern [28]. Since our
observations were made for the region of [-1000, +200]
nucleotides (nt) of the promoters we cannot exclude the
possibility of AMPcg regulation by different promoter
regions in mouse and human. Due to lack of sufficient
data on microbial context, signaling pathways and TF
binding-data on AMPs, it remains to be seen whether
these disparities reflect an exposure to a different micro-
bial environment or physiological differences. Despite the
differences in functions of AMPcg families and tissue cell-
specific expression, their promoters share a number of
common known and new motifs (see Supplementary
Table 4, Additional File 4). Among the new motifs are
CCAGGG, ACCTGG and TCTTTC that did not match to
any known TFBS in TRANSFAC and JASPER databases.
Only in yeast the motif TCTTTC was shown to be associ-

ated in a ChIP experiment with cell cycle specific tran-
scription factor Spf1 [29]. Whether the new motifs are cis-
elements that interact with unknown or known mouse
TFs remains to be established in experiments.

TF groups that are significantly associated with AMPcg
families

To determine TF groups that are significantly associated
with AMPcg families, we analyzed the TF binding motifs
and the distribution of the corresponding TFs across the
22 AMPcg families. The AMPcg-associated TFs were
grouped into ten tissue-specific categories (adipocyte-
related, immune cell-specific, liver cell-specific, lung cell-
specific, muscle cell-specific, nervous system-related, pan-
creatic beta cell-specific, pituitary gland-specific, eye-spe-
cific, and bone/teeth) and two general categories of cell-
cycle specific TFs and nuclear hormone receptors (NHRs).
Table 2 and Supplementary Table 5A, Additional File 5
show the distribution of motifs identified by DMB across
all AMP families.

For each of the AMPcg family only the top two-ranked TF
categories were taken into account. The ranking was based
on the proportion of motifs that potentially bind TFs of a
specific TF group in any AMPcg family. We considered
cases when TF-binding motifs associated with a particular
TF group occurred in 25%, 30%, 35% or 40% of all motifs
observed in the AMPcg family. Three TF categories (liver-
specific, neuron system specificc NHR) appeared to be
either the first or second ranked in three out of four con-
sidered cases (25%, 30%, 35% or 40%), and these TF cat-
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Table 2: Distribution of different tissue/function-specific TF groups among AMP families

Tissue/function-specific TF groups

Cut-Off [%]

AD NHR CC IMM LIV
Total no. of motifs 131 139 97 122 141
No. of AMPcg families 17 18 8 14 19
14 12 7 Il 14

8 11 3 6 10

4 7 3 4 3

LUNG MUS NS PAN PIT  EYE BS
122 78 143 77 74 | 12
16 4 17 5 5 0 0 25
10 4 15 3 2 0 0 30
5 2 11 2 | 0 0 35
4 | 9 0 0 0 0 40

Tissue/function-specific TF groups are AD: adipocyte-related TFs; NHR: nuclear hormone receptor TFs; CC: cell cycle-related TFs; IMM: immune
cell-specific TFs; LIV: liver cell-specific TFs; LUNG: lung cell-specific TFs; MUS: muscle cell-specific TFs; NS: nervous system-related TFs; PAN:
pancreatic B-cell related; PIT: pituitary gland-specific TFs; Eye: eye-specific TFs; BS: bone-specific TFs. TF that groups (AD, NHR etc.) occur with
highest frequency among AMP families are underlined. Cut-off indicates the minimum percentage of motifs in a TF family that can bind TFs from a

particular tissue/function-specific group.

egories also represent the top ranked ones, overall. The
results are summarized in Supplementary Table 5B, Addi-
tional File 5.

When considering the rank position of a particular TF
group in individual AMPcg families, six TF categories
emerge as dominant categories (Supplement Table 5B,
Additional File 5). These are, in order, liver-specific, neu-
ron system-specific, adipocyte-specificc, NHR, immune
cell-specific and lung-specific TFs. This ranking is
obtained by using the average rank position of the TF
group in each of the AMPcg family. The ranking of the TFs
suggests that the functions of AMPs extend far beyond
antimicrobial actions as mediators in energy metabolism
and neuroendocrine regulations. The finding is reminis-
cent of the multi-functionality of cytokines (i.e. IL6, TNF-
alpha, MIF etc.) in adipocytes, liver and immune cells dur-
ing metabolic challenges and stress [30,31].

