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Abstract
Background: With the advent of increasing sequence and structural data, a number of methods
have been proposed to locate putative protein binding sites from protein surfaces. Therefore,
methods that are able to identify whether these binding sites interact are needed.

Results: We have developed a new method using a machine learning approach to detect if protein
binding sites, once identified, interact with each other. The method exploits information relating to
sequence and structural complementary across protein interfaces and has been tested on a non-
redundant data set consisting of 584 homo-dimers and 198 hetero-dimers extracted from the PDB.
Results indicate 87.4% of the interacting binding sites and 68.6% non-interacting binding sites were
correctly identified. Furthermore, we built a pipeline that links this method to a modified version
of our previously developed method that predicts the location of binding sites.

Conclusion: We have demonstrated that this high-throughput pipeline is capable of identifying
binding sites for proteins, their interacting binding sites and, ultimately, their binding partners on a
large scale.

Background
Protein-protein interactions are essential to most biologi-
cal processes, for example, signal transduction, hormone-
receptor binding and immunological recognition. These
processes comprise complex cellular protein interaction
networks that are becoming increasingly accessible in the
post-genome era of high-throughput proteomics. Experi-
mental methods such as mass spectrometry, phage display
and yeast two hybrid have been developed to quickly
identify interactions between proteins in various organ-
isms [1-4]. Concurrently, computational approaches
exploiting amino acid properties, genomic and evolution-
ary information [5-13] have been proposed to determine

whether proteins interact or not (binary interactions).
While both large scale experimental and computational
methods are known to produce many false positive and
false negative predictions, the combination of using sev-
eral methods may provide more reliable results. The idea
of using consensus results is not new and has been used in
the meta-servers for structure prediction, generating con-
sensus models according to the results of several predic-
tion servers [14]. Here we provide a new approach to the
computational prediction of interacting protein-protein
binding sites which can contribute to this greater accuracy
[1].
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Thanks, in large part, to the availability of increasing
sequence and structural information, various computa-
tional methods have been proposed to identify putative
protein-protein binding sites utilizing evolutionary rela-
tionships [15-19], properties of surface patches [20,21],
residue hydrophobicity [22], etc. Recently, machine learn-
ing approaches such as neural networks [23-26], support
vector machines [27-31] and Bayesian network [32] have
been used to distinguish interface residues from non-
interface residues based on sequence and structural prop-
erties.

All of these methods locate binding sites from protein sur-
faces, but none of them provide information about their
binding partners (binding specificity). Therefore, meth-
ods that identify interacting protein binding sites are nec-
essary. Inherently these methods would then allow more
reliable determination of binary interactions. Docking
approaches provide this information by predicting the
binary complex of two known structures based on ener-
getic or geometric complementary [33,34]. However, long
computation time is often required to determine each
putative complex and most docking approaches are lim-
ited to rigid protein model analysis. Homology modeling
[35] and multimeric threading [36] build an atomic
model of a complex based on a template structure using
sequence alignments. These two methods have been
tested on large scale data sets [37,38]. They both rely on
the limited number of structure templates of complexes
[39] and usually require sequence identity above 30%
between homologs [40,41]. Aytuna et al. [42] predicted
protein-protein complexes by seeking pairs of proteins
that share structurally and evolutionarily conserved resi-
due similarity to 67 template interfaces. Pazos et al. [13]
utilized correlated mutation for determining pairs of pro-
teins that are likely to bind and also identified binding
sites concurrently. Although structural information is not
required for this method, a large set of multiple sequence
alignment for each possible pair of proteins is needed.

In this study, we introduced a new method to determine
whether two binding sites interact by using machine
learning techniques. A support vector machine was
trained on a data set designed to capture the underlying
principles of complementary information across protein
interfaces. By testing on a non-redundant data set com-
posed of 584 homo-dimer and 196 hetero-dimer struc-
tures taken from the Protein Data Bank (PDB [43]), we
showed that our method successfully identifies interacting
binding sites on a large scale without the constraint of
using structure templates. We subsequently built a high-
throughput pipeline combining this method with a mod-
ified version of our previously developed method that
identifies the location of binding sites. As shown in Figure
1, the putative binding sites of two proteins are first

located from the protein surfaces and then it is deter-
mined if they interact with each other. With this pipeline,
we are able to identify both binding sites and binding
partners simultaneously.

