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Abstract
Background: Multiple sequence alignment is fundamental. Exponential growth in computation
time appears to be inevitable when an optimal alignment is required for many sequences. Exact
costs of optimum alignments are therefore rarely computed. Consequently much effort has been
invested in algorithms for alignment that are heuristic, or explore a restricted class of solutions.
These give an upper bound on the alignment cost, but it is equally important to determine the
quality of the solution obtained. In the absence of an optimal alignment with which to compare,
lower bounds may be calculated to assess the quality of the alignment. As more effort is invested
in improving upper bounds (alignment algorithms), it is therefore important to improve lower
bounds as well. Although numerous cost metrics can be used to determine the quality of an
alignment, many are based on sum-of-pairs (SP) measures and their generalizations.

Results: Two standard and two new methods are considered for using exact 2-way and 3-way
alignments to compute lower bounds on total SP alignment cost; one new method fares well with
respect to accuracy, while the other reduces the computation time. The first employs exhaustive
computation of exact 3-way alignments, while the second employs an efficient heuristic to compute
a much smaller number of exact 3-way alignments. Calculating all 3-way alignments exactly and
computing their average improves lower bounds on sum of SP cost in v-way alignments. However
judicious selection of a subset of all 3-way alignments can yield a further improvement with minimal
additional effort. On the other hand, a simple heuristic to select a random subset of 3-way
alignments (a random packing) yields accuracy comparable to averaging all 3-way alignments with
substantially less computational effort.

Conclusion: Calculation of lower bounds on SP cost (and thus the quality of an alignment) can be
improved by employing a mixture of 3-way and 2-way alignments.

Background
Let Σ be a finite alphabet, and consider v words

(sequences) w1,..., wv over Σ. For 1 ≤ i ≤ v, let �i denote the

length of word wi, and let σij denote the jth character of wi.

A string xi over Σ ∪ {-} is an extension of wi of length M if

there exist indices 1 ≤ d1 <d2 < �  ≤ M so that, for 1 ≤ j
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≤ �i, the djth character of xi is σij, and whenever j ∉ {d1,...,

}, the jth character of xi is -. Let Ext(wi, M) be the set of

all extensions of word wi to length M.

An alignment of two words wi and wj consists of an exten-
sion xi ∈ Ext(wi, M) and an extension xj ∈ Ext(wj, M). The
cost of such an alignment, denoted cost(xi, xj), is deter-
mined position by position. In the simplest case, a posi-
tion contributes a cost of 1 if the extensions do not have
the same character in that position, 0 otherwise. Numer-
ous different cost measures are of interest, but for our pur-
poses counting matches of a symbol of Σ against – (indels)
and matches of two different symbols of Σ (substitutions)
suffices.

Pairwise alignment of sequences wi and wj chooses M, xi ∈
Ext(wi, M) and xj ∈ Ext(wj, M), to obtain an alignment with
SP cost cost(xi, xj). The alignment with lowest cost has SP
cost

minM≥0 min{cost(xi, xj) s.t. xi ∈ Ext(wi, M), xj ∈ Ext(wj, M)}.

The alignment of v sequences w1,..., wv consists of exten-
sions {xi ∈ Ext(wi, M) : 1 ≤ i ≤ v}. The sum-of-pairs or SP
cost is ∑1≤i<j≤v cost(xi, xj), and the multiple alignment with
lowest cost has cost

One natural objective is to find a multiple alignment that
minimizes the SP cost. Exact methods have, for the most
part, employed dynamic programming. In this environ-
ment, the execution time grows polynomially with the
length of the sequences, but exponentially in the number
of sequences. While improvements in time and space uti-
lization are possible (for example, [1-7]), dynamic pro-
gramming remains infeasible for large numbers of
sequences. Indeed, finding optimal multiple sequence
alignments under the SP cost metric is NP-hard [8-10].
Consequently, substantial effort has been invested in
finding effective heuristic algorithms (see [4,11-15] for
surveys). These heuristic methods produce upper bounds
on the cost of a multiple sequence alignment with mini-
mum SP cost.

