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Abstract
Background: Predicting protein residue-residue contacts is an important 2D prediction task. It is
useful for ab initio structure prediction and understanding protein folding. In spite of steady
progress over the past decade, contact prediction remains still largely unsolved.

Results: Here we develop a new contact map predictor (SVMcon) that uses support vector
machines to predict medium- and long-range contacts. SVMcon integrates profiles, secondary
structure, relative solvent accessibility, contact potentials, and other useful features. On the same
test data set, SVMcon's accuracy is 4% higher than the latest version of the CMAPpro contact map
predictor. SVMcon recently participated in the seventh edition of the Critical Assessment of
Techniques for Protein Structure Prediction (CASP7) experiment and was evaluated along with
seven other contact map predictors. SVMcon was ranked as one of the top predictors, yielding the
second best coverage and accuracy for contacts with sequence separation >= 12 on 13 de novo
domains.

Conclusion: We describe SVMcon, a new contact map predictor that uses SVMs and a large set
of informative features. SVMcon yields good performance on medium- to long-range contact
predictions and can be modularly incorporated into a structure prediction pipeline.

Background
Predicting protein inter-residue contacts is an important
2D structure prediction problem [1]. Contact prediction
can help improve analogous fold recognition [2,3] and ab
initio 3D structure prediction [4]. Several algorithms for
reconstructing 3D structure from contacts have been
developed in both the structure prediction and determina-
tion (NMR) literature [5-8]. Contact map prediction is
also useful for inferring protein folding rates and path-
ways [9,10].

Due to its importance, contact prediction has received
considerable attention over the last decade. For instance,
contact prediction methods have been evaluated in the
fifth, sixth, and seventh editions of the Critical Assessment
of Techniques for Protein Structure Prediction (CASP)
experiment [11-15]. A number of different methods for
predicting contacts have been developed. These methods
can be classified roughly into two non-exclusive catego-
ries: (1) statistical correlated mutations approaches [16-
22]; and (2) machine learning approaches [23-34]. The
former uses correlated mutations of residues to predict
contacts. The latter uses machine learning methods such
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as neural networks, self organizing map, hidden Markov
models, and support vector machines to predict 2D con-
tacts from the primary sequence, as well as other 1D fea-
tures such as relative solvent accessibility and secondary
structure.

In spite of steady progress, contact map prediction
remains however a largely unsolved challenge. Here we
describe a method that uses support vector machines
together with a large set of informative features to
improve contact map prediction. On the same data set,
SVMcon outperforms the latest version of the CMAPpro
contact map predictor [28,35] and is ranked as one of the
top predictors in the blind and independent CASP7 exper-
iment.

Results and Discussion
We first compare SVMcon with the latest version of
CMAPpro on the same benchmark dataset. Then we
describe the performance of SVMcon along with several
other predictors during the CASP7 experiment.

Comparison with CMAPpro on the same Benchmark
SVMcon is trained to predict medium- to long-range con-
tacts (sequence separation >= 6) as in [36], which are not
captured by local secondary structure. We train SVMcon
on the same dataset used to train CMAPpro [28,35] and
test both programs on the same test dataset. The training
dataset contains 485 proteins and the test dataset contains
48 proteins. The sequence identity between the training
and testing datasets is below 25%, a common threshold
for ab initio prediction [36].

We use sensitivity and specificity to evaluate the perform-
ance of SVMcon and CMAPpro. Sensitivity is the percent-
age of native contacts that are predicted to be contacts.
Specificity is the percentage of predicted contacts that are
present in the native structure. The contact threshold is set
at 8 Å between Ca atoms. The sensitivity and specificity of
a predictor depend also on the threshold used to separate
'contact' from 'non-contact' predictions. To compare
SVMcon and CMAPpro fairly, we choose to evaluate them
at their break-even point, where sensitivity is equal to spe-
cificity as in [37]. At the break-even point, the sensitivity
and specificity of SVMcon is 27.1%, 4% higher than
CMAPpro. Thus on the same benchmark dataset, SVMcon
yields a sizable improvement.