Results and discussion
The contact preferences of interface residues
A data set consisting of 584 homo-dimers and 196 hetero-
dimers with sequence identity below 30% was compiled
from the PDB [43]. To understand the contact preferences
of interface residues, statistical analysis was performed on
the 105871 contacting interface residue pairs derived
from the data set. Figure 2 plots the preferences of these
contacts formed in homo-dimers and hetero-dimers with
respect to the distributions of interface residues. The con-
tact preference was the ratio of the observed contact fre-
quency over the expected contact frequency (see methods
for details). Some commonality was observed for these
two types of interfaces. As expect, and consistent with pre-
vious studies [44,45], the contacts between positively and
negatively charged residues were favored and those
between residues with the same charge were underrepre-
sented. In addition, there was a relatively high tendency
for the interactions between hydrophobic residues. Bogan
et al. [46] has reported that, using alanine-scanning muta-
tional analysis of protein interfaces, aromatic residues
tryptophan and tyrosine are the two most common
amino acids in interface hot spots. In our data set, aro-
matic residues (tryptophan, tyrosine and phenylalanine)
were also found to participate in highly preferred contacts.

The pipeline for the identification of protein binding sites and their binding partnersFigure 1
The pipeline for the identification of protein binding sites and 
their binding partners. Predictor 1 can be any method that 
predicts the location of protein binding sites. Predictor 2 is 
the method presented in this study that identifies the inter-
acting binding sites.
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Some preferred associations reported by previous studies,
such as contacts between tryptophan and proline,
between phenylalanine and isoleucine, were also
observed [47,48].

Ofran et al. have reported significant differences in residue
composition and contact preferences between interfaces
of hetero-obligomers, hetero-complexes, homo-obli-
gomes, and homo-complexes [49]. In our data set, some
differences between homo-dimer and hetero-dimer inter-
faces have also been observed. There was a higher ten-
dency for hydrophobic-hydrophobic interactions in
homo-dimers. On the other hand, more salt bridges and
fewer contacts between residues with the same charge
were preferred in hetero-dimers.

Figure 3 plots the distribution of interactions between
interface residues with different secondary structure prop-
erties (alpha helix, beta strand, and others, including coil
regions). Alpha helix-alpha helix and beta stand-beta
strand contacts were more preferred in homo-dimers than
in hetero-dimers. These contacts are supposed to provide
tight packing across protein interfaces. Figure 4 illustrates
the interactions between interface residues with different
levels of exposure to water (fully exposed and partially
exposed). A high preference was found for contacts
between fully exposed and partially exposed interface res-
idues. No significant differences were observed for contact
preferences between residues with a different extent of
water exposure between homo-dimer and hetero-dimer
interfaces.

Several previous studies have provided detailed analysis
of interaction preferences of different types of protein-
protein interfaces in terms of amino acid, secondary struc-
ture or other properties [47-51]. The results of those pre-
vious studies and our studies show some variations

because of the different composition of data sets and the
definition of the interface residues. Nevertheless, the sur-
vey presented here indicates that information from
sequence profile, secondary structure and accessible sur-
face area (ASA) may be useful discriminators for defining
contacting interface residues and can be captured by SVM
predictors.

Identification of interacting binding sites using support 
vector machines
It has been reported that proteins and their interaction
partners have undergone compensating mutations to
maintain interaction specificity [52]. Changes of sequence
signatures in one partner's binding surface are comple-
mented by an appropriate change in sequence signatures
of its interaction partner [53]. Structural complementarity
between associating interfaces has also been observed by

The amino acid contact preferences in terms of the extent of water exposure for (a) homo-dimer and (b) hetero-dimer interfacesFigure 4
The amino acid contact preferences in terms of the extent of 
water exposure for (a) homo-dimer and (b) hetero-dimer 
interfaces. PE: partially exposed (40% > ASA >= 15% of a res-
idue's nominal maximum area), FE: fully exposed (ASA >= 
40% of a residue's nominal maximum area). The preferences 
were calculated with respect to the distribution of interface 
residues.

The amino acid contact preferences for (a) homo-dimer and (b) hetero-dimer interfacesFigure 2
The amino acid contact preferences for (a) homo-dimer and 
(b) hetero-dimer interfaces. The amino acids are listed 
according to hydrophobicity [64]. The preferences were cal-
culated with respect to the distribution of interface residues.