When heuristic methods are employed, how can one
assess the quality of the alignment obtained? Feng and
Doolittle [16] argue that the main biological motivation
for multiple sequence alignment is to reconstruct phylog-
eny; see [17] for a recent overview. With this in mind,
quality relates to the amount of biological information
revealed by the alignment. Let us ask a more modest ques-
tion. How well does the SP cost produced by a specific

method compare to the minimum SP cost over all align-
ments? In other words, what is the accuracy of the upper
bound? A precise answer poses a significant challenge;
comparison with an optimal solution would require that
one be found, negating the need for the comparison. It is
natural, therefore, to determine a lower bound on the SP
cost, and compare the heuristic method with the lower
bound as a measure of accuracy. Lower bounds do not
provide alignments; instead, when they are in good agree-
ment with an upper bound, they certify that the upper
bound is indeed close to optimum. Lower bounds are also
employed in branch-and-bound strategies for exact align-
ment [18,19], but our focus is on tools for comparison
with upper bounds. A comparison of an upper and a
lower bound simultaneously measures the accuracy of the
upper bound, and the lower bound. No matter how good
an upper bound is, comparison with a poor lower bound
fails to certify that the upper bound is close to optimum.
Therefore improvements in lower bounds are crucial, not
to reveal biological information through alignment
directly, but rather to better calibrate an heuristic method
that is being developed for biological inferences. Deter-
mining effective lower bounds on the SP cost of a multiple
sequence alignment has been much less studied than heu-
ristic methods, primarily because a lower bound does not
provide a feasible alignment. Nevertheless, an effective
lower bound provides the only real means to assess prox-
imity of an upper bound to the optimum. In this paper,
we examine a conceptually simple technique for calculat-
ing lower bounds on SP costs for alignments. It is based
on the observation that v-way alignments for small values
of v can be efficiently calculated by dynamic program-
ming. The specific methods that we propose combines
exact 2- and 3-way alignments selected to treat each 2-way
alignment exactly once. Randomization of the selection of
3-way alignments to examine enables us to improve lower
bounds from 2-way alignments without excessive compu-
tational cost.

Results and Discussion
The minimum SP cost, mincost({w1,..., wv}), is

A simple lower bound is obtained by treating the align-

ment as  independent 2-way alignments [3]:

By way of example, consider the eighteen sequences given
next; these are generated from a sequence of 50 bases by
random insertions, deletions, and substitutions. Our
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interest is in determining a lower bound on the sum of  SP
costs in an 18-way alignment of these sequences (see
Table 1).

Using dynamic programming on the 153 =  pairs,

the sum of 2-way alignments gives a total cost of 1946.

Fractional Alignment

This decomposition of the  simultaneous pairwise

alignments into  independent 2-way alignment

problems can be generalized. To do so, select a number α
of classes in the decomposition. Then for 1 ≤ c ≤ α and

pair {i, j} with 1 ≤ i <j ≤ v, define a weight μc, {i, j}. It is a

decomposition when, for every class c,  for

every pair {i, j}. For a given class c in such a decomposi-
tion,

gives a fractional SP alignment cost, with the contribution
of each pair scaled by its weight in the class of the decom-
position. Indeed

is a lower bound on the minimum SP v-way alignment
cost for any decomposition.

