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Abstract
Background: Whereas the molecular assembly of protein expression clones is readily automated and
routinely accomplished in high throughput, sequence verification of these clones is still largely performed
manually, an arduous and time consuming process. The ultimate goal of validation is to determine if a given
plasmid clone matches its reference sequence sufficiently to be "acceptable" for use in protein expression
experiments. Given the accelerating increase in availability of tens of thousands of unverified clones, there
is a strong demand for rapid, efficient and accurate software that automates clone validation.

Results: We have developed an Automated Clone Evaluation (ACE) system – the first comprehensive,
multi-platform, web-based plasmid sequence verification software package. ACE automates the clone
verification process by defining each clone sequence as a list of multidimensional discrepancy objects, each
describing a difference between the clone and its expected sequence including the resulting polypeptide
consequences. To evaluate clones automatically, this list can be compared against user acceptance criteria
that specify the allowable number of discrepancies of each type. This strategy allows users to re-evaluate
the same set of clones against different acceptance criteria as needed for use in other experiments. ACE
manages the entire sequence validation process including contig management, identifying and annotating
discrepancies, determining if discrepancies correspond to polymorphisms and clone finishing. Designed to
manage thousands of clones simultaneously, ACE maintains a relational database to store information
about clones at various completion stages, project processing parameters and acceptance criteria. In a
direct comparison, the automated analysis by ACE took less time and was more accurate than a manual
analysis of a 93 gene clone set.

Conclusion: ACE was designed to facilitate high throughput clone sequence verification projects. The
software has been used successfully to evaluate more than 55,000 clones at the Harvard Institute of
Proteomics. The software dramatically reduced the amount of time and labor required to evaluate clone
sequences and decreased the number of missed sequence discrepancies, which commonly occur during
manual evaluation. In addition, ACE helped to reduce the number of sequencing reads needed to achieve
adequate coverage for making decisions on clones.
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Background
The impact of the genome sequencing projects will
emerge from elucidating protein function. Diseases result
from protein dysfunction and are managed with drugs
that alter protein function. Although protein function has
been inferred from sequence similarities, it has not been
directly studied in most cases. There is a substantial need
to develop high throughput (HT) tools that will accelerate
the study of the thousands of proteins not yet examined,
a field referred to as functional proteomics.

Protein function studies start by producing proteins using
cloned copies of the genes that encode them. Recognition
of this has led to the production of large collections of
cloned genes configured in a protein expression-ready for-
mat (ORF collections). To ensure accurate conclusions,
the coding sequences must first be validated, a process
that includes comparing the clones' sequences to the
expected sequences at the nucleotide and amino acid lev-
els. Yet, despite the well-recognized importance of
sequence verifying cloned genes, it has been performed on
less than a handful of protein-expression clone collections
currently in existence [1-6].

Assembling clones is now well-established, relatively
inexpensive and automated. However, several key steps –
oligonucleotide synthesis, reverse transcription, and PCR
– are unavoidably mutagenic, emphasizing the impor-
tance of sequence verification. The ultimate goal of valida-
tion is to determine if a given clone is "acceptable" for use
in biological experiments. Acceptance criteria may vary
based on the experiment but typically a clone is rejected
when its coding sequence contains one or more muta-
tions that might adversely affect protein activity.

In contrast to building the clones, the process of verifying
their sequences is still handled manually. Whereas excel-
lent software has been written to manage and automate
the de novo sequencing of DNA, and although elements of
that software can be employed (such as sequence align-
ment, contig assembly, primer design, etc.), there is no
software that manages the process of validating clone
sequences, particularly for large projects. There are a
number of attributes unique to the clone validation proc-
ess that distinguish it from denovo sequencing and require
the development of novel software. First, whereas the goal
of de novo sequencing is to make the best sequence predic-
tion for an unknown, the goal of validation is to deter-
mine if an unknown matches a pre-defined reference
sequence. Second, clone validation software should pro-
vide an automated mechanism for sorting clones into
either the accepted or rejected categories. Third, the evalu-
ation process must also consider the polypeptide
sequence because, in general, the amino acid sequence
dominates in determining the clone's overall value.

Fourth, in genomic sequencing, discrepancies among
reads arise primarily due to sequencing errors, whereas
with clone validation, discrepancies arise not only from
sequencing errors but also because of polymorphisms in
the source material, PCR errors, oligonucleotide synthesis
errors, reverse transcription errors and even mistakes or
ambiguity in the reference sequence. Finally, the availabil-
ity of a reference sequence affects the strategies that soft-
ware would employ in managing the projects, for
example, favoring primer walk strategies over transposon
and shotgun alternatives for full length sequencing.

Software for clone validation should thus be able to: 1)
determine the sequence of each clone accurately; 2) iden-
tify if and where that sequence varies from the intended
target sequence; 3) evaluate and annotate the polypeptide
consequences of any variations; and 4) determine if these
observed differences are acceptable based on user defined
criteria.

Thus far, software developed to aid in DNA sequencing
has focused on the de novo sequence determination of
DNA fragments, such as in genomic sequencing projects.
Some basic sequencing programs handle pre-processing
of sequence trace files, base calling [7], quality clipping,
vector trimming and removal [8], contig assembly (phrap
[8] or TIGR assembler [9]) and primer design [10]. These
programs are often used as integral parts of sophisticated
software packages (Staden [11], Gasp [12], Lucy [13,14])
which include additional functionality like clustering,
gene annotation and finishing tools (Autofinish [15]
from the Staden package). Several packages have been
developed to manage expressed sequence tag (EST)
projects (ESTIMA [16], ESTAP [17], ESTWeb [18]).
Recently comprehensive modular software packages have
been developed that provide a graphical user interface
(GUI) for biologists with minimum software experience
to define their own processing pipelines for sequencing,
managing sequencing results and performing basic analy-
ses like sequence alignment and computing quality statis-
tics (MAGIC_CP [19], Pegasys [20]). These packages
typically rely upon the basic bioinformatics programs
mentioned above to perform unit tasks and relational
databases as backend storage for processed data.

Software tools used in "re-sequencing" projects (such as
sequencing the same gene in many individuals to find
polymorphisms) bear some similarity to the concept of
clone validation (e.g., PolyBayes [21], PolyPhred [22],
noSnp [23], SNPdetector [24]). However none of these
programs consider polypeptide consequences of differ-
ences nor do they provide a mechanism for applying
acceptance criteria within the workflow. Moreover, SNP
discovery software has been designed to operate with
dense sequence coverage of specific target regions whereas
Page 2 of 16
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:198 http://www.biomedcentral.com/1471-2105/8/198
clone validation software must deal with the minimum
possible coverage achieved for many different genes
(clones).