We also compare the accuracy of SVMcon with the ran-
dom uniform baseline algorithm consisting of random
independent coin flips to decide whether each residue
pair is in contact or not. Since the medium-and long-range
contacts account for 2.8% of the total number of residue
pairs with linear separation >= 6, the probability for the
coin to produce a contact is set to 2.8%. As a result, the

sensitivity and specificity of the random baseline algo-
rithm is 2.8% at the break-even point. Thus SVMcon
yields a nine-fold improvement over the random base-
line.

Since the contact prediction accuracy varies significantly
with individual proteins and their structure classes [29],
we calculate the contact prediction specificity (or called
accuracy) and sensitivity (or called coverage) for each test
protein (Table 1). For each one, we select up to L (protein
length) predicted contacts ranked by SVM scores because
the total number of true contacts is approximately linear
to the protein length [24]. The results show that in many
cases (e.g. 1QJPA, 1DZOA, 1MAIA, 1LSRA, 1F4PA,
1MSCA, 1IG5A, 1ELRA, 1J75A), the prediction accuracy
and coverage are > 30%.

However, for some proteins such as 1SKNP, the predic-
tion accuracy is pretty low. We observe that the contact
prediction accuracy is related to the the quality of multiple
sequence alignment, the prediction accuracy of secondary
structure, and the proportion of beta-sheets. Consistent
with previous research [29,37], the contacts within beta-
sheets in beta, alpha+beta, and alpha/beta proteins are
predicted with higher accuracy than the contacts between
an alpha helix and a beta strand or between alpha helices.
We think that the strong restraints between beta-strands
such as hydrogen-bonding probably contribute to the
improved accuracy.

Figures 1 and 2 show the native 3D structure and the pre-
dicted contact map of a good example (protein 1DZOA),
respectively. In this case, 2L (240) predicted contacts with
sequence separation >= 6 are selected. The contact predic-
tion accuracy and coverage are 39.2% and 42.5%, respec-
tively. It is shown that the predicted contact clusters
(Figure 2) recall most native beta-sheet pairing patterns of
the protein (Figure 1). And it is interesting to see most
false positive contacts are also clustered around the true
contacts. Thus, these noise may not be very harmful dur-
ing the process of reconstructing protein structure from
the contacts.

Furthermore, to investigate the relationship between the
SVM contact map predictions and the structure classes, we
compute the average accuracy and coverage of contact pre-
dictions in the six SCOP [38] structure classes (Table 2).
The contact prediction accuracy of proteins having beta-
sheets (alpha+beta, alpha/beta, beta) is higher than that
of alpha helical proteins, which is consistent with previ-
ous observations [29]. According to Table 2, the average
coverage is about 20% and the accuracy ranges from 21 to
37%. This level of accuracy is probably good enough (or
at least helpful) for constructing an ab initio low-resolu-
tion structure, since previous experiments show that only
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L/5 or even less residues contacts are required to recon-
struct a low resolution structure for a small protein
[5,8,39-42], taking into account the inherent physical
restraints of protein structures. However, the challenge is
to develop algorithms to reconstruct a protein structure
from a noisy predicted contact map, where contact

restraints are much less reliable than the experimental
contacts determined by NMR techniques.

Comparison with seven other Predictors during CASP7
SVMcon participated in the CASP7 experiment in 2006
and was evaluated along with seven other contact map

Table 1: Detailed Contact Prediction Results on 48 Test Proteins for Sequence Separation >= 6, 12, and 24 respectively.

Protein type Len Type Separation >= 6 Separation >= 12 Separation >= 12
Acc(corr/pred) Cov(corr/tot) Acc(corr/pred) Cov(corr/tot) Acc(corr/pred) Cov(corr/tot)