The residue contact preferences in terms of secondary struc-ture properties for (a) homo-dimer and (b) hetero-dimer interfacesFigure 3
The residue contact preferences in terms of secondary struc-
ture properties for (a) homo-dimer and (b) hetero-dimer 
interfaces. H: alpha helix, S: beta strand, C: others, including 
coil regions. The preferences were calculated with respect to 
the distribution of interface residues.
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previous researchers [54]. In this study, a support vector
machine (SVM) was trained to predict whether two bind-
ing site interact with each other using the sequence and
structural information extracted from the dimer inter-
faces. Thus the SVM should capture signal associated with
compensatory mutations. The machine was trained with
different combinations of sequence profile, secondary
structure and ASA for residues in contact across interacting
binding sites (positive class) and non-contacting residues
across non-interacting binding sites (negative class) (Fig-
ure 5). The input features of the spatially neighboring res-
idues of the interacting and non-interacting residues were
also entered into the SVM. Once training had completed
the machine was ready to be used for actual testing. The
testing methodology worked as follows (Figure 6): two
binding sites were predicted to interact if the number of
predicted contacting residue pairs reached a certain
threshold. This threshold value was derived from the per-
centage of the total possible residue pairs between them
(see methods for details).

Prediction performances
We first performed 2-fold cross validation on known
interacting binding sites derived from crystal structure
complexes in our data set using sequence profile data as
the only input feature. The data set was randomly sepa-
rated into two subgroups with an equal number of dim-
ers. Two training and testing processes were performed.
For each run, while one subgroup was used as the training
set, the other subgroup was used as the test set. As pre-
sented by areas under the ROC curves in Figure 7(a), by
increasing the surface patch size from 1 to 3 (that is,
including 2 spatially nearest surface residues, see methods
for details), the prediction performance improved signifi-
cantly. However, by further expanding the patch size to 5
(that is, including 4 spatially nearest surface residues), no
additional improvement was observed. Furthermore, to

investigate if the evolutionary information provided by
homologous sequences is necessary, we carried out a trial
input with only sequence information instead of
sequence profile information. As shown in Figure 7(a),
without using this evolutionary information, the predic-
tion performance deteriorated significantly.

We then evaluated the prediction method exploiting
structural information. At a surface patch size of 1 (Figure
7(b)), incorporating information of secondary structure
with the sequence profile increased the prediction accu-
racy significantly. However, further incorporation of
information on the accessible surface area did not result in
any additional improvement. As we increased the patch
size to 3 (Figure 7(c)), we noticed that secondary structure
and ASA had no impact on prediction. Therefore, for this
study, we chose a sequence profile with a patch size 3 as
the default input features.

Figure 8 plots the prediction accuracy versus the threshold
when the default input features were used. The data sam-
ples were taken for every 2% increase in threshold. As
expected, less interacting binding sites and more non-
interacting binding sites were identified as the threshold
increased. The average accuracy for interacting and non-
interacting binding sites reached the highest value when
the threshold was set to 56% of the total possible residue

The prediction of contacting residue pairsFigure 6
The prediction of contacting residue pairs. Proteins A 
and B are predicted to interact with each other if the per-
centage of the predicted contacting residue pairs reaches a 
certain threshold (see methods for details).

Training Classes of the SVM predictor (a) Positive training class: residue pairs across two interacting binding sites with a distance < 5Å between any of their respective heavy atoms (b) Negative training class: any possible residue pairs between two non-interacting binding sitesFigure 5
Training Classes of the SVM predictor (a) Positive training 
class: residue pairs across two interacting binding sites with a 
distance < 5Å between any of their respective heavy atoms 
(b) Negative training class: any possible residue pairs 
between two non-interacting binding sites.
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pairs. With this threshold, 87.4% of interacting binding
sites and 68.6% of non-interacting binding sites were cor-
rectly assigned (Table 1).

The surface patch used here included only the two nearest
surface residues, which are very likely to be located in the
same sequence segment. For this reason we further per-
formed a trial using the sequence profile with a window
size 5 in sequence (that is, including 4 sequentially near-
est residues). As expected, the ROC curves in Figure 7(a)
indicates that the predictor using sequence information
only was able to perform similarly to the predictor using
a patch size of 3. At a threshold of 56%, 88.7% of interact-
ing binding sites and 63.3% of non-interacting binding
sites were correctly assigned. When the average accuracy
reached its maximum (threshold: 64%), 78.5% of inter-
acting binding sites and 76.9% of non-interacting binding
sites were correctly assigned.