Several groups reported on the role of dihydroxyvitamin
D3 [32] and glucocorticoids [33,34] in the transcription
regulation of AMPcgs. Since these studies focused only on
a few NHR members and few AMPcg families, the appear-
ance of NHRs in the top-ranked TF groups among many
AMPcg families was unexpected. NHR family proteins
function as dimeric molecules in the nucleus to regulate
the transcription of target genes in a ligand-responsive
manner [35,36]. If we require that at least 35% (seven out
of 20) of the identified motifs for each of the AMPcg fam-
ilies can bind TFs from a particular group, NHR and neu-
ron system specific TFs appear in eleven (alpha-defensin,
lactoferrin, hepcidin, spagll, zap, dbi, cathelicidin,
proenkaphalin, mbp, slpi, bpi) out of 22 AMPcg families.
The statistical significance of NHR-related motif enrich-
ment in this group is based on the Bonferroni corrected p-
value obtained from the right-sided Fisher's exact test
(corrected p-value = 1.237e-003) with the null-hypothesis
that there is no enrichment of NHR. The second to fourth
ranked groups include liver-specific TFs (ten families),

adipocyte-specific TFs (eight families) and immune cell-
specific TFs (five families).

Our computational study identified VDR as a potential
controller of AMPcgs, but implied also other known, as
well as new NHR candidates (Supplementary Table 6,
Additional File 6). The computational methods we used
produced a broader spectrum of AMP-regulating candi-
dates than gene expression assays [32]. Therefore our
study suggests that the influence of NHRs extends across
multiple AMPcg families and beyond those already
reported (Supplementary Table 3, Additional File 3).

Other TFs and their potential role in AMPs

We also found several TFs that were frequently associated
with genes of the 22 AMPcg families (Supplementary
Table 6, Additional File 6). The binding motif for Sp1, an
ubiquitous TF is enriched in the numerous GC-rich
housekeeping gene promoters, but also contributes to tis-
sue-specific transcription. For example, the Sp1 motif was
detected in the promoters and enhancers of genes
expressed in hematopoietic and epithelial cells where it
appears to cooperate with lineage-restricted factors in
directing their expression [37].

Meisla and Meis1b isoforms are homeoproteins related
to the pre-B cell transformation protein family. Meis1a is
implicated in the myelopoesis [38] leading to the
basophil, neutrophil and eosinophil granulocytes. We
detected both Meisla and Meis1b binding sites in mem-
bers of the apoa2, calgranulin, slpi, granulin, secre-
togranin, mbp, vip, lysozyme AMPcg families, suggesting
a granulocyte-specific transcriptional control function.
Calvo and co-workers [38] showed that Meisla sup-
pressed the G-CSF-induced transcription of neutrophil
differentiation-specific genes cytochrome b-245 beta,
lactoferrin, early growth response-1, neutrophil gelatinase
B, and lipopolysaccharide receptor CD14. The unique C-
terminus of Meis1a which was shown to specifically medi-
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ate protein kinase A and trichostatin activation [39] pro-
vides additional support for the functional differences of
Meisla and Meislb. Meisla in combination with other
neutrophil-specific TFs (i.e. STAT1, STAT6 and NF-kappa
B) may play an important role in the recruitment and acti-
vation of neutrophils seen in sepsis and Helicobacter pylori
infection-induced iron-deficiency [40,41]. Interestingly,
hepcidin, which inhibits iron absorption from the small
intestine during infection-induced inflammation, lacks
Meis1, suggesting the induction of multiple alternative
transcriptional regulation mechanisms during microbial
pathogenesis.

Promoter content of alpha-defensin, penk and zap families
For alpha-defensins, penk and zap family members we
studied the predicted PEs and their positional arrange-
ments in orthologs in detail to address questions of spatial
differences in expression. In case of alpha-defensins and
Penk, experimentally identified PEs were used to assess
and interpret the predictions. For the zap family promot-
ers with scarce experimental data our computational
models suggested a co-involvement of Zap, NHRs and
metal regulatory transcriptional control in innate immu-
nity and oxidative stress.

Alpha-defensin promoter model

Alpha-defensins are specific to mammals [42]. Gene
duplication events probably led to both species-specific
and functionally diverse subsets of alpha-defensins which
should be also reflected in the upstream regulatory
regions. For example, enteric-expressed defensins are
important to the barrier function of the gut mucosal sur-
face against bacteria, whereas myeloid and neutrophil-
specific defensins help macrophages and neutrophils to
kill internalized bacteria [43].