1IG5A 75 alpha 0.333 (25/75) 0.446 (25/56) 0.240 (18/75) 0.486 (18/37) 0.273 (9/33) 0.346 (9/26)
1HXIA 112 alpha 0.304 (34/112) 0.270 (34/126) 0.214 (24/112) 0.238 (24/101) 0.015 (1/67) 0.018 (1/55)
1SKNP 74 alpha 0.093 (4/43) 0.133 (4/30) 0.000 (0/18) 0.000 (0/24) 0.000 (0/6) 0.000 (0/20)
1ELRA 128 alpha 0.406 (52/128) 0.327 (52/159) 0.384 (33/86) 0.264 (33/125) 0.227 (5/22) 0.085 (5/59)
1E29A 135 alpha 0.289 (39/135) 0.193 (39/202) 0.111 (15/135 0.112 (15/134) 0.103 (7/68) 0.071 (7/99)
1CTJA 89 alpha 0.157 (14/89) 0.147 (14/95) 0.112 (10/89 0.204 (10/49) 0.090 (8/89) 0.190 (8/42)
1J75A 57 alpha 0.474 (27/57) 0.466 (27/58) 0.250 (7/28) 0.206 (7/34) 0.500 (1/2) 0.038 (1/26)
1ECAA 136 alpha 0.103 (14/136) 0.156 (14/90) 0.063 (5/79) 0.064 (5/78) 0.070 (3/43) 0.041 (3/74)
1FIOA 190 alpha 0.143 (19/133) 0.161 (19/118) 0.153 (11/72) 0.113 (11/97) 0.140 (8/57) 0.110 (8/73)
1C75A 71 alpha 0.282 (20/71) 0.211 (20/95) 0.099 (7/71) 0.127 (7/55) 0.087 (4/46) 0.089 (4/45)
1HCRA 52 alpha 0.058 (3/52) 0.231 (3/13) 0.056 (1/18) 0.167 (1/6) 0.000 (0/0) 0.000 (0/3)
1QJPA 137 beta 0.518 (71/137) 0.183 (71/389) 0.489 (67/137) 0.215 (67/312) 0.350(48/137) 0.300 (48/160)
1D2SA 170 beta 0.482 (82/170) 0.180 (82/455) 0.341 (58/170) 0.150 (58/386) 0.165 (28/170) 0.096 (28/293)
1CQYA 99 beta 0.182 (18/99) 0.080 (18/225) 0.172 (17/99) 0.094 (17/180) 0.273 (27/99) 0.197 (27/137)
1BMGA 98 beta 0.398 (39/98) 0.177 (39/220) 0.398 (39/98) 0.211 (39/185) 0.429 (42/98) 0.323 (42/130)
1MAIA 119 beta 0.538 (64/119) 0.298 (64/215) 0.361 (43/119) 0.250 (43/172) 0.034 (4/119) 0.048 (4/83)
1AMXA 150 beta 0.387 (58/150) 0.162 (58/357) 0.300 (45/150) 0.148 (45/304) 0.220 (33/150) 0.141 (33/234)
1G3PA 192 beta 0.042 (8/192) 0.019 (8/420) 0.042 (8/192 0.023 (8/342) 0.036 (7/192) 0.026 (7/273)
1RSYA 135 beta 0.578 (78/135) 0.259 (78/301) 0.459 (62/135) 0.240 (62/258) 0.230 (31/135) 0.177 (31/175)
1WHIA 122 beta 0.492 (60/122) 0.201 (60/298) 0.459 (56/122 0.226 (56/248) 0.295 (36/122) 0.303 (36/119)
1HE7A 107 beta 0.280 (30/107) 0.183 (30/164) 0.327 (35/107) 0.254 (35/138) 0.346 (37/107) 0.394 (37/94)
1MWPA 96 a+b 0.365 (35/96) 0.178 (35/197) 0.385 (37/96) 0.236 (37/157) 0.292 (28/96) 0.311 (28/90)
1QGVA 130 a+b 0.338 (44/130) 0.198 (44/222) 0.338 (44/130) 0.221 (44/199) 0.385 (50/130) 0.279 (50/179)
1DBUA 152 a+b 0.434 (66/152) 0.208 (66/317) 0.276 (42/152) 0.162 (42/260) 0.151 (23/152) 0.111 (23/207)
1XERA 103 a+b 0.466 (48/103) 0.219 (48/219) 0.330 (34/103) 0.214 (34/159) 0.204 (21/103) 0.193 (21/109)
1JSFA 130 a+b 0.500 (65/130) 0.316 (65/206) 0.385 (50/130) 0.345 (50/145) 0.154 (20/130) 0.235 (20/85)
1DZOA 120 a+b 0.608 (73/120) 0.330 (73/221) 0.500 (60/120) 0.351 (60/171) 0.083 (10/120) 0.139 (10/72)
1GRJA 151 a+b 0.318 (48/151) 0.209 (48/230) 0.225 (34/151) 0.186 (34/183) 0.066 (10/151) 0.084 (10/119)
1MSCA 129 a+b 0.620 (80/129) 0.421 (80/190) 0.512 (66/129) 0.524 (66/126) 0.225 (29/129) 0.644 (29/45)
1CEWI 108 a+b 0.528 (57/108) 0.300 (57/190) 0.454 (49/108) 0.310 (49/158) 0.278 (30/108) 0.316 (30/95)
1VHHA 157 a+b 0.414 (65/157) 0.206 (65/316) 0.338 (53/157 0.201 (53/264) 0.223 (35/157) 0.174 (35/201)
1BUOA 121 a+b 0.298 (36/121) 0.300 (36/120) 0.207 (25/121) 0.291 (25/86) 0.140 (17/121) 0.309 (17/55)
1G2RA 94 a+b 0.340 (32/94) 0.254 (32/126) 0.309 (29/94) 0.309 (29/94) 0.234 (22/94) 0.400 (22/55)
1E9MA 106 a+b 0.387 (41/106) 0.186 (41/220) 0.358 (38/106) 0.200 (38/190) 0.311 (33/106) 0.210 (33/157)
1E87A 117 a+b 0.470 (55/117) 0.239 (55/230) 0.299 (35/117) 0.193 (35/181) 0.291 (34/117) 0.227 (34/150)
1H9OA 108 a+b 0.630 (68/108) 0.354 (68/192) 0.352 (38/108) 0.299 (38/127) 0.148 (16/108) 0.302 (16/53)
1IDOA 184 a/b 0.402 (74/184) 0.223 (74/332) 0.402 (74/184) 0.250 (74/296) 0.402 (74/184) 0.277 (74/267)
1CHDA 198 a/b 0.429 (85/198) 0.175 (85/487) 0.384 (76/198) 0.170 (76/447) 0.338 (67/198) 0.181 (67/370)
1FUEA 163 a/b 0.374 (61/163) 0.185 (61/330) 0.374 (61/163) 0.206 (61/296) 0.399 (65/163) 0.251 (65/259)
1CXQA 143 a/b 0.448 (64/143) 0.303 (64/211) 0.350 (50/143) 0.276 (50/181) 0.091 (13/143) 0.115 (13/113)
1F4PA 147 a/b 0.442 (65/147) 0.222 (65/293) 0.361 (53/147) 0.205 (53/258) 0.354 (52/147) 0.223 (52/233)
1ES8A 196 a/b 0.240 (47/196) 0.130 (47/361) 0.153 (30/196) 0.100 (30/300) 0.189 (37/196) 0.160 (37/231)
1DMGA 172 a/b 0.302 (52/172) 0.176 (52/296) 0.273 (47/172) 0.175 (47/269) 0.192 (33/172) 0.155 (33/213)
1A1HA 85 small 0.424 (36/85) 0.424 (36/85) 0.129 (11/85) 0.262 (11/42) 0.000 (0/85) 0.000 (0/0)
9WGAB 171 small 0.415 (71/171) 0.188 (71/378) 0.357 (61/171) 0.268 (61/228) 0.041 (7/171) 0.175 (7/40)
2MADL 124 small 0.274 (34/124) 0.106 (34/321) 0.226 (28/124) 0.106 (28/263) 0.218 (27/124) 0.116 (27/232)
1EJGA 46 small 0.261 (12/46) 0.203 (12/59) 0.419 (13/31 0.271 (13/48) 0.458 (11/24 0.306 (11/36)
1AAOA 113 coil-coil 0.221 (25/113) 0.397 (25/63) 0.031 (3/97) 0.158 (3/19) 0.000 (0/35) 0.000 (0/0)