The data set comprised 584 homo-dimers and 196 hetero-
dimers. Using our default predictor, when the accuracy
reached its maximum (at threshold 56%), up to 96.1% of
the homo-dimers were correctly predicted while only
61.7% of the hetero-dimers were identified. Is this phe-
nomenon attributed to the difference of residue contact
preferences between homo-dimer and hetero-dimer inter-
faces? To answer this question, we trained and tested these
two types of interfaces separately. The results showed that
homo-dimers were more accurately predicted than het-
ero-dimers (Figure 9). To evaluate whether this was

Prediction accuracy for interacting and non-interacting pro-tein binding sitesFigure 8
Prediction accuracy for interacting and non-interacting pro-
tein binding sites. Two protein binding sites were predicted 
to interact with each other if the percentage of the predicted 
contacting residue pairs reached a certain threshold.

ROC curves for the prediction of interacting and non-inter-acting protein binding sites using different input featuresFigure 7
ROC curves for the prediction of interacting and non-inter-
acting protein binding sites using different input features. (a) 
Predictions using only sequence profile/sequence information 
but different surface patch or sequence window sizes. Predic-
tions using different combinations of sequence profile, sec-
ondary structure, and ASA when (b) surface patch size is 1 
(c) surface patch size is 3. SEQ: sequence profile; SEQ-NE: 
sequence information only (without the evolutionary infor-
mation provided by homologous sequences); SEC: secondary 
structure; ASA: accessible surface area.
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caused by the larger amount on data available for homo-
dimers, 196 homo-dimers were randomly selected and 2
fold cross validation was performed on this subset. Even
based on equal data size, homo-dimer interfaces were still
significantly better predicted than hetero-dimer interfaces.
When we compared the prediction accuracy of homo-
dimers of various data set sizes, we found that the larger
data set with 584 homo-dimers outperformed the smaller
data set of 196 homo-dimers (Figure 9). On the other
hand, to improve the prediction for hetero-dimer by using
larger training data, we performed 10 fold cross validation
on hetero-dimers. The data set was randomly divided into
10 subgroups. For each run, 9 subgroups were combined
as the training set and the other subgroup was used as the
test set. The resulting prediction was better than using 2
fold cross validation (Figure 9). In summary, our method
correctly predicted 96.4% of interacting binding sites and
67.5% of non-interacting binding sites for homo-dimers
and 66.3% of interacting binding sites and 62.8% of non-
interacting binding sites for hetero-dimers (Table 1). In
the future, better predictions, especially for hetero-dimers,
is expected as more training data become available.

In this study, two binding sites were predicted to interact
with each other if >56% of the total possible residue pairs
between them were predicted to be in contact with each
other. Raising the threshold increases the precision but
decreases the recall (assigns less interacting binding sites
and more non-interacting sites) and vice versa. In the data
set, the contacting residue pairs for two interacting bind-
ing sites constituted, on average, only approximately 8%
of the total possible residue pairs. Therefore, the threshold
(56%) selected above seem to be very high. However,
when we considered the 3 spatially nearest residues of
each any two contacting residues to be in contact with
each other across the interface, the fraction of contacting
residue pairs out of the total possible residue pairs
increased to 47%.

Figure 10 is an example of the prediction of interacting
binding sites, showing the interaction between the heavy
chain and light chain of the CD1d1 complex. CD1 is a

family of non-polymorphic cell surface glycoproteins
which fold very much like MHC class I molecules [55].
The high scoring residues were mapped onto the structure.
The high scoring residues were those involved in at least 3
predicted contacts, each of which had a SVM predicted
score > 0.9. We found that most of these high scoring res-
idues were clustered across the interfaces. Figure 11 illus-
trates the interface between PyrDB and the PyrK subunit
of the flavor protein dihydroorotate dehydrogenase B.
Three cofactors (FMN, FAD and [2Fe-2S] cluster) respon-
sible for the transfer of electrons are located in the middle
of the interface [56]. The high scoring residues assigned by
our predictor were all located on the edge of the interface
and the majority of them were close to each other. Figure
12 shows the prediction on the interaction between pro-
tein kinase cdk2 and cyclin. Most of the high scoring resi-
dues of cdk2 were located near the PSTAIRE helix, which

Comparison of the ROC curves for the prediction of inter-acting and non-interacting protein binding sites between homo-dimer and hetero-dimer interfaces using training data of different sizesFigure 9
Comparison of the ROC curves for the prediction of inter-
acting and non-interacting protein binding sites between 
homo-dimer and hetero-dimer interfaces using training data 
of different sizes.