We were interested to investigate how the promoter con-
tent of rat, mouse and human alpha-defensins correlates
with the enteric and myeloid/neutrophil cell expression.
Human Defa3, chimpanzee Defa4, mouse Defal and rat
Defa represent the myeloid-specific alpha-defensins that
share the motif arrangement (17-1-18) in their promoter
sequences (Fig. 2). The motif arrangement 17-1-18 means
that we found motifs 17, 1 and 18 in this order in the
examined promoters. Mouse defcr20, defcr2, rat defcr4,
human and chimpanzee defa5 which share the motif
organization 17-10-7 belong to the enteric-expressed
group of alpha-defensins. Only motif 17 (GMASTTCTKT)
which contains putative binding sites for IRF-1, IRF-3, NF-
AT1, NF-AT2, NF-AT3 or NF-AT4 transcription factors
occured in both categories (Supplementary Table 7, Addi-
tional File 7). Whether the motif is essential for the activa-
tion of alpha-defensin expression remains to be tested
experimentally.

Interestingly, our comparison revealed also motif combi-
nations that are common among myeloid and enteric
defensins but largely different between rodents and pri-
mates. The rat defa and enteric-expressed mouse defcr2
promoter regions share the motifs 20 (AR PXR-1:RXR-
alpha) - 7 (POU1F1a, POU2F1) - 4 (RAR-alphal, RXR-
alpha) (20-7-4) arrangement (Fig. 2, Supplementary
Table 7, Additional File 7). In contrast, the primate mye-
loid-expressed (Hosa_DEFA4, Patr_DEFA4,
Hosa_DEFA3) and enteric-expressed (Hosa_DEFA5 and
Patr_DEFA5) alpha defensins share the motif organiza-
tion (20-10-11-19).

Some AMP families such as defensins contain members
that arose by gene duplication. Assuming differences in
the promoter regions of recently duplicated defensins ver-
sus ancestral defensins we compared the upstream
sequences (1000 nt) of four rat alpha defensins Defcr4,
Defa6, Defa8 and Defa9. The latter three defensin genes
are thought to be the result of gene duplications, while
Defcrd represents an ancestral alpha defensin [40]. We
identified seven motifs (5, 6, 8, 10, 12, 15 and 20) that
were common to Defa6, Defa8, Defa9 but not shared with
Defcr4. On the other hand, motifs 1, 2,3, 7, 9, 11, 13, 14,
16, 17, 18, 19 were identified in all four rat promoters.
Fig. 3 and Supplementary Table 8, Additional File 8 show
the distribution of the motifs across the rat promoter
sequences and the corresponding TFBSs.

Penk promoter model

PenkA is a neuropeptide-encoding gene which is prima-
rily expressed in tissue cells of the mature nervous and
neuroendocrine systems, the epididymis and in normal
and activated lymphocytes [44]. Cleavage of PenkA results
in the antibacterial peptide Enkelytin which is active
against gram-positive bacteria for example, Staphylococcus
aureus [45]. Penk-derived peptides have immunomodula-
tory properties ranging from increased natural killer cell
cytotoxicity and monocyte chemotaxis to involvement in
delayed-type hypersensitivity [44,46]. Our computational
analysis of the promoter regions can provide some clues
towards identifying PEs that confer the differences in
immune and nervous tissue cell-specific expression.

The penk family promoter model derived from motifs
(Supplementary Table 9A, Additional File 9) detected in
mouse rat and human promoter sequences constitutes a
single, conserved motif arrangement 3-5-1-13 (Fig. 4 and
Supplementary Table 9B, Additional File 9). The candi-
date TFs (GR, AR (motif3), NF-kappaB, AP-2 (motif5),
RXR-alpha, LXR-alpha, ERRalphal (motif 1)and DSF,
GCN4, COUP-TF1, RAR-beta, RXR-alpha, RAR-alphal,
TLX, Pax-2.1 (motif 13) that may bind these motifs are
probably necessary for expression but not sufficient to
confer differential spatial expression. For instance, the
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The TSS is indicated by an arrow. The graphical representation of the motifs is not drawn to scale. The species abbreviations
are Rano: Rattus norvegicus, Mumu: Mus musculus; Patr: Pan troglodytes; Hosa: Homo sapiens.

expression of penk in the epididymis is regulated by tes-
ticular factors that control expression via members of the
Ets transcription family [47]. Motif 7 contains submotifs
identical to binding sites of the Ets family transcription
factors c-Ets1, Elk-1, SAP-1a, SAP-1b, PEA3 and ELF-1. In
analogy, motif 12 contains binding sites for USF family
transcription factors which contribute to the transcrip-
tional regulation of calcium-inducible neuronal genes
[48,49].