Column 1 lists the protein name (PDB code + chain id). The chain id of a single-chain protein is denoted by "A" instead of "-". Column 2 lists chain 
lengths, ranging from 46 to 198. Column 3 lists the SCOP structure class, alpha, beta, a+b, a/b, small, and coil-coil represent six SCOP protein 
classess (all alpha helix, all beta sheet, alpha helix + beta sheet, alpha helix alternating beta sheet, small protein, and coil-coil), respectively. Columns 
4 and 5 report the prediction accuracy (specificity) and coverage (sensitivity) for each protein. Accuracy is the number of correct predictions 
divided by the total number of predictions. Coverage is the number of correct predictions divided by the total number of true contacts. The raw 
number of correct preditions, all predictions, and true contacts are also reported in the brackets.
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predictors. The CASP7 evaluation procedure focuses on
inter-residue contact predictions with linear sequence sep-
aration >= 12 and >= 24 respectively [15]. Up to L/5 of the
top predicted contacts were assessed, where L is the length
of the target protein. These evaluation metrics are also
similar to those used in the past editions of the Critical
Assessment of Fully Automated Structure Prediction
Methods [43-45] and in the EVA contact evaluation server
[46]. We use the similar procedure to compute accuracy
(specificity) and coverage (sensitivity) for all server pre-
dictors.