That this is a lower bound on mincost({w1,..., wv}) is easy
to demonstrate. When the decomposition has a single
class, the lower bound given is equal to the SP alignment
cost. So consider two classes in the decomposition c' and
c". Merge these two classes to form a single class c by set-
ting μc, {i, j} = μc', {i, j} + μc", {i, j} for every pair {i, j}, removing
classes c' and c". We need only verify that, when M is cho-
sen to yield the best fractional alignment for class c (i.e.
the extensions x1,..., xv),

where y1,..., yv form a best fractional alignment (of length

M) for c' and z1,..., zv a best for c". In applying this general

framework, one must calculate fractional alignment costs,
and this appears to necessitate solving many v-way align-
ment problems. Each can be solved by dynamic program-
ming, but unless the decomposition is suitably chosen the
resulting subproblems may be no simpler to solve than
the original. If, in a given class of the decomposition, most
weights are zero, the fractional alignment problem is sub-
stantially simplified. In particular, if all pairs containing a
particular sequence have weights equal to zero in this
class, the sequence does not participate in the fractional
alignment. Then by choosing weights within each class so
that "few" sequences appear in pairs with nonzero weight,
the alignment task is reduced to one on the few sequences
only, and can be solved efficiently using dynamic pro-
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Table 1: 

Sequence # Sequence

1 ATGGGTTGCGTCAGGAGTAAAGAAGCCAAGGGCCCGGCACTGAAGTACCA
2 ATGGGCTGTATTAAAAGTAAGGAAGACAAAGGACCAGCAATCAAGTACAG
3 ATGGGCTGCATTAAAAGTAAACAAAAGTCCAGCCATAAAATACAC
4 ATGGGCTGCATTAAAAGTAAAGAAAACAAAAGTCCAGCCATTAAATACAG
5 AGGGGTGCATTAAAAGCAAAGAAGATAAAGGTCCAGCCATGAAATACAG
6 ATGCTGTATAAAAAGTAAGGAAGACAAAGGACCATCCATCAAGTACAG
7 ATGAGTTGCGTCAGGAGTAGAGAGCTAAGGGCCCGGCACTGAAGTACCA
8 ATGGGTTGCATTAGAAGTAAAGAAAACAGAAGTCCAGCCATCAAATACAC
9 ATGAGCTGTATTAAGTAAGGAAGACAAAGGACCAGCAATGAAGTACAG
10 ATGAGCTGCATTAAAAGTAAAGAAAACAAAAGTCCAGCCATTAAATACAG
11 ATGAGGTGCATTAATAGCAAAGAAGATACAGGTCCAGCCATGATACAG
12 AGAGCTGTATAAAGAGTAAGGAGACAAAGGACATCCATCAAGTACAA
13 ATGGCTTGCGTCAGGAGTAAAGAAGCCAAGGGCCCAGCACTGAAGTACCA
14 ATGGGCTGCATTAAAGTAAAGACAAAAGTCCAGCCATGAAATACAC
15 ATGGGCTGTATTAAGAGTAAGAAGACAAAGGACCAGCAATCAAGTACAG
16 AGTGGCTGCATTAAAAGTAATGAAAACAAAAGTCCAGCCATTAAATACAT
17 ATGGTGTGCATTAGAAGTAAAGAAGACAGAAGTCCAGCCATCATATAGAC
18 AGACGTGTATACAGAGTAAGGAGACAAAGGACATCCATCAAGTACAG
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gramming. Indeed when α =  and every class c has μc,

{i, j} = 1 for exactly one pair {i, j}, this is the decomposition

of the v-way alignment into  independent 2-way

alignments discussed earlier. The decomposition frame-
work suggests a means to improve this simple bound,
which we pursue next.

Improvement by 3-way alignment
There is every reason to expect that the best alignment of
two sequences may conflict with the best 2-way align-
ments of each with a third. For example, aligning the first
three sequences of the eighteen in the example optimally,
one obtains the alignment