Zap promoter model

The CCCH-type zinc finger protein family member Zap
acts as an antiviral protein against Sindbis and Moloney
murine leukemia virus [50]. Its antiviral activity is medi-
ated through the disruption of viral messenger RNAs in
the cytoplasm without affecting the levels of nuclear
mRNA [51]. The Zap promoter region contains twenty
motifs (Fig. 5 and Supplementary Table 10A, Additional

File 10) including eight potential NHR binding motifs (1,
2,5,6,8,9 and 14). The motif organization 1-11-15-8-10-
20 is conserved (Fig. 5 and Supplementary Table 10B,
Additional File 10) and potentially associated with two
unknown TFs (motifs 10 and 15), Alfinl, RXR-alpha,
VDR, E12, E47, MyoD, myogenin, EMF1, EMF2, EMF3,
EMF4, Myf-5, c-Myc, USF2, CAN, E2A, DEP2, HEB, Ac, AS-
C T3, Da, Sc¢, Sn, CLIM2, GATA-1, Lmo2, Tal-1, USF-1,
NeuroD, NEUROD, LVa, PR B, AR, GR, c-Ets-2, ESE-1,
HELIOS, LyF-1 (motifl), NF-1, TGGCA-binding protein
(motifi1), LyF-1, RXR-beta, VDR (motif8) and MTF-1
(motif20). The presence of NF-1 TFBS in both penk and
zap families, suggests that transcripts of these families
might be induced by steroid hormones that interact with
NF-1 [52]. Zap expression levels in liver and kidney are
high. The presence of a putative binding site for metal-reg-
ulatory transcription factor MTF-1, which is also expressed
in liver and kidney, suggests a regulatory role of Zap in
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Figure 3

Motif composition in the alpha defensin promoter regions of rat Defcr4, Defaé, Defa8 and Defa9. Defa8 and
Defa9 are the result of recent gene duplications events while Defcr4 is an ancient alpha defensin. The black line connecting the
boxes denotes the 1200 nt promoter region. The TSS is indicated by an arrow. The graphical representation of the motifs is

not drawn to scale.
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heavy metal load, oxidative stress, hypoxia and innate
immunity [53,54].

Suggested future experiments

Our analysis generated a number of hypotheses that are in
good concordance with some of the existing knowledge in
the field. However, the computationally-inferred hypoth-
eses can only be tested in experiments. For example,
microarray technology combined with chromatin immu-
noprecipitation (ChIP) profiling [55] can be used to iden-
tify all the chromosomal locations that are occupied by a
transcription factor. These experiments are expected to
clarify which promoters and TFs are specific for certain tis-
sue cells and how many AMPcgs are regulated by a TF, TF
pairs or multiple TFs. Eventually, the combination of both
computational and experimental approaches should per-
mit us to construct mechanistic models of AMPcg regula-
tory transcription networks.

Conclusion

The large-scale computational analysis of promoters
derived from 22 families of AMPcgs across three mamma-
lian species has allowed us to identify potential key tran-
scription elements of these families. We have analyzed |-
1000, +200] promoter regions and it is likely that we may
have missed out regulatory elements farther upstream that
might be important in the fine-tuning of the regulation of

MOUSE_Zc3havl] 1 1

particular families of AMPcg. Our analysis showed that
TFs of the liver-, nervous system- specific and NHR groups
were overrepresented in promoters of AMPcg families.
These TF groups consist of transcription regulators that are
involved in diverse physiological functions, including the
control of embryonic development, cell differentiation
and homeostasis, but also in immune response. Interest-
ingly, NHRs were more prominent than immune cell-spe-
cific TFs in the analyzed AMPcg families. Experimental
evidence showed the involvement of NHRs in various
immunomodulatory pathways [56-58]. However little is
known about their direct involvement in innate immu-
nity. Recently, there has been evidence that VDR plays a
direct role in the induction of antimicrobial innate
immune response [59]. The results of the computational
analysis which took a bird's eye view of the transcriptional
regulators involved in multiple AMPcg families, concur
with this evidence and revealed a number nuclear hor-
mone receptor as candidates. For example, GR, RXR-
alpha, AR, VDR and T3R-alpha, seem to be involved in
control of 20, 18, 17, 16 and 15 families respectively, out
of 22 analyzed. In addition we discovered 102 new motifs
as candidate TFBS with a role in antimicrobial innate
immunity. The actual experimental confirmation of the
AMPcg transcription regulatory elements can only be
accomplished by targeted research of infection or cellular
stress models using time-course sampled tissue cell types.