We compare SVMcon with the other contact map predic-
tors on the 13 out of 15 CASP7 de novo domains whose
structures have been released. The contact map predictors
participating in CASP7 include SVMcon, BETApro [37],
SAM-T06 [47], PROFcon [32], GajdaPairings, Distill
[34,48], Possum [19], and GPCPRED [29]. Their contact
predictions were downloaded from the CASP7 website.

Table 3 reports the performance of the eight automated
contact map predictors in the CASP7 experiment. The
accuracy and coverage of SVMcon at a sequence separa-
tion threshold of 12 are 27.7% and 4.7% respectively, cor-
responding to the second best ranking behind our other
predictor BETApro. The accuracy and coverage of SVMcon
at a sequence separation threshold of 24 are 13.1% and
2.8% respectively, overall slightly behind SAM-T06 and
BETApro. Its coverage at a sequence separation threshold
of 24 is higher than Distill, Possum, GPCPRED, and Gad-
jaPairings. Since PROFcon only made predictions for 11
out of 13 domains, its performance can not be directly
compared with other methods. Here we include its results
for completeness.

Another caveat is that the evaluation dataset and scheme
we used may be slightly different from the official CASP7
evaluation. Thus, here we only try to evaluate the current
state of the art of contact predictors instead of ranking
them. For the offical contact evaluation scheme and
results, readers are advised to check the assessment paper
of the CASP7 contact predictions published in the upcom-
ing supplement issue of the journal Proteins.

Overall, these results on the CASP7 dataset show that the
accuracy and coverage of protein contact prediction are
still low. However, these results are an important step
towards reaching the milestone of an accuracy level of
about 30%, required for deriving moderately accurate
(low resolution) 3D protein structures from scratch
[5,8,39-42] (Also, Dr. Yang Zhang, personal communica-
tion at the CASP7 conference). In particular, these predic-
tors tend to predict different correct contacts. Thus, a
consensus combination of contact map predictors may
yield more accurate contact map predictions, which in
turn could significantly improve 3D structure reconstruc-
tion. Since the stakes of contact map prediction are high,
a community-wide effort for improving contact map pre-
diction should be worthwhile (Dr. Burkhard Rost's lecture
slides at Columbia University).

It is also worth pointing out that the CASP7 de novo data-
set is too small to reliably estimate the accuracy of the pre-
dictors. So one should not over-interpret these results.
Indeed, when we use a larger CASP de novo dataset of 24
domains classified by Dr. Dylan Chivian from Dr. David
Baker's group to evaluate the predictors (results not
shown), the accuracy of SVMcon and BETApro are very
close for both sequence separations >= 12 and 24, and
both remain among the top predictors.