ATGGGTTGCGTCAGGAGTAAAGAAGCCAAGGGCCCG-
GCACTGAAGTACCA

ATGGGCTGTATTAAAAGTAAGGAAGACAAAGGACCAG-
CAATCAAGTACAG

ATGGGCTGCATTAAAAGTAAACAA---AA-GT-
CCAGCCATAAAATACAC

Between the first and second sequences, there are 15 sub-
stitutions and no indels. Between the second and third,
there are 8 substitutions and 5 indels. Between the first
and third there are 14 substitutions and 5 indels. The total
three-way alignment score is 15 + 13 + 19 = 47. When
exact two-way alignment of each pair among the three
sequences is done, the alignment of the first two
sequences agrees with that in the 3-way alignment. The
optimal alignment of the second and third sequences
does not; it has cost 12 (shown with 7 substitutions and 5
indels):

ATGGGCTGTATTAAAAGTAAGGAAGACAAAGGACCAG-
CAATCAAGTACAG

ATGGGCTGCATTAAAAGT----AA-ACAAAAGTC-
CAGCCATAAAATACAC

Moreover, the optimal 2-way alignment for the first and
third sequences has cost 18 (shown as 13 substitutions
and 5 indels):

ATGGGTTGCGTCAGGAGTAAAGAAGCCAAGGGCCCG-
GCACTGAAGTACCA

ATGGGCTGCATTAAAAGTAAACAA---AA-GTCCAGCCA-
TAAAATACAC

The sum of the three optimal 2-way alignment costs is
therefore 45, while the optimal 3-way alignment has cost
47. Hence the use of exact 3-way alignment provides a bet-
ter bound; thus rather than computing the lower bound
by adding the SP scores for the three pairs of sequences,
one can employ an exact 3-way alignment for all three
sequences. As shown in the example, the difference in SP
scores of simultaneous three-way alignment of the three
sequences and sum of pairwise scores of the three pairs in
this triple is 2. In this example, the best improvement that
can be achieved by replacing any three 2-way alignments
by the corresponding 3-way alignment is 3. To establish
this, all 816 3-way alignments were calculated using
dynamic programming, and compared to the sum of 2-
way alignments within each.

Average 3-way alignment

In v-way alignment, a reasonable goal therefore is to
choose many triples of sequences for which the 3-way
alignment improves the lower bound, so as to obtain
many small improvements that aggregate to form a large
improvement in the bound. At the extreme, one could cal-

culate best 3-way alignments for all  triples of

sequences. This corresponds to a decomposition of the v-

way alignment into  classes; in each the three pairs of

a triple are given weight  and the remaining weights

are 0. In the example, the SP lower bound using all 2-way
alignments is 1946; using all 816 3-way alignments
improves the lower bound to 1969. Of the 816 3-way
alignments, 510 yield no improvement; 251 yield an
improvement of 1; 48 an improvement of 2; and 7 an
improvement of 3. The average improvement is therefore
(251·1 + 48·2 + 7·3)/16 = 23.

There are two problems with this approach. First and fore-
most, while some triples yield improved cost bounds over
the sum of the three pairs of the triple, others may not.
Simply averaging the contributions of each negates to a
degree the improvements attributable to some triples. Sec-
ondly, in addition to a substantial increase in cost for each
alignment, the calculation involves completing O(v3)
alignments rather than O(v2). It is therefore desirable to
reduce the number of classes in the decomposition, both
to reduce computation time and to potentially improve
the bound.
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Weighted selection of 3-way alignments

We now employ only some of the 3-way alignments.
Choose a collection  of triples. For a pair {i, j} of

sequences, let λij be the number of triples of  in which

it appears. We form a decomposition as follows. For each

T ∈  we form a class c, setting μc, {i, j} =  when {i, j}

⊂ T, 0 otherwise. Further, whenever there is a pair {i, j}

with λij = 0, form a class in which μc, {i, j} = 1 and all other

weights are zero. This decomposition requires the deter-
mination of fractional 3-way alignments for each triple of

, and 2-way alignments for every pair appearing in any

triple of .