HUMAN_ZC3HAV __ [ 11 I 15 IL _| 8 ll | 10 | I 20 ‘{
RAT_Zap 1 1 I 15 I 8 10 20
Figure 5

Conserved Zap motif organization in mouse, human and rat. The numbers (i.e. 1) and colors refer to different motifs.
The black line connecting the boxes denotes the 1200 nt promoter region. The TSS is indicated by an arrow. The graphical

representation of the motifs is not drawn to scale.
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Methods

The overall methodology is schematically depicted in Fig.
1. AMP sequences were extracted from the ANTIMIC data-
base [8,60] that contains 1439 non-redundant AMPs and
GenBank [61]. We used TBLASTN [13] with BLOSUM45
matrix to search 102,801 flcDNAs of the FANTOM collec-
tion [11] (FANTOM1+2 (60,770) plus FANTOM3
(42,031)) against AMP protein sequences of ANTIMIC.
Since TBLASTN translates the query sequence into six pos-
sible open-reading frames, cDNAs with short CDS below
the protein-coding annotation threshold can be captured.
Of 183 mouse translated flcDNAs with sequence identi-
ties equal or greater than 60% to known AMPs over the
length of 100 residues and with E-value of 0.01 or less,
five were identified as false positives by checking their sta-
ble gene name and gene ontology annotations. Less strin-
gent threshold settings (i.e. 50% or 55%) applied to a test
set of cathelicidins, alpha and beta defenins resulted in to
too many false positives (data not shown) without gain-
ing any new AMPcg candidates among the FANTOM
sequence set.

Extraction of promoter regions

The mouse flcDNA were annotated with their official gene
names and symbols, associated representative cDNAs,
chromosomal localization information, TUID (transcrip-
tional unit ID) and CAGE TSS (transcription start site
information based on CAGE tags) [6]. We then deter-
mined for the AMP-coding mouse flcDNAs the human
and rat orthologs using HomoloGene [61] and Entrez
Gene [62]. In our analysis we did not include all the mem-
bers of a particular AMP family but only those members
that were captured in BLAST searches against the
FANTOM3 mouse cDNAs. In addition, each of these
ortholog groups was manually checked for synteny. The
promoter regions of the orthologs in human and rat were
extracted using PromoSer [63,64] and FIE2 [65,66] pro-
grams, as well as H-Invitational database [67]. All three
resources provided estimated transcription start site (TSS)
locations based on mapping EST and flcDNA sequences to
genomic sequences. The extracted mouse, human and rat
promoter regions covered [-1000, +200] relative to the
estimated transcription start site location. In the case of
multiple TSS locations in human and rat sequences we
extracted the most 5' one. The TSS location of mouse
sequences was determined by using the start position of
the first exon of the FANTOM cDNA-genome mapping
data [68]. Mouse promoter sequences [-1000, +200] were
then extracted by mapping the TSS location to the mouse
genome assembly from the UCSC Genome Browser [69].
Our final dataset contained 77 mouse, rat and human
promoters. Only seven mouse sequences had associated
CAGE tag information (Supplementary Table 2, Addi-
tional File 2). Therefore, we estimated the TSS location for
all sequences based on the 5'end of the flcDNA data. For

histone2a genes we extracted a region of [-200, +100] rel-
ative to the TSS because these genes appeared to have bidi-
rectional promoters within 200 nucleotides (nt) of the
TSS.

Motif search

The promoter sequences were submitted to the Dragon
Motif Builder (DMB) program [21,70] for ab initio motif
finding. The Expectation Maximization (EM) threshold
was set to 0.85 for all families that lacked experimentally
confirmed TF binding sites (TFBSs) in their promoters.
One should note that there is no rule about what is the
optimal threshold. In fact, the optimal threshold is likely
to be different for different promoter sets. Thus, we used
the somewhat arbitrary threshold of 0.85 because it
resulted in relatively specific matrix families. Since the
algorithm is heuristic, different thresholds usually pro-
duce different results. In the cases of known functional
TFBSs for a AMpcg family we used two different thresh-
olds (0.85, 0.75) and selected the one that fitted better to
the experimentally confirmed TFBSs. The program was set
to search for 20 motif families, with motifs of length 10 to
15 nt within each of the 22 AMPcg families. In total we
identified 440 motif families. In the case of histone2a
family we chose a shorter motif length of 8-12 nt because
the promoter length of histone2a family was shorter than
for the other families. After DMB identified the sequence
motifs, we used the Patch program (mismatch = 0; motif
length = 6; species =all) [17] of TRANSFAC professional
database ver. 8.4 to infer potential transcription factors
(TFs) that may bind to motifs of these families. Promoter
models were created from motifs that were conserved
among all promoter sequences of the analyzed AMPcg
family.