In this paper, we present the Automated Clone Evaluation
(ACE) system, which is an automated software applica-
tion that simultaneously manages the process of sequence
validation for thousands of plasmid clones. ACE has been
used successfully to evaluate more than 55,000 clones at
the Harvard Institute of Proteomics, providing full auto-
mation for all processes and assisting in building
sequence verified clone collections useful for HT pro-
teomic studies.

Implementation
Conceptual approach
The two central requirements for automated clone valida-
tion software are the abilities: (1) to identify discrepancies
between the clones' determined sequence and the
expected sequence at the nucleotide and polypeptide
level; and (2) to automatically sort clones into acceptabil-
ity categories (i.e., acceptable, reject, needs further review)
based on user defined criteria. A discrepancy is any differ-
ence between a clone and its expected sequence and may
arise because of cloning artifacts, mistakes in determining
the clone's sequence, natural occurring polymorphisms or
errors in the reference sequence. Moreover, discrepancies
will have varying effects on the predicted polypeptide,
from silent (no amino acid) changes to truncations. Both
the causes and consequences of discrepancies are impor-
tant to end users. Thus, for the software to make informed
decisions regarding the acceptability of clones, it must
also collect and use this ancillary information.

The strategy employed by ACE is to describe each clone as
a list of multidimensional discrepancy objects. ACE pop-
ulates multiple properties of discrepancy objects includ-
ing: discrepancy type (see Table 1), sequence confidence
level (low or high), and position on the reference
sequence. Additionally, discrepancy objects fully describe
the predicted consequences on both the nucleotide and
polypeptide levels (e.g. sequences locations, inserted/sub-
stituted bases and amino acids, number of deleted bases
and amino acids).

To automatically sort the clones, ACE compares the list of
discrepancy objects for each clone against the user's
acceptance/rejection criteria for discrepancies of various
types. The existence of any discrepancy is always deleteri-
ous; but users consider some more deleterious than oth-
ers. For example, some users require an exact match to
their expected sequence (no discrepancies) whereas others
would allow one amino acid change and still others might
also allow that change only if it represents a natural poly-
morphism. It is also important to consider the base confi-

dence of discrepancy objects because the most common
cause of low confidence discrepancies is base calling
errors (i.e., the clone is correct, but its predicted sequence
is wrong).

The strategy of describing clones as lists of discrepancy
objects separates the clone annotation process from the
clone sorting process. Annotation defines the discrepan-
cies, which are inherent and objective features of the
clones. The sorting process compares lists of discrepancies
according to a subjective value system defined by the user.
Thus, the same set of clones can be sorted based on differ-
ent user criteria for different applications. Finding the
"best" among several clones for the same gene is reduced
to comparing their discrepancy lists. Moreover, it allows
these comparisons to be made at the level of polypeptide
consequences, which is most relevant for the functional
proteomics purposes.

Table 1: Definitions of Discrepancy Types.

Discrepancies defined on nucleotide and polypeptide levels

Nucleotide changes Polypeptide changes

Substitution Silent substitution
Conservative substitution
Non-Conservative substitution
Missense substitution – any amino acid 
change
Truncation – inframe Stop codon

Frameshift deletion Frameshift deletion
Frameshift insertion Frameshift insertion
Inframe deletion Inframe deletion
Inframe insertion Inframe insertion
No Stop codon Post-elongation
No Start codon No Translation

Discrepancies defined on nucleotide level only

Discrepancies introduced by sequence ambiguity

Start codon substitution
Stop codon substitution
Substitution in CDS region
Frameshift insertion
Inframe insertion

Discrepancies introduced by reference sequence ambiguity
Substitution in CDS region

Flanking sequence region (5' and 3' regions described 
separately)

Substitution – replacement of one base by another
Deletion/insertion – deletion/insertion of several bases
Ambiguous substitution – replacement of a base by ambiguous 
base
Ambiguous insertion – insertion of ambiguous base

Discrepancy types for cDNA and flanking sequences defined at the 
nucleotide and polypeptide level by the Discrepancy Finder.
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Application overview
ACE is a comprehensive, multi-platform and multi-user,
web-based sequence verification software system. The key
novel aspects of ACE include: (1) finding and annotating
discrepancies between clone and reference sequences,
including clones with incomplete sequence assemblies;
(2) describing each clone sequence as a list of multidi-
mensional discrepancy objects; (3) implementing an
automated decision making process that compares each
clone's discrepancy object list to user-defined clone
acceptance criteria; (4) embedding in each discrepancy
object information about the polypeptide consequences
of the discrepancy; (5) automating selection of the best
isolate when multiple isolates for a target sequence are
available.

ACE provides an integrated environment that relieves the
user from routine process management tasks, such as
bookkeeping of all project- and clone-related informa-
tion, re-entering of parameters and criteria, and history
tracking. It automates all steps of sequence verification,
including primer design, sequence contig assembly, gap
mapping, demarcating low confidence regions in
sequence coverage and identifying polymorphisms.

Whenever possible, ACE implements existing well-estab-
lished algorithms and utilizes third-party programs via
custom wrappers that adapt them to the specific tasks. For
example, we modified a Phred/Phrap [7,8] script to allow
users to remove low-quality reads from an assembly and/
or to trim tails of the reads according to user defined crite-
ria. NCBI BLAST [25,26] and needle [27] are used, respec-
tively, for local and global sequence alignments. Primer3
[10] is launched iteratively using the clone's reference
sequence as a guide to enable primer design for auto-
mated primer walking.

ACE is structured for maximum flexibility to support dif-
ferent approaches to clone validation and sequencing
management. Users do not need to follow a single path in
clone sequence verification, but rather can invoke each
module individually. A typical ACE-based workflow used
in our laboratory is shown in Figure 1. A project begins
with end read sequencing of one or more clonal isolates
per target. End reads are acquired, assigned to their corre-
sponding clone (End Read Processor), and then processed
by the assembler to determine if end reads alone are suffi-
cient to yield a complete contig assembly (Assembly
Wrapper). Whether or not the assembly yielded a single
contig covering the full-length CDS, clone contig(s) are
analyzed to detect differences or "discrepancies" com-
pared with the reference/target sequence (Discrepancy
Finder). ACE can compare any discrepancies with one or
more sequence database, such as GenBank, to determine
if they correspond to naturally occurring polymorphisms

(Polymorphism Finder). During the final decision proc-
ess, users can optionally configure the software to avoid
penalizing clones for discrepancies that represent poly-
morphisms (Figure 2). If more than one isolate exists for
a given clone, an optional module (Isolate Ranker) can
rank isolates based on user-defined preferences specified
in the form of penalties associated with different types of
discrepancies.