Table 1: The prediction performances

Accuracy for interacting binding sites, 
also known as recall (%)

Accuracy for non-interacting binding 
sites (%)

Average accuracy (%) Precision (%)

Mix1 87.4 68.6 78.0 73.6
Mix1 (sequence window) 88.7 63.3 76.0 70.8
Mix1 (putative binding sites) 87.3 67.6 77.4 72.9
Homo-dimers2 96.4 67.5 81.9 74.8
Hetero-dimers2 66.3 62.8 64.5 64.0

1 The mixed data set of homo-dimer and hetero-dimer interfaces.
2 The data set of homo-dimer and hetero-dimer interfaces were separately trained and tested.
The prediction was performed using the default input features (sequence profile with a surface patch size 3).
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was reported to be an important binding region for cyclin
[57].

Predictions on putative binding sites
A pipeline was built to test if two putative binding sites
would interact with each other (Figure 1). Given two pro-
teins A and B, the pipeline first identifies the putative
binding site of each protein (with predictor I) and then
identifies the interaction between the two putative bind-
ing sites (with predictor II, which is the method presented
in this study). This pipeline is able to provide information
on both the location of binding sites and their binding
partners.

Putative binding sites of individual components of each
complex in our data set were determined by a method
modified from our previous work, using sequence and
structural information [29] (predictor I, see methods).
With this method, the recall was 65.6% and the precision
was 45.2% at the residue level. The results are summarized
as follows: 49.81% of the binding sites were precisely pre-
dicted, 71.30% of the binding sites were correctly pre-
dicted and 23.6% of the binding sites were partially
covered by the predicted residues. If at least 70% of the
residues at a site were identified, we defined this to be pre-
cisely predicted. If at least 50% of the residues at a site
were identified, we considered this to be correctly pre-
dicted.

The important contacting residues across protein kinase cdk2 and cyclin (PDB code: 1F5Q) assigned by our predictorFigure 12
The important contacting residues across protein kinase 
cdk2 and cyclin (PDB code: 1F5Q) assigned by our predictor. 
The high scoring residues at the binding site (yellow) of cdk2 
(green) were colored orange and presented as spheres. The 
high scoring residues at the binding site (purple) of cyclin 
(light blue) were colored red and presented as spheres.

The important contacting residues across the heavy chain and the light chain of the CD1d1 complex (PDB code: 1CD1) assigned by our predictorFigure 10
The important contacting residues across the heavy chain 
and the light chain of the CD1d1 complex (PDB code: 1CD1) 
assigned by our predictor. The high scoring residues at the 
binding site (yellow) of the heavy chain (green) were colored 
orange and presented as spheres. The high scoring residues 
at the binding site (purple) of the light chain (light blue) were 
colored red and presented as spheres.

The important contacting residues across the PyrDB and the PyrK subunits of dihydroorotate dehydrogenase B (PDB code: 1EP1) assigned by our predictorFigure 11
The important contacting residues across the PyrDB and the 
PyrK subunits of dihydroorotate dehydrogenase B (PDB 
code: 1EP1) assigned by our predictor. The high scoring resi-
dues at the binding site (yellow) of the PyrDB subunit (green) 
were colored orange and presented as spheres. The high 
scoring residues at the binding site (purple) of the PyrK subu-
nit (light blue) were colored red and presented as spheres. 
Three cofactors, FMN, FAD and the [2Fe-2S] cluster were 
colored gray and presented as spheres.
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The interactions of these putative binding sites were fur-
ther tested using our method (predictor II in Figure 1).
Although we used putative binding sites instead of known
binding sites, the prediction performance only dropped
slightly (Figure 13). At a threshold of 56%, the predictor
identified 87.3% of interacting binding sites and 67.6%
non-interacting binding sites.