The determination of fractional 3-way alignments can be
avoided by choosing a collection  of triples with the

property that every pair belongs in either zero or λ of the
chosen triples. Then the weights for the classes arising

from triples are all ; a 3-way alignment using weights

all equal to 1 can be employed, and the result divided by

λ, to avoid the solution of fractional alignment. Using all

2-way alignments comprises one extreme, when  = ∅.
Using all 3-way alignments comprises the other extreme,
when  contains all possible triples of the v sequences

(and λ = v - 2). Other choices of  can yield larger
increases in the lower bound; indeed, in our example, we
can improve the bound to 1994. We pursue this next.

Let V be a set of elements and  a set of subsets of V; we

associate V with the sequences, and every set in  with a

subset of sequences to align. Then (V, ) is a (v, k, λ)-

packing when |V| = v, every set in  has size k, and every

pair of elements in V appears in at most λ sets in . The

packing is maximal when no set can be added to  to
obtain a packing with the same parameters, and it is max-
imum when it has the most sets of any packing with these
parameters. See [20,21] for results on packings

Packings with λ = 1, i.e. (v, 3, 1)-packings, trivially have
the property that every pair appears either in zero or in λ
= 1 triples of the packing, and hence an SP lower bound
can be calculated directly. Since every triple in the packing
contains three pairs and every pair is in at most one triple,
no (v, 3, 1)-packing can contain more than v(v - 1)/6 tri-
ples. Using such a packing for v-way alignment, we there-
fore employ only O(v2) 3-way alignments, rather than the
O(v3) to employ all.

The natural question to address is: Which (v, 3, 1)-packing
should we employ to obtain the bound? To a certain
extent, this decision is based on the amount of computa-
tional effort that can be expended, and the accuracy of the
bound desired. Of course, the best outcome would be to
achieve the best accuracy at least computational cost. In
certain cases, one might be able to anticipate from exact 2-
way alignments when a specific 3-way alignment is likely
to lead to an improvement. For example, given three
sequences w1, w2, w3, if the 2-way alignments have very
different patterns of indels and substitutions, one might
expect that the 3-way alignment yields higher cost than
the three 2-way alignments. This appears to be difficult to
quantify.

In the absence of a good guide to the selection of 3-way
alignments that yield the best improvements, two alterna-
tives can be pursued. If accuracy is of paramount concern,
we again calculate all 3-way alignments. Instead of simply
averaging their contributions, we assign to each triple a
weight consisting of the difference between the SP cost for
the 3-way alignment and the sum of the three 2-way align-
ments involved. The best accuracy from the method is
obtained by selecting a (v, 3, 1)-packing of maximum
total weight. This can prove more computationally inten-
sive than simply undertaking all 3-way alignments, since
choosing a maximum weight packing is NP-hard [22].
However, there is no need to obtain a packing of maxi-
mum weight; one of "large" weight suffices. As a compro-
mise, we develop a simple heuristic (hillclimbing) to
choose a packing of large but not necessarily maximum
weight in the Methods section.

In the running example, since an (18,3,1)-packing has at
most 48 triples, one might hope to obtain a relatively
large improvement. The best improvement that we found
is 47. Then the hillclimbing algorithm to maximize
weight was executed. It yields a collection of 33 triples:
four triples with an improvement of 3 each, eleven with
an improvement of 2, and thirteen with an improvement
of 1. While calculating the average of all 816 alignments
increases the lower bound by only 23, this method is com-
parable in execution time and provides more than twice
the improvement in the lower bound.

This demonstrates that, if one is willing to invest the effort

to calculate all  3-way alignments, a simple strategy

can be used to select a packing providing a more substan-
tial improvement than that from the elementary lower
bound. Nevertheless, it does not save any computation
time.
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Heuristic selection of 3-way alignments
If computation time is the more critical, we choose a max-
imum (v, 3, 1)-packing at random, and evaluate the
bound. We therefore employ the hillclimbing algorithm
(developed in the Methods section) to calculate a packing
of maximum size, not using any weight measuring
expected improvement at this stage. Then we calculate the
optimal 3-way alignment for each triple of the packing, to
determine the improvement in the lower bound. Our first
attempt gave an SP lower bound of 1968 (an improve-
ment of 22), our second a lower bound of 1966 (an
improvement of 20), and our third a lower bound of 1974
(an improvement of 28). There is significant variation in
repetitions of the method, as a consequence of the ran-
dom selections made. Naturally, one cannot conclude
much from three trials, so we report the distribution of
improvements from 10,000 trials of the method (see
Table 2).