Clones that failed to assemble into a single contig cover-
ing the CDS can be scanned to find the remaining gaps in
sequence coverage (Gap Mapper). In addition, sequence
regions of low confidence can be analyzed to demarcate
their boundaries (Low Confidence Regions Finder). Sub-
sequently, clones with low confidence regions or gaps in
sequence coverage can be processed to define appropriate
internal sequencing primers to cover those regions
(Primer Designer). At any stage during the clone verifica-
tion process, a set of clones can be processed by the Deci-
sion Tool in order to determine how far each clone has

Block diagram of typical clone sequence verification work-flowFigure 1
Block diagram of typical clone sequence verification 
workflow. The diagram illustrates a typical workflow for the 
full length sequence validation of a protein coding clone. The 
process, which is described in detail in the text, is an iterative 
process that collects sequence reads, assembles contigs, finds 
gaps in coverage, finds regions of low confidence, compares 
the contig sequence with the expected sequence, and deter-
mines the overall acceptability of the clone. Processing steps 
in parentheses and italics are optional.
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Clone Acceptance CriteriaFigure 2
Clone Acceptance Criteria. This screenshot shows the interface to establish acceptance criteria by setting the maximum 
allowed number of discrepancies of each type. Different values can be set for discrepancies of low and high confidence. The 
user sets values for two thresholds – one that triggers a manual review, and one that automatically rejects the clone. Users can 
also opt to handle conservative and non-conservative amino acids substitutions separately or to treat all amino acid changes as 
one type. Once the settings are created, users can name the set and store it for future use. In this way, users may create differ-
ent acceptance criteria for different purposes. Thus, a single collection of clones can be evaluated by different acceptance crite-
ria by invoking these named sets. The criteria shown here are used routinely for determining final acceptance of clones. The 
numbers in the boxes indicate the absolute number of the indicated type of discrepancy for inclusion in that category. As indi-
cated, this set of criteria does not distinguish between conservative and non-conservative missense mutations. Any clones with 
1 or 0 high confidence missense substitution(s) are automatically accepted (as long as they have no other discrepancies that 
prevent automatic acceptance). Clones with 3 or more high-confidence missense substitutions are automatically rejected; if the 
clones have 2 they are triaged for additional sequencing or manual analysis. A higher bar is set to automatically reject clones 
based on low-confidence substitutions (10 or more), because many of these will be resolved with further sequencing. Similarly, 
this parameter set automatically passes clones only if they have no frameshift discrepancies of any type. Clones with 1 high-
confidence or 9 low-confidence frameshift discrepancies or more are automatically rejected. Clones must meet all the pass cri-
teria for automatic acceptance, whereas clones that meet any automatic fail criteria are automatically failed.
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progressed in the analysis pipeline and its acceptance/
rejection status.

Representative output files and user interfaces for each of
the key modules in this application can be found in Addi-
tional files [see Additional files 1 and 2].

Software Architecture
In its implementation ACE comprises Core Classes, Wrap-
per Classes and Processing Modules. Core Classes repre-
sent subject domain objects, such as clone or plate, as well
as process control objects, such as project or analysis spec
(set of parameters used for analyzing sequence). A rela-
tional database is used as a repository of all persistent data
except for trace files. Trace files are stored on a server hard
drive (see Trace File Distributor module for more details).

Core Classes serve as a layer of abstraction to this database
by encapsulating SQL queries for retrieving their data and
for updating the database as processing proceeds.

Wrapper Classes encapsulate third party programs and are
responsible for adjusting their parameters and parsing
results into objects that can be processed by Processing
Modules.

Processing Modules contain user interfaces and encapsu-
late processing algorithms. They are responsible for inter-
preting user requests, creation, modification or deletion
of Core Objects and providing feedback to the user. To
prevent accidental loss or corruption of data, several levels
of access rights are defined in ACE and some functionality
is available only to the users with higher level of privi-
leges. Typically, processing modules operate on user-spec-
ified clones or collections of clones. Although ACE does
not impose a strict workflow on the user, some restric-
tions on the order of operations still apply. Most process-
ing modules check whether necessary conditions are met
for a selected group of clones. For example, neither Deci-
sion Tool nor Isolate Ranker can process the clones if their
available sequence coverage was not analyzed first by Dis-
crepancy Finder.

The first group of processing modules is responsible for
data entry and direct data management by the user. The
creation of a new project requires entering the project
description and defining the cloning strategy, which
includes a description of the cloning vector, linkers, and
the intended start and/or stop codons. Multiple projects
can refer to the same cloning strategy. Data load modules
are responsible for loading: (a) clone related information
using XML files [see Additional files 3, 4, 5]; (b) trace files
(see detailed description of Trace File Distributor and End
Read Processor below); (c) clone sequences that may be
provided in FASTA format.

The second group of modules is responsible for the anal-
ysis of clone data, annotating the clone, assisting the user
with any required additional sequencing and finishing the
clone if necessary. These modules constitute the core of
ACE and are described in more detail in the next section.

The third group of modules generates ACE views and
reports. ACE provides user feedback in the form of inter-
active views, reports and email notifications. For processes
that involve manageable screen content or that require
real-time management, interactive views give user-
friendly access to currently available information. These
include: Plate Viewer (Figure 3 and Additional file 1, Fig-
ure 1) that gives accesses to complete information for spe-
cific plates and the Designed Primers viewer to select
which automatically generated primers to use [see Addi-
tional file 1, Figure 2], etc. For processes involving thou-
sands of clones or whenever a documented result is
requested, each analysis tool or report can be launched in
an asynchronous way, so that the user is notified at the
end of the operation by email with attached report. Some
reports represent direct database queries, whereas others,
like the Decision Tool, Trace File Quality Assessment, and
Mismatch Report include complex data processing.

A detailed structure and the relationships among the most
important Core Classes are presented in Figure 4. For sim-
plicity, classes that support process control and primer
design are omitted from the figure.