Conclusion
We have described a new contact map predictor (SVM-
con) that uses support vector machines to integrate a large
number of useful information including profiles, second-

3D Structure of Protein 1DZOAFigure 1
3D Structure of Protein 1DZOA. Protein 1DZOA is an 
a+b protein. It consists of two alpha helices and two beta 
sheets. Beta strands 1 and 2 form a parallel beta sheet. Beta 
strands 3, 4, 5, 6 form an anti-parallel beta sheet. Most non-
local contacts involve the pairing interations between beta 
strands and the packing interactions between helices and 
beta sheets. (Figure rendered using Molscript [63]).
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ary structure, solvent accessibility, contact potentials, resi-
due types, segment window information [24,32], and
protein-level information [32]. The method yields a 4%
improvement over the state-of-the art contact map predic-
tor CMAPpro. In the blind CASP7 experiment, SVMcon is
ranked as one of the top contact predictors. The method
represents an effort toward a good 2D structure predic-
tion. It can be used to improve ab initio structure predic-
tion [4] and analogous fold recognition [2,3]. The web
server, software, and source code are available at the SVM-
con website [49].

Methods
Data Sets
In the comparison with CMAPpro [28,35], we use the
same training and testing datasets. The datasets are redun-
dancy reduced. The pairwise sequence identity of any two
sequences is less than 25%. The training and testing data-
sets contain 485 sequences and 48 sequences respectively.

We use PSI-BLAST to search each sequence against the
NCBI non-redundant database and generate a multiple
sequence alignment. The number of PSI-BLAST iterations
is set to 3. The e-value for selecting a sequence is set to
0.001. The e-value for including a sequence into the con-
struction of a profile is set to 10-10. Multiple sequence
alignments are converted into profiles, where each posi-
tion is associated with a vector denoting the probability of
each residue type.

We extract only medium- and long- range residue pairs
with sequence separation >= 6 as in [32], which are not
captured by local secondary structures. We use a 8 Å dis-
tance threshold between Ca atoms to classify residue pairs
into two categories: contact (positive, < 8 Å) or non-con-
tact (negative, >= 8 Å). Since the majority of residue pairs
are negative examples, to balance the number of positive
and negative examples in the training set we randomly
sample and retain only 5% of the negative examples while
keeping all positive examples. In total, there are 220,994
negative examples and 94,110 positive examples in the
training data set. We keep all negative and positive exam-
ples in the test data set. The test data set has 10,498 posi-
tive examples and 367,299 negative examples.

Input Features
We extract five categories of features for each pair of resi-
dues at positions i and j to evaluate their contact likeli-
hood. In addition to the new features (e.g. pairwise
information features), the choice of most features com-
bines ideas from our previous contact map predictors,
disulfide bond predictors [33,50], and beta sheet topol-
ogy predictors [37], and from the PROFcon [32], the best
predictor in CASP6.

Local window feature
We extract local features using a 9-residue window cen-
tered at each residue in each residue pair. For each posi-
tion in the window, we use 21 inputs for the probabilities
of the 20 amino acids plus gap, computed from multiple
sequence alignments, 3 binary inputs for secondary struc-
ture (helix: 100, sheet: 010, coil: 001), 2 binary inputs for
relative solvent accessibility (exposed: 10, buried: 01) at
25% threshold, one input for the entropy (- ∑k pk logpk) as
a measure of local conservation. Here pk is the probability
of occurrence of the k-th residue (or gap) at the position
under consideration. Secondary structure and relative sol-
vent accessibility are predicted using the SSpro and
ACCpro programs in the SCRATCH suite [27,35,51]. Thus
the two local windows produce 2 × 9 × 27 features.

Pairwise information features

For each pair of positions (i, j) in a multiple sequence
alignment, we compute the following features. One input
corresponds to the mutual information of the profiles of

Predicted and True Contact Maps of 1DZOAFigure 2
Predicted and True Contact Maps of 1DZOA. The 
upper triangle shows the true contacts of protein 1DZOA. 
The lower triangle shows the predicted contacts of protein 
1DZOA. 2L (240) top ranked contacts are selected. The key 
contacts within anti-parallel strand pairs (3,4), (4,5), and (5,6) 
are recalled. A few contacts within the parallel strand pair 
(1,2) are also predicted correctly. However, very long range 
contacts between alpha helices and beta sheets are not pre-
dicted. And there are some false positives. It is interesting to 
see that most false positives are close to the true contacts. 
Thus, they may not be very harmful when being used as dis-
tance restraints to reconstruct protein 3D structure.
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the two positions (∑kl pkl log (pkl/(pkpl)), where pkl is the

empirical probability of residues (or gap) k and l appear-
ing at the two positions i and j simultaneously. Two other

pairwise inputs are computed using the cosine ( )

and correlation ( ) measures

on the profiles at positions i and j. Thus some information
about correlated mutations is used in the inputs. We also
use three inputs to represent Levitt's contact potential
[52], Jernigan's pairwise potential [53], and Braun's pair-
wise potential [54] for the residue pairs in the target
sequence.