It may happen that one is so unlucky as to obtain an
improvement of only 10, or lucky enough to obtain an
improvement of 33. But one expects, within a very small
number of trials, to obtain an improvement of 23 or bet-
ter. Admittedly, when comparing to an improvement of
47, none of the improvements are striking. To a degree,
however, this misses the point. The computation time per
trial is much lower than the cost of computing all 3-way
alignments. Hence the real benefit is that an improvement
can be obtained that is competitive with the average of all
3-way alignments, at a fraction of the cost.

The astute reader can observe that in our 10,000 trials, the
average is slightly less than 23, the average of all 816
improvements. This can be attributed to the fact that in a
maximum packing on 18 elements, there are nine pairs
not appearing in any triple; in a similar experiment with a
number of sequences v ≡ 1, 3 (mod 6) (where the maxi-
mum packing has each pair in a triple), the averages
would be in closer agreement. Moreover, using a meta-
heuristic search strategy such as simulated annealing
could prove beneficial, again at the expense of a substan-
tial increase in computation time.

Conclusion
The calculation of v-way alignments that are optimal with
respect to sum-of-pairs cost is challenging, and substantial
effort has been invested in the calculation of upper

bounds on SP costs. Exact alignment appears to be com-
putationally out of reach when many long sequences are
to be aligned, and lower bounds from sums of exact 2-way
alignments are often too weak to be of assistance. In this
paper, we establish a generic lower bound using decom-
positions into fractional alignments. With this we propose
two improvements using exact 3-way alignments. The first
still calculates all 3-way alignments, but uses a hillclimb-
ing technique to choose a packing among these of maxi-
mal weight. This improves on the accuracy of the bound
at a similar computational cost to the naive method. The
second instead reduces the computation time, by choos-
ing at random a packing, and only then computing the 3-
way alignments for the triples of the packing. In our test
cases, the improvements are competitive with calculating
the overall average, but are achieved at reduced effort in
computation.

It remains of interest to determine whether, from exact 2-
way alignment data, one can determine which triples are
most likely to provide an improvement, prior to calculat-
ing the 3-way alignments; see [23] for a related investiga-
tion. In our experiment, we did not achieve success better
than random by classifying the triples based on features of
the 2-way alignments. Nevertheless, such a strategy may
augment the effectiveness of the hillclimbing strategy if
such a prediction is feasible.

Methods
Dynamic programming methods for exact 2-way and 3-
way alignment that we use are standard [3]. Here we
develop the new methods for selecting 3-way alignments
used in the computation of lower bounds.

Hillclimbing 1: Packing Pairs into Triples

The main requirement is to select a random (v, 3, 1)-max-
imum packing. Stinson [24] developed a simple but effec-
tive local optimization strategy for the case when the

packing  has exactly v(v - 1)/6 triples (so that v ≡ 1, 3
(mod 6)); see also [21,25]. Colbourn and Mathon [26]
extended the method to all values of v. The basic strategy
follows. Start with an empty set  of triples. Choose two
pairs that share a common element, say {x, y} and {x, z},
so that neither appears in a triple in . If the pair {y, z}

also does not appear in a triple of , we can add the tri-








Table 2: 

Improvement 10 11 12 13 14 15 16 17 18 19 20 21
Frequency 2 6 8 21 64 137 260 422 664 903 1179 1185