In ACE we define a class hierarchy for the description of
cDNA sequences. The BaseSequence class is a nucleotide
string. RefSequence is a description of the target sequence
to be verified; it contains a set of literature identifiers asso-
ciated with the target sequence, such as GI, GenBank
Accession Number, Gene Name. Reference sequences fre-
quently represent GenBank records, where the record
sequence is longer than the clone's insert sequence. Con-
sequently, RefSequence in ACE also contains the coordi-
nates of the target sequence on the nucleotide sequence.
The ScoredSequence class is derived from BaseSequence by
adding the confidence score (as defined by Phred/Phrap
[7,8]) to each nucleotide. AnalysedSequence is derived
from the ScoredSequence and adds the collection of Dis-
crepancyDescription objects, the collection of low confi-
dence regions (LCR) as well as the mapping of
AnalysedSequence on the range of the target sequence. Ana-
lysedSequence is the parent class for CloneSequence that rep-
resents full clone coverage and specifies how the sequence
was obtained.

A discrepancy in ACE refers to any mismatch between
ScoredSequence and corresponding target sequence. The
Discrepancy class aggregates nucleotide and polypeptide
level descriptions of the mismatch. In general, Discrepancy
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objects that describe nucleotide substitutions correspond
to one codon and, hence, can contain up to three Nucle-
otideDiscrepancy objects and one ProteinDiscrepancy object.
Table 1 describes the correspondence between nucleotide
and protein discrepancies. In some cases (e.g. for non-
coding flanking sequences or for ambiguities in the
sequence), ProteinDiscrepancy is absent and Discrepancy
consists of a single NucleotideDiscrepancy. Discrepancy
objects are created by the Discrepancy Finder and are dis-
cussed in more detail in the corresponding section.

The Clone object aggregates all information about the
insert subject to validation. Data in the Clone object are
accumulated in the course of processing. The class Clone
contains: (a) physical location data (plate and sample
information); (b) reference sequence information (RefSe-
quence object); (c) one or two EndRead objects; (d) contig
collection(s); (e) clone sequence(s).

Plate objects represent physical plates of predefined for-
mat (96- or 384-well).Plate contains multiple Sample
objects, where a sample is a physical substance sitting in a
particular well. The Sample can be a control or a clone. It
is important to underscore that a single Clone object cor-
responds to a single Sample. If the workflow involves cre-
ation of several candidate isolates for the same target gene,
each isolate is represented as a separate Clone object. The
IsolateGroup object corresponds to a set of isolates with a
common target.

Core Modules
1. Clone Analysis
During a large scale sequence validation project, the anal-
ysis of clones is an ongoing and iterative process. Each
cycle includes acceptance of good clones, the elimination
of failed clones and identification of gaps in the remain-
ing, potentially acceptable clones.

1.1 Discrepancy Finder
This module detects mismatches between the clone con-
tig(s) and reference sequence, creating a list of Discrepancy
objects for each clone.

Discrepancy Finder first builds a global alignment
between the clone's contig(s) and its reference nucleotide
sequence using the Needleman Wunsch algorithm
[28](needle program from EMBOSS package [27]). Mis-
matches are identified via base-by-base comparison and a
NucleotideDiscrepancy object is created for each, except that
contiguous mismatches (e.g., a multiple base-pair dele-
tion in one region) are grouped together to form a single
NucleotideDiscrepancy object. When up to three adjacent
NucleotideDiscrepancies belong to one codon inside the
ORF sequence and none of them is an ambiguous substi-
tution, we create a corresponding ProteinDiscrepancy
object (see Figure 4).

ACE assigns low-confidence status to a discrepancy if the
Phred confidence score [29,30] of at least one base used to
define the discrepancy or one out of four bases on either
side of the discrepancy is below the user-defined thresh-
old. All discrepancy information is stored in the ACE data-
base.

1.2 Polymorphism Finder
This optional module determines if discrepancies are
attributable to natural sequence variations of the gene,
which is particularly relevant for human genes cloned
using different tissue samples from those used to make
the reference sequences. The process requires two steps:
(1) a relatively short sequence segment comprising the
discrepancy and its flanking sequence is compared using
NCBI BLAST [25,26] to data from all user-selected Gen-
Bank databases to find an identical match; (2) each 100%

Isolate ranking and sample reportsFigure 3
Isolate ranking and sample reports. A screenshot of 
ACE showing the plate presentation produced by the Isolate 
Ranker showing a color-coded clone rank; a Sample Report 
that provides information about the available end reads, con-
tig collections and fully assembled sequences for the clone; 
and a Discrepancy Report that provides details about each 
discrepancy for the contig.
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hit is verified by comparing the entire clone target
sequence with the hit sequence to ask if it came from the
same gene using Pairwise BLAST [31]. A match provides
good evidence that the observed sequence variation
occurs naturally, but the absence of a match is inconclu-
sive [32].

The Polymorphism Finder in ACE will analyze all discrep-
ancies detected for a set of clones and store the NCBI GI
number for each verified hit as part of the discrepancy
description. As this operation requires sending numerous
BLAST queries against large databases, its implementation
requires a local copy of the appropriate GenBank data-

base(s) installed on a dedicated high-performance com-
puter or cluster.

1.3 Decision Tool
This tool sorts clones into a finished-and-accepted group,
a rejected group, and a set of groups slated for further
processing. Fundamentally, the Decision Tool accom-
plishes this by comparing each clone's discrepancies list to
a user-defined list of acceptance criteria, which define how
many discrepancies of each type are permitted. Users can
set thresholds to: (1) automatically accept clones that
meet some high level criteria and (2) automatically reject
clones that fail to meet some minimal criteria. Moreover,

Overview of conceptual structure and relations between most important Core ClassesFigure 4
Overview of conceptual structure and relations between most important Core Classes. This diagram represents 
the Core Classes that describe clone-related information. Classes supporting process control and primer design are omitted 
from the figure for simplicity.
Page 8 of 16
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:198 http://www.biomedcentral.com/1471-2105/8/198
users can set independent thresholds for high and low
confidence discrepancies (see Figure 2 and Additional file
1, Figure 3).

Any clones not accepted nor rejected remain incomplete
until additional processing has been performed. The flow-
chart in Figure 5 illustrates the logic path for assigning
these pending clones to different action groups. The goal
here is to bin clones into groups that require the same next
step(s) in processing and report them in a single flat file
[see Additional file 2, Pages 2 and 3]. This tab-delimited
output can be used as input for the next processing step.