Residue type features
We classify residues into four categories: non-polar (G, A,
V, L, I, P, M, F, W), polar (S, T, N, Q, C, Y), acidic (D, E),
basic (K, R, H). These four residue types induce 10 differ-

ent combinations: non-polar/non-nopolar, non-polar/
polar, non-polar/acidic, non-polar/basic, polar/polar,
polar/acidic, polar/basic, acidic/acidic, acidic/basic, and
basic/basic. We use 10 binary inputs to encode the type of
a residue pair.

Central segment window feature
Central segment window corresponding to a window cen-
tered at position Q(i + j)/2)N has been shown to be useful for
predicting whether the residues at position i and j are in
contact or not [24,32]. We use a central segment window
of size 5. For each position in the window, we use the
same 27 features as the local window features. So the total
number of features for the central window is 5 × 27. We
also compute the amino acid composition (21 features),
secondary structure composition (3 features), relative sol-
vent accessibility composition (2 features) in the central
segment window. The sequence separation (|i - j + 1|) for
residue pair (i, j) are classified into one of 16 length bins
(< 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, < 19, < 24, <= 29, <= 39,
<= 49, >= 50) using a binary vector of length 16, as in [32].

x y

x y

⋅
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x x y y
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Table 2: Contact Prediction Results of Proteins in the Six SCOP Structure Classes.

SCOP Class Num Separation >= 6 Separation >= 12 Separation >= 24
Accuracy Coverage Accuracy Coverage Accuracy Coverage

alpha 11 0.24 0.24 0.17 0.18 0.11 0.09
beta 10 0.38 0.17 0.32 0.17 0.22 0.17
a+b 15 0.45 0.25 0.35 0.25 0.21 0.23
a/b 7 0.37 0.19 0.33 0.19 0.28 0.20
small 4 0.36 0.18 0.28 0.19 0.11 0.15
coil-coil 1 0.22 0.40 0.03 0.16 0.00 --

average 48 0.37 0.21 0.30 0.20 0.21 0.19

Column 1 lists six structure classes. Column 2 lists the number of proteins in each class. Other columns reports the accuracy and coverage of 
contact predictions in each category. The statistics is computed for sequence separation >= 6, 12, and 24, respectively. The last row reports the 
average performance on all 48 proteins. The accuracy of a+b and a/b is slightly higher than that of beta proteins, which is in turn higher than that of 
alpha proteins. The performance on small proteins (mostly alpha helical) lies between proteins containing beta-sheets (a+b, a/b, and beta) and alpha 
helical proteins. There is only one coil-coil protein, which does not have native contacts with sequence separation >= 24.

Table 3: CASP7 Results of Inter-Residue Contact Predictions of Eight Predictors.

Separation >= 12 Separation >= 24
Method Acuracy (%) Coverage (%) Accuracy (%) Coverage (%)

SVMcon 27.7 4.7 13.1 2.8
BETApro 35.4 5.1 19.7 3.2
SAM-T06 20.7 3.5 18.5 3.9
Distill 26.4 2.9 13.7 1.4
Possum 15.0 2.3 21.4 2.6
PROFcon 12.1 2.0 8.1 1.6
GPCPRED 12.2 2.1 10.5 2.0
GajdaPairings 9.8 1.5 10.4 1.9

The eight contact map predictors are evaluated on the 13 de novo domains of CASP7. The 13 domains include (T0296, T0300, T0307, T0309, 
T0314, T0316 domain 2, T0319, T0347 domain 2, T0350, T0353, T0361, T0356 domain 1, T0356 domain 3). The experimental structures of the 
targets and the domain classification can be found at the CASP7 web site (http://predictioncenter.org/casp7). The accuracy and coverage of contact 
predictions are evaluated at sequence separation >= 12 and >= 24, respectively. It is worth noting that PROFcon only made predictions for 11 out 
of 13 domains. Thus its performance can not be directly compared with other methods. Here we includes its results for completeness.
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Protein information features
We also compute the global amino acid composition (21
features), secondary structure composition (3 features),
and relative solvent accessibility composition (2 features)
of the target sequence. In addition, we classify sequence
lengths into four bins (<= 50, <= 100, <= 150, and > 150)
using a binary vector of length 4, as in [32].