Improvement 22 23 24 25 26 27 28 29 30 31 32 33
Frequency 1189 1175 990 724 434 332 172 72 43 14 2 2
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ple {x, y, z} to  to obtain a packing with one more tri-
ple. Suppose instead that {y, z} does appear in a triple {w,
y, z} in . Removing {w, y, z} from  and adding {x, y,

z} leaves the number of triples in  unchanged. Never-
theless, the collection of pairs not appearing in a triple of

does change, and hence when this process is repeated,
choosing a different set of two pairs may permit the addi-
tion of a new triple. The method therefore never chooses
to reduce the number of triples selected, and relies on "lat-
eral" moves to enable (ultimately) the addition of a new
triple when that is possible. Stinson [24] established that
this method is very effective in practice, and Gibbons [25]
enumerates many problems to which it has been applied.

We describe the method more formally next. We must
determine in advance the number of triples in a maxi-
mum packing, to provide a stopping criterion. It is well
known that in a maximum (v, 3, 1)-packing, the number

of pairs not appearing in triples is 0 when v ≡ 1, 3 (mod

6); 4 when v ≡ 5 (mod 6);  when v ≡ 0,2 (mod 6); and

 when v ≡ 4 (mod 6) (see [21]). This underlies the

computation of triplesRemaining in the algorithm given
next.

if v is odd then

if v ≡ 1, 3 (mod 6) then

ε := 0

else ε : 8;

triplesRemaining : = (v(v - 1) - ε)/6;

else triples Remaining : = floor(v(v - 2)/6);

D : ∅;

while triplesRemaining > 0 do

begin

Pick a random element x appearing < (v - 2)/2 times in
D;

Pick random pairs {x, y}, {x, z} not appearing in tri-
ples in D;

if pair {y, z} appears in a triple T of D

then begin

D : = D -{T};

triplesRemaining : = triplesRemaining + 1

end;

D : D ∪ {{x, y, z}};

triplesRemaining : = triplesRemaining - 1

end

Intuitively, the method repeatedly chooses two pairs with
a common element, {x, y} and {x, z}, neither appearing
in a chosen triple. If {x, z} appears in no triple as well, we
can simply add the triple {x, y, z}. Otherwise we delete the
unique triple containing {y, z} before making the addi-
tion. The method is a hillclimbing technique because it
never reduces the number of triples chosen.

The while loop in this method employs as its only stop-
ping criterion that it finds a maximum packing. Stinson
[24] incorporates a count of the number of times a "lat-
eral" move is made since the addition of the last triple.
When this exceeds a predetermined threshold, the com-
putation is abandoned and restarted. We incorporate this
in our implementation as well.

Repeatedly employing this method yields different (v, 3,
1)-packings. As each is generated, the relevant 3-way
alignments can be calculated to determine the lower
bound obtained from this packing. There is a natural
tradeoff between computation time and the quality of the
bound. Only after a packing is chosen does one need to
compute the 3-way alignments involved, giving a factor of
O(v) savings in computation time; however, what has
been sacrificed, potentially, is the amount of improve-
ment since the method does not consider (or even know)
the improvement until the packing is fully chosen. Of
course, one can apply the method repeatedly increasing
the computational expense, but with the expectation of
improving the accuracy.

Hillclimbing 2: Maximizing weight
Stinson's method can also be adapted to choose a packing
whose improvement is "large". To do this, we require that
all 3-way alignments have been calculated. Then we mod-
ify the hillclimbing method in two ways. First, we only
adjoin a new triple if it makes a nonzero improvement
(for this purpose, we can look up the precomputed 3-way
alignment cost). Secondly, we only replace one triple by
another if it makes an improvement at least as large as the
one being removed. One might also consider replacing
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two or three triples by one, if this yields an improvement.
We did not obtain any overall benefit by allowing this.
This variant of the Stinson method essentially enables us
to find packings of large weight rather than with many tri-
ples; it does, however, require that all weights (improve-
ments) be precomputed.
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