Users may wish to apply alternate acceptance criteria to
the same set of clones for different experimental purposes.

User specifications for acceptance criteria are stored as
named sets in the software and can be invoked and
applied to any collection of clones.

1.4 Isolate Ranker
Some cloning workflows produce several isolates for the
same gene with the expectation that at least one of these
isolates will be of acceptable quality. Isolate Ranker selects
the best isolate to carry forward by comparing isolates
based on end reads, or (when available) partial or full
sequencing data, and applying user defined penalties for
different discrepancy types. For each combination < dis-
crepancy type, confidence > (where "confidence" can be
"low" or "high"), the user specifies two values: maximum
permitted number of such discrepancies and the penalty
per discrepancy combination [see Additional file 1, Figure
4]. Isolates that exceed the maximum permitted number
of mutations of at least one type are rejected. For each
remaining isolate, the overall score is computed by nor-
malizing the sum of the penalties over the number of
bases covered. These scores determine the rank order
among the surviving isolates of the same gene and are dis-
played as a color coded virtual plate map (see Figure 3 and
Additional file 1, Figure 1) so that users can quickly iden-
tify the best candidate clones.

2. Clone Sequencing Support
The automation of clone sequence validation requires
tools that manage the sequencing process itself. Unlike
genomic sequencing projects that are often tasked with
combining all available sequence reads into a single large
contig, clone validation can be likened to thousands of
independent micro-sequencing projects that must be
maintained and managed separately.

2.1 Trace File Distributor
Clone validation projects often include sequence reads
from different clones representing similar genes (e.g., par-
alogs, multiple isolates of the same gene, etc.). It is essen-
tial that reads from closely related clones do not end up in
one another's analysis. The ACE package creates a hierar-
chical directory structure and stores all files related to a
single clone in a directory specific to that clone, as
required by the Phred/Phrap package [7,8] (Figure 6a).

The Trace File Distributor parses identifier information
encoded in the filename for each trace file, embedded
there by the sequencing facility, that indicates which clone
it belongs to (Figure 6b). However, because different facil-
ities utilize different naming conventions, the Trace File
Distributor stores each facility's format and uses it to con-
vert the filename into a format that ACE can use to process
these files automatically. This approach has worked effi-
ciently for files from five different sequencing centers.

Block diagram of Decision ToolFigure 5
Block diagram of Decision Tool. This figure illustrates 
the logic used by the Decision Tool to assign clones to their 
various action groups indicated by the colored blocks. The 
tool will process any clones in the system. However, as the 
definition of clone quality is based upon comparing the list of 
discrepancies for the clone with the users' specifications for 
discrepancies, sorting clones to certain sub-groups requires a 
previous run through the Discrepancy Finder. Each action 
group is a separate tab-delimited list of clones that can be 
used to initiate the corresponding process.
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2.2 End Read Processor
End reads are treated slightly differently from internal
reads because some users employ them to select the best
candidate from multiple isolates for a clone. We have
found that poor quality end reads will lead to the rejection
of about 25–35% of good clones based on discrepancies
that turn out to be sequencing errors. To mitigate this the
End Read Processor assesses read quality and disregards
any end reads that do not meet minimum quality criteria,
whereas end reads of sufficient quality are submitted into
the database. To satisfy minimum quality criteria, a read
must be longer than the user-defined minimum length
(default = 250 nt) and the average confidence score for all
non-ambiguous bases between the first and last base
(default: first base = 50, last base = 700) must be above the
user-defined minimum confidence score (default = 25).

The trace files for the rejected end reads can be optionally
added later as internal reads for inclusion in the clone
sequence assembly.

2.3 Assembly Wrapper
This tool automates contig assembly by calling the Phred/
Phrap [7,8] package for every clone on a user-submitted
list. Contig assembly for multiple clones can be a signifi-
cant bottleneck in HT projects. When simultaneously
assembling thousands of clones, experience has demon-
strated that some fraction of clones will fail to assemble
despite the availability of adequate sequence coverage.
However, by adjusting a variety of settings involving trim-
ming and quality requirements, many of them can be
encouraged to assemble.

Vector trimming during contig assembly is performed
using Cross_match [8]. In some cases, trimming is essen-
tial for contig assembly, whereas in others, it interferes
with it. For example, a high degree of similarity between
gene sequence and sequences in the vector library causes
Phred/Phrap to mask valid (i.e. gene) sequence when vec-
tor trimming is applied blindly. This problem can be par-
tially alleviated by editing vector sequences down to
about 300 bp of insert-flanking sequence and removing
irrelevant vector sequences from the vector library. Occa-
sionally it is necessary to turn off vector trimming alto-
gether to get an assembly for particular clones. We also
found that aggressive quality- and/or read length-based
trimming helps to improve contig assembly. When
prompted, ACE trims all reads prior to assembly by
removing bases prior to base 50 and after base 900 (user-
adjustable values). Reads with a low average confidence
score or below a minimum length can also be excluded
from the assembly.

3 Clone Finishing
For practical reasons, sequence coverage for validating
clones is usually much lower than that used for de novo
sequencing projects (typically several fold instead of 10
fold or more). Thus, failed reads lead readily to gaps in
coverage or regions of low sequence confidence. As there
are often hundreds to thousands of clones to track, soft-
ware is needed to automate the finishing process. Autofin-
ish[15] is excellent software for finishing in de novo
sequencing projects. However, this program is not the
optimal tool for the verification workflow, because it
assumes dense coverage produced by shotgun sequencing
and it does not exploit the existing reference sequence.