To find motif families that are common across multiple
AMPcg families, we combined all 440 motifs and searched
the most commonly found sub-motif families in them.
We used the DMB program and searched for motifs of 6-
8 nt length. The reduction of motif length did not cause
over-prediction of motifs since the search was restricted to
sequences of the previously identified motifs of length
10-15 nt. Potential motif-binding TFs were identified by
the Patch program as already described. It was possible to
extract common motifs in different AMPcg families using
simultaneously promoters from all families. However,
this would bias the result as it will 'enforce' finding com-
mon motifs. We adopted a less biased strategy of identify-
ing the motifs independently for each family and then
identifying commonalities across various AMPcg families.

In case of the penk family, we used three programs DMB,
MEME [22,71] and Improbiser [23] to search for motifs of
10-15 nt length. All three programs utilize the EM algo-
rithm. Improbiser can identify a maximum of six motif
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families. For MEME and DMB we identified 20 motif fam-
ilies and selected the top six families based on e-value.
This threshold setting allowed us to obtain comparable
results from three different programs and to select the
most appropriate one for our data analyses. The motifs
were then compared with TRANSFAC database entries to
obtain TFs that can potentially bind to these motifs.

Generation of motif models

We searched for all possible combinations of motifs that
were present in identical strand-orientation and order and
constrained by a defined range of distances between the
motifs for a given set of promoter sequences. A Perl pro-
gram was used to extract the motif arrangement models
from the graphic motif representation file generated by
DMB. This program requires as user input the maximum
allowed distance between two successive motifs expressed
as percentage of the total promoter length and a numeric
value for the minimum number of motifs. Promoter mod-
els that contained motifs within the specified constraints
were selected. If more than one model was possible the
model with the maximum number of motifs was selected.
If some of the multiple possible models contained motifs
that corresponded to experimentally proven TFBSs for the
considered AMP gene family, then these models were
selected. The minimum number of motifs per model was
set to three. The distance constraint was tested for the
interval of 1%-30% of the total promoter length (1200
nt). It was observed that promoter models having three or
more motifs could be generated with distance percentages
of 20% to 30%. This distance percentage appeared to be
suitable for the promoter length of 1200 nt that we used.
Hence, the distance between two adjacent motifs in a pro-
moter model ranges between one to 240 nt or up to 300
nt. The motif combinations that appeared common across
all promoters of a given AMP family were chosen as can-
didates for scanning the promoter dataset.

Statistical significance of potential NHR-binding motifs

Since we observed that many AMPcg families have in their
promoters a significant proportion of motifs that poten-
tially bind NHRs, we focussed on finding out what group
of AMPcg families is the most enriched in such motifs,
and to see if this enrichment is statistically significant.
This is a non-trivial problem for example, it is obvious
that only collections of the AMPcg families that are most
enriched in these motifs should appear in the group.
However, we do not know how much they should be
enriched individually to become members of that group.
In addition, the enrichment of individual AMPcg families
in these motifs could be statistically insignificant, but still
the group of families could have statistically significant
enrichment. Also, even if we find the most enriched
group, there is no guarantee that the enrichment will be
statistically significant. To solve the problem we applied

the following procedure. All families were sorted by the
number of motifs that may bind NHR. Then we split
AMPcg families into two groups A and B. In group B we
included the family that had the least number of such
motifs. The remaining families were placed in group A.
We calculated the p-value for the enrichment in motifs
that may bind NHR. The p-value was determined using
the hypergeometric distribution and the right-side Fisher's
exact test and was corrected by the Bonferroni method for
the 440 tests (this is the number of motifs families identi-
fied; 20 motif families for each of the 22 AMPcg families).
We then excluded from group A the AMPcg family with
the next least number of target motifs and added that fam-
ily to group B. We repeated the calculation of the p-value.
The process of eliminating AMPcg families from group A
is repeated until A contained the last of the 22 AMPcg fam-
ilies. Based on the 21 p-values calculated this way (Sup-
plementary Table 11, Additional File 11), we determined
the one with the smallest value, 2.81167E-06 (Bonferroni
corrected value = 0.001237134) which belongs to the
group of 11 NHR binding motif enriched AMPcg families.
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