The detailed methods of generating features are described
in the additional files [see Additional file 1, 2, 3].

Feature Selection
Feature selection is useful to improve the performance of
machine learning methods, particularly when there is a
large number of features as in this study. However, since
there are more than 310,000 training data points, it takes
about 12 days to conduct a round of training and testing
on a Pentium-IV computer. Thus a thorough feature selec-
tion is currently not feasible. So we tried only to remove
some features (pairwise profile correlation, pairwise
mutual information, residue type, and protein informa-
tion features) once a time to test how they affect the pre-
diction accuracy. We find that removing these features
slightly improve the accuracy by about 0.2%. However, it
is not clear if the improvement is due to the random vari-
ation or due to the removal of the features. But at least,
these features are not essential or being compensated by
other similar features. Thus, a more thorough feature
selection should be conducted to improve the perform-
ance when more computing power is available.

SVM Learning
For an input feature vector associated with a pair of resi-
dues, we use Support Vector Machines (SVMs) to predict
if the two residues are in contact (positive) or not (nega-
tive). SVMs provide a non-linear classifier model by non-
linearly mapping the input vectors into a feature space
and using linear methods for classification in the feature
space [55-58]. Thus SVMs, and more generally kernel
methods, attempt to combine the advantages of both lin-
ear and nonlinear methods by first embedding the data
into a feature space equipped with a dot product and then
using linear methods in the feature space to perform clas-
sification or regression tasks based on the Gram matrix of
dot products between data points. A key property of ker-
nel methods is that the embedding does not need to be
given in explicit form, the Gram matrix of dot products K
(x, y) = φ (x)·φ (y) between data points is all is needed to
proceed with classification or regression. Here x and y are
input data points, φ is the mapping from input space to
feature space, and K is the kernel or similarity measure
between the original data points. Given a set of training
data points S = S+ ∪ S-, where S+ (resp. S-) represent the
positive (resp. negative) examples, using the theory of

structural risk minimization [55-58], SVMs learn a classi-
fication function f (x) in the form of

where αi are non-negative weights assigned to the training
data point xi during training by minimizing a quadratic
objective function and b is the bias. Thus the function f (x)
can be viewed as a weighted linear combination of simi-
larities between training data points xi and the target data
point x. Only data points with strictly positive weight α in
the training dataset affect the final solution. The corre-
sponding data points xi are called the support vectors. For
contact map prediction, a new data point x is predicted to
be positive or negative by taking the sign of f (x).

We use SVM-light [59-61] to implement SVM classifica-
tion on our data. We experimented with several common
kernels including linear kernels, Gaussian radial basis ker-
nels (RBF), polynomial kernels, and sigmoidal kernels. In
our experience, on this data the RBF kernel K (x, y) =

 (or ) works the best. Using the RBF
kernel, f (x) is actually a weighted sum of Gaussians cen-
tered on the support vectors. Almost any separating
boundary or regression function can be obtained with
such a kernel [62], thus it is important to tune the SVM
parameters carefully in order to achieve good generaliza-
tion performance and avoid overfitting.

We only adjust the width parameter γ of the RBF kernel,
leaving all other parameters to their default value. γ is the
inverse of the variance (σ2) of the RBF and controls the
width of the Gaussian functions centered on the support
vectors. The bigger is γ, the more peaked are the Gaus-
sians, and the more complex are the resulting decision
boundaries [62]. After experimenting with several values
of γ, we selected γ = 0.025.
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Additional material

Additional file 1
The main Perl script to predict a contact map. It is a text file that can be 
viewed by any text viewer/editor.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-113-S1.pl]
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