3.1 Gap Mapper
This module uses a strategy that exploits the existence of
the reference sequence to demarcate gaps in sequence cov-
erage that arise from short or failed reads [see Additional
file 1, Figure 5]. The module uses the assembler to align

Storage of trace file informationFigure 6
Storage of trace file information. (a) Hierarchical struc-
ture of reference sequence and clone directories. (b) Decod-
ing trace file names from sequencing facility. Sequence trace 
filenames usually contain plate name, well and read direction 
in various configurations. The user describes the location of 
each of these items separately by specifying the separator, 
section number, offset inside each section and the expected 
length. The separator is a string (often a single character such 
as the underscore in this example) that may be repeated in 
the name, breaking it into several sections. The section 
number identifies the section that contains desired item; off-
set from the beginning of the section and length allow ACE 
to extract the item. When the sequencing facility applies its 
own name to the plate, it provides a lookup table indicating 
the correspondence between the users' and the sequencing 
facility's plate names.
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clone trace files with the reference sequence, which is
included as a "pseudo-read" with the same preset confi-
dence score used for every base in its sequence (arbitrarily
set at 19). This ensures complete assembly without forcing
the contig to be identical to the target sequence. The
assembler output is parsed to determine the alignment of
each sequence read relative to the reference sequence.
Using this positional information, a two-dimensional
matrix is created wherein each position is described by
base and confidence score (Figure 7). At each position
along the matrix (which is numbered according to the ref-
erence sequence), a consensus base is determined for the
clone by assessing all of the bases at that position and
their confidence scores using a naïve Bayesian calculation
[11]. The reference sequence and assembled contig are
disregarded at this step, so the computed confidence
scores reflect the actual clone sequence. The resulting con-
tigs are optionally trimmed at both ends to remove bases
with low confidence scores (using the sliding window
algorithm described below). Tight trimming ensures that
the new coverage will include the junction regions. Once
the contigs are assembled, trimmed and mapped to the
reference sequence, the gaps are defined as stretches of ref-
erence sequence not covered by contigs. Gap and contig
information is stored in the database and used to assess
clone status and quality, and can be passed to Primer
Designer to design primers for clone finishing.

3.2 Low Confidence Regions Finder
Not surprisingly, discrepancies most frequently occur
where sequence confidence is low. The Low Confidence
Regions Finder was designed to identify low confidence
regions (LCRs) in contigs by applying a 'sliding window'
algorithm. The user defines the width of the window
(default = 25 nt), cut-off Phred score for low-confidence
bases (default = 25) and maximum allowable number of
low-confidence bases (default = 3 nt). Using the default
values, an LCR is defined as a region in which a window
of 25 consecutive bases contains at least three low-confi-
dence bases. LCRs located close (default = 50 nt) to each
other are joined [see Additional file 1, Figure 6]. Like gaps,
LCRs can be processed by the Primer Designer to design a
primer walk to obtain better coverage for these regions.

3.3 Primer Designer
This set of modules exploits the availability of the refer-
ence sequence to allow users to: (a) design gene-specific
sequencing primers; (b) select specific primer(s) for place-
ment on a vendor order; (c) view all primers (both
designed and ordered) and their design specifications
using a convenient user interface, and (d) track and man-
age primer plates and individual primers. In practice, the
Primer Designer tool is among the most utilized tools in
this application. It can be used a priori to design gene-spe-
cific primers for a complete primer walk or, more effi-

ciently, to design only those primers needed to complete
coverage (i.e., fill in gaps) or to re-sequence regions of low
confidence defined by Gap Mapper or Low Confidence
Regions Finder. The module collects essential information
including: (1) type of coverage desired (single forward,
single reverse, double coverage, etc.); (2) primer sequence
related parameters (Tm, window size, GC content, etc.);
(3) sequence processing parameters (length of reliable
part of sequencing reads); and which sequences to cover
[see Additional file 1, Figure 7]. After removing any
sequence covered by universal primers (optional), the
module breaks the remaining sequence into fragments
which are provided to Primer3 [10] for primer prediction.
Fragment size takes into account the expected distance
between the primer and reliable sequence, expected high
quality read length, and the Primer3 window size pro-
vided as part of user specification for Primer Designer. The
Primer Design module then collates the output of
Primer3.

Results
In order to test the performance of ACE, we compared the
processing times and outcomes for an experienced opera-
tor using ACE with a researcher experienced at manual
analysis using commercial software to analyze one plate
of clones for 93 unique genes ranging in length from 130

Illustration of Gap Mapper algorithm for contig calculationFigure 7
Illustration of Gap Mapper algorithm for contig cal-
culation. Clone reads deemed to be of sufficient quality are 
supplemented by a pseudo read generated from the refer-
ence sequence with all bases set to a confidence score of 19 
and submitted to the Phrap assembly process. The alignment 
matrix of clone reads is retrieved from Phrap output in order 
to determine the positions of each read relative to the refer-
ence sequence. Consensus sequences and confidence scores 
are computed for the various contigs using a naïve Bayes 
classifier, and the results are reported. The calculated contigs 
are trimmed to drop low confidence tails.
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to 2800 bp flanked by common linkers of ~100 bp. We
did not include project setup time for either study arm so
that the focus was on processing time for the traces. To
simplify the comparison, we designed and ordered inter-
nal sequencing primers for all clones with an insert length
above 900 bp at the start of the project based on the refer-
ence sequences and a uniform read spacing (154 primers
and sequence reactions were ordered for 45 clones).
Although commonly used for manual analysis projects,
pre-ordering all of the internal primers is not ordinarily
needed for ACE projects. Instead, internal primers are typ-
ically ordered as needed based on the gaps identified
which significantly reduces the need for additional prim-
ers and reads.

The acceptance criteria that were used are shown in Figure
2. Basically clones were allowed to have no more than a
single amino acid change. These final acceptance criteria
are indicated by the far left column (Pass → High Confi-
dence) and were used by both analysis methods. The
other 3 columns were used by the software to automati-
cally reject unacceptable clones or to indicate clones that
need further analysis.

Manual analysis
The manual analysis was performed by an experienced
researcher, who analyzed all clones using Sequencher™
(Gene Code) software and tracked the results in Excel®

(Microsoft). Each clone was individually analyzed and
annotated according to the observations made at the time.
Any internal or repeat reads for a clone were uploaded
into the previously generated file and the analysis was
repeated where necessary. Insufficient coverage and only
high confidence discrepancies were annotated by indicat-
ing the position based on the entire target sequence
(insert plus 5'/3' linker) where the first base of the 5'
linker was listed as '1'. The researcher passed clones based
on the criteria indicated above (up to one amino acid
change and no truncation mutations); everything else was
failed or listed as pending.

In summary, the researcher accepted 72 clones; 1 clone
was provisionally accepted after confirming that an in-
frame deletion could be found in other GenBank entries
by BLAST analysis (see Table 2). 13 clones were rejected (1
did not match target sequence; all others had changes
leading to truncations or frame shift mutations). There
were 6 clones that did not have adequate quality sequence
coverage to allow a decision about the insert. One addi-
tional clone had a region requiring additional sequencing
due to ambiguous nucleotides that could not be resolved.
To resolve these pending clones in the manual workflow,
the researcher will need to manually design and order
additional sequencing primers, as well as execute the nec-
essary re-array to repeat the sequencing.

Automated ACE analysis
The same plate of clones analyzed manually was used for
the automated analysis following the general workflow
outlined in Figure 1. After sequence traces were loaded
and those of acceptable quality were distributed into their
appropriate clone directories, we assembled the end reads
after trimming them based on the vector sequences, on
the read length (omit bases < 50 or > 900), and on the
base calling confidence (at least Phred score 20 in the
assembly). We then performed a discrepancy analysis and
used the isolate ranking feature to identify clones that did
not match their reference. Based on the report for this ini-
tial processing, we culled all of the accepted clones and
repeated the procedures for the remaining clones without
vector or quality trimming. Altering the trimming param-
eters often captures clones that were missed in a first
assembly pass. We used the same rules for automatic
acceptance/rejection listed in Figure 2 (default settings).

In an ordinary project, it would be necessary at this point
to design internal sequencing primers to cover any gaps or
LCRs; however, as mentioned above, in this project all of
the internal reads had been designed and pre-ordered
based upon the reference sequence. Nevertheless, to cap-
ture the actual time needed to execute the project, we went
through the exercise of identifying regions requiring addi-
tional coverage ('Gap Mapper') for clones that were either
not fully covered with end reads due to the insert length
('No full Coverage') or listed as having 'Persistent Low
Confidence Discrepancies'. We then designed internal
primers theoretically needed to complete this coverage
(37 primers, 7 clones), though these were not actually
ordered from a vendor. This approach required less than
one third of the number of primers and reads than were
needed for the upfront design approach.

Table 2: Comparison of automated vs. manual analysis on a 
sample plate of 93 unique genes

ACE Researcher

Analysis Automatic + manual (20%) Manual (100%)
Samples 93 93
Clones for: Samples Time Samples Time
End Read Analysis 93 45 min 93 270 min
Internal Analysis 45 30 min 45 100 min
Special Handling# 20 65 min 1 5 min
Time Total 93 140 min 93 275 min

Outcome Clones % Clones %
Accepted Clones 73 78.5% 73 78.5%
Rejected Clones 17 18.3% 13 14.0%
Pending Clones 3 3.2% 7 7.5%

#: special handling includes the manual analysis of 19 clones in the 
ACE workflow
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After uploading the pre-ordered internal reads and any
repeated end reads into ACE, we performed a "first pass"
analysis. This lead to 57 accepted clones, 17 rejected
clones, and 19 that required further review (Table 2).
Based on the report generated by ACE, 9 of the accepted
clones had at least one discrepancy, but within the range
allowed. Of the rejected clones, 5 exhibited no match to
the target sequences and 12 had high quality discrepan-
cies leading to frame shift or truncation mutations. The 19
clones slated for further review were all handled in
Sequencher and resulted in acceptance of 16 additional
clones. The remaining 3 clones had either regions that
were not covered by sufficiently good traces (1 clone), or
no traces of quality were present in the first place (2
clones).

Discussion
When the outcome of the two analyses is compared, only
a small number of clones show differences. The same
clones were accepted by both approaches. One clone har-
boring an in-frame deletion was accepted because a BLAST
analysis against GenBank indicated that it represents a
documented variant for that gene. All clones manually
rejected were also rejected in ACE; however, ACE rejected
4 additional clones that were not rejected in the manual
analysis. In ACE these 4 clones were reported as being 'no
match' with their target sequence, and upon automatic
BLAST analysis in ACE were marked as showing only sig-
nificant homology to the cloning vector. A review by a
senior researcher confirmed the call made by ACE.

The somewhat higher rejection rate by the ACE software is
fairly typical, as the parameters used for this study tuned
the software to be conservative about accepting clones.
The parameters demanded high sequence confidence
across the clone and required resolution of all low confi-
dence discrepancies. This has the effect that projects done
with the automated workflow will end up with a subset of
clones that require manual review. Obviously, by defining
different parameter sets, users can employ less stringent
criteria and obtain a different outcome. One of the advan-
tages of using ACE is that every analysis has a well-defined
and well-documented set of acceptance criteria attached
to it. There are no ambiguities about why a clone was
included or excluded.

The automated analysis took close to half the amount of
time of the manual approach. This was surprising because
such a large difference might not be expected for a small
project (most projects using ACE have more than 1000
clones). As projects grow in size, the relative time savings
grows considerably. The time it takes to analyze clones
manually increases linearly with more clones. There is no
advantage to increasing the scale; ten plates of clones take
about 10 times longer than one plate of clones. However,

this is not true for the automated analysis. Although there
are some exceptions (e.g., approving internal primers),
most of the ACE steps demonstrate no significant differ-
ence in the user operational time whether the operation is
performed on one plate or ten. As the projects increase in
size, the amount of researcher time spent per clone drops
precipitously. Because the operational steps are straight-
forward, most large automated projects include a second
round of automated analysis before referring pending
clones for manual analysis, resulting in about 90% of the
clones processed automatically. Because there were only
19 clones requiring further processing, all of them were
done manually in this project.

There are some additional advantages to the automated
analysis that might not be evident from this comparison.
First, the automated analysis captures information on all
clones including detailed annotation about all discrepan-
cies for all available sequence. The manual review process
focuses only on finding discrepancies that will cause a
clone to be rejected. Once these are discovered, the clone
is dropped and the researcher moves onto the next clone.
Second, ACE produces a detailed report about all discrep-
ancies and their polypeptide effects in a format that is easy
to upload into a database for further analysis. This report
is useful for understanding where mutations occur and
improving cloning conditions. In cases of manual analysis
one runs either the risk of human miss-annotations or
having to export all assembled, finished sequences to
cross-check them with a text comparison tool to create a
standardized annotation for any discrepancy. Finally, ACE
automatically manages the file transfers, the data tracking
and the management of all internal sequencing primers.
This includes automatically designing any necessary clone
re-arrays for additional sequencing steps. In large scale
projects, these processes are both very tedious and error
prone when executed manually.

With the increasing construction of large cDNA and ORF
clone sets slated for use in protein-based experiments
comes the need to fully sequence validate the clones.
Sequencher[33] and the Staden package[11,33] are widely
used software tools for sequence assembly, editing and
ORF analysis. Sequencher is a commercial desktop appli-
cation which runs only on Windows and Macintosh OS. It
was not designed to handle high-throughput processing
for thousand clones and cannot be automated for this
purpose. The Staden package has been developed to help
automate the task of deriving a consensus sequence for
genome sequencing efforts [8,9,34], but cannot be used to
automate the process of validating plasmid clones. This is
due, largely, to the fact that sequence derivation and
sequence validation are two fundamentally different
goals. Whereas de novo sequencing software focuses on
producing the best consensus sequence, validation soft-
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ware must first determine a consensus sequence for each
clone and then compare it to its appropriate existing refer-
ence sequence to determine whether the clone meets the
user's standards.

To accomplish this goal, a novel strategy was employed in
which each clone is described as a list of discrepancy
objects. Essentially, this may be considered as alternative
language to describe relationships between clone
sequences and their reference standards.

In this strategy, clone validation is divided into the inter-
play between two separate processes: annotation and sort-
ing. Annotation is an objective process that merely
documents which discrepancies exist and what are their
properties (location, polypeptide consequences, sequence
confidence, polymorphism). In contrast, the sorting proc-
ess is by its nature a subjective one. In this setting, each
discrepancy becomes a liability for the clone that may be
used to determine whether the clone should be rejected.
The penalty appropriate for each type of discrepancy
depends upon the intended experimental application.
Indeed, even which attributes dominate the decision mak-
ing process may vary – for some applications it is most
important to achieve precise polypeptide matches
whereas for others the emphasis is on clone sequences
that occur naturally. Thus, the same objective list of dis-
crepancies can be evaluated using different subjective
scoring criteria.

The ACE software application was designed to meet the
challenges of high-throughput clone verification projects.
This software has dramatically reduced the amount of
time and labor required to evaluate clone sequences, ena-
bling many weeks worth of manual validation to be com-
pleted in a few hours. Moreover, the results are stored in a
database that allows users to reassess the same set of
clones based on different acceptance criteria and create
detailed reports on accepted and rejected clones. For insti-
tutional reasons, we chose Oracle as a backend database
for this project, though it could be adapted to other SQL-
based databases. Nevertheless, given the number of
clones, sequence traces, discrepancies and contigs that are
typically tracked in these projects, some form of relational
database is required. This is generally not a problem as
most groups engaged in the validation of a large set of
clones are likely to have database capabilities already.

An advantage of using automated tools is significantly
reducing the number of missed sequence discrepancies,
which can be overlooked by researchers during manual
evaluation. However, the cost of this stringency is that the
software will maintain some clones as "needs further
review" (or occasionally rejected) that would otherwise
get accepted by manual analysis, because human eyes can

sometimes resolve errors made by the automated base
caller. It is also true that for some sequence reads, manual
analysis can resolve subtle issues (such as base compres-
sion or suppressed peaks) that are considered discrepan-
cies by the automated tool. Although this problem can be
mitigated to some extent by read trimming and by using
confidence scores to indicate which sequences to trust, it
is clear that there is still a role for manual analysis for
about 10% of a typical large scale clone analysis project.
Fortunately, these manual checks can be facilitated by
ACE, which informs the user of which specific discrepan-
cies and/or regions to check in order to expedite the man-
ual review.

To accommodate the many possible workflows used in
different projects, the ACE package was designed as a set
of modules that can be invoked individually. For exam-
ple, if full length sequences are obtained elsewhere, users
can skip the sequencing workflow and proceed directly to
contig analysis. The assembled sequences can be submit-
ted as text files (with or without confidence scores) and
compared to the expected sequences to generate a discrep-
ancy list and sorted for acceptance (n.b., without confi-
dence scores all discrepancies are assumed to be high
confidence).

Conclusion
The ACE software application was designed to meet the
challenges of high-throughput clone verification projects.
It uses a novel strategy to describe each clone as a list of
multidimensional discrepancy objects that can be used to
automatically determine the acceptability of the clone
based on user defined acceptance criteria. Its major advan-
tages include reducing the number of sequencing reads
needed to achieve adequate coverage for making decisions
on clones, reducing the need for manual analysis of
numerous clone sequences, reducing the process time
required to complete a project and significantly reducing
human error when annotating discrepancies on nucle-
otide and protein level. ACE has being used by the Har-
vard Institute of Proteomics for finishing and validating of
over 55,000 clones with ORFs ranging in size from 75 to
12,000 bp. Finished and validated clones are available to
the community at Plasmid Information Database [35].

Availability and requirements
Project name: ACE – Automated Clone Evaluation

Project home page: http://bighead.harvard.edu:8080/
ACEDEMO

Project help and installation instructions are supplied as
an additional file [see Additional file 6].
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Operating system(s): Linux: RedHat ; Windows: Micro-
soft Windows Server 2003

Programming language: Java, JSP, javaScript

Other requirements: Oracle 8i or 10g, Sun's J2SE version
1.4.1_02 or above, Tomcat 5.5.9, NCBI BLAST 2.0.14,
EMBOSS 2.5.1 (for needle – global alignment program),
Primer3 and Phred/Phrap package, Cygwin for installa-
tions on Windows server.

Any restrictions to use by non-academics: All the analy-
sis tools are freely available for academics.

Validated clone web page: http://plasmid.hms.har
vard.edu
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Additional file 1
Screen-shots of ACE interfaces. Figure `. IsolateRanking Report. Figure 
2. Request for Approval of Specific Primers. Figure 3. Decision Tool Exe-
cution. Figure 4. Create New Set ofParameters for Clone Ranking. Figure 
5. Online example of Gap MapperResult. Figure 6. Online example of 
Low Confidence Region Finder Results. Figure 7. Parameter Settings for 
Sequencing Primer Design.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-198-S1.pdf]

Additional file 2
Samples of ACE reports. The file contains sample reports for Decision 
Tool, Primer Designer, Primer Order, Gap Mapper and Low Confidence 
Finder.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-198-S2.pdf]

Additional file 3
ACE Data Import and Export. The file contains the organization and 
type of data that is either imported into or exported from ACE.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-198-S3.pdf]

Additional file 4
XML file with reference sequence descriptions. Example of XML file 
contains descriptions of reference sequences for all clones on the plate 
'YGS000374-1'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-198-S4.pdf]

Additional file 5
XML file with clone mapping information. Example of XML file con-
tains clone mapping data for the plate 'YGS000374-1'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-198-S5.pdf]

Additional file 6
Help file. This is the pdf version of the online help files in the software. It 
includes both a tutorial and an overview of the software, as well as instal-
lation instructions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-198-S6.pdf]
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