It is expected that if the putative binding sites are accu-
rately predicted and hence identical to the known binding
sites, the resulting prediction of the interaction will be the
accurate. However, in most cases, the binding sites are not
completely identified, so why were the predicted interac-
tions so good? The following examples might help to
explain why the results based on putative binding sites
were very close to those based on known binding sites. For
Rad50 abc-ATPase [58], most of the interface residues
between the N-terminal and C-terminal segments involve
high scoring contacts predicted by predictor II (Figure
14(a)). Figure 14(b) illustrated the prediction based on
putative binding sites. Although the interface between the
N-terminal and C-terminal segments was only partially
identified by predictor I, there were still enough high scor-
ing contacting residues at these putative sites identified by
predictor II that allowed us to determine the association
between these two segments.

The interaction between actin and gelsolin G4–G6
domains [58] is presented in Figure 15. In Figure 15(b),
Predictor I only identified the interface between the G4
domain and actin. However, the high scoring residues
identified by predictor II across this interface were suffi-

cient to determine the binding between these two mole-
cules. The falsely predicted binding site in the G6 domain
assigned by predictor I caused predictor II to make some
erroneous predictions of high scoring contacting residues
in this region. This might arise since the fact that both G4
and G6 domains belong to the gelsolin repeat family, so
that the false positives on the helix of the G6 domain were
predicted to contact actin via the site interacting with the
G4 domain.

The important contacting residues across the N-terminal and the C-terminal segments of Rad50 abc-ATPase (PDB code: 1II8) assigned by our predictor based on (a) known binding sites and (b) putative binding sitesFigure 14
The important contacting residues across the N-terminal and 
the C-terminal segments of Rad50 abc-ATPase (PDB code: 
1II8) assigned by our predictor based on (a) known binding 
sites and (b) putative binding sites. The high scoring residues 
at the binding site (yellow) of N-terminal segment (green) 
were colored orange. The high scoring residues at the bind-
ing site (purple) of C-terminal segment (light blue) were 
colored red.

Comparison of the prediction performances based on known binding sites and putative binding sites using sequence profile with a surface patch size of 3 as inputFigure 13
Comparison of the prediction performances based on known 
binding sites and putative binding sites using sequence profile 
with a surface patch size of 3 as input.
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The pipeline consists of binding site identification (pre-
dictor I) and subsequent prediction of whether two of
these identified sites interact (predictor II). Since predictor
II depends little on spatially neighboring residues and is
mostly sequence dependant, a sequence only predictor I
could be substituted [19,42].

Conclusion
We have developed a new method to predict interacting
protein binding sites using a machine learning technique.

To the best of our knowledge, this method is the first trial
that predicts interacting binding sites without the con-
straint of using structure templates. An SVM was trained to
learn the complementary information across interfaces
and has been tested on a data set consisting of 584 non-
redundant homo-dimer and 198 hetero-dimer interfaces.
Our predictor successfully identified 87.4% of the inter-
acting binding sites and 68.6% of the non-interacting
binding sites. Separate training and testing on homo-dim-
ers and hetero-dimers showed different prediction results,
which might be caused by the differences in residue con-
tact preferences between these two types of interfaces. For
homo-dimers, 96.4% of the interacting binding sites and
67.5% of the non-interacting binding sites were correctly
identified. For hetero-dimers, 66.3% of the interacting
binding sites and 62.8% of the non-interacting binding
sites were correctly identified. Better predictions are
expected as more structures are determined and the
number of homo-dimer and hetero-dimer complexes
upon which to train increases.

We built a pipeline combining the method discussed here
to a modified version of our previously developed
method that identifies the location of binding sites. Tak-
ing both predictors together we showed that the predic-
tion accuracy that were based on putative binding sites
only decreased slightly over accurately known sites. Thus
the pipeline enables the simultaneous prediction of bind-
ing sites and binding partners, identifying 87.3% of the
interacting binding sites and 67.6% of the non-interacting
binding sites in our data set. In the future, the pipeline can
be used to search new protein binding sites and interac-
tions in various biological systems, and therefore build
interaction networks based on interaction details between
proteins. It can also be used to validate existing networks.

At this time it is difficult to compare the results presented
here with those of other methods since each uses different
training sets and there is a lack of a common test set [41].
In addition, most existing methods have not been tested
on negative data and hence prediction statistics (preci-
sion, recall, etc.) were not provided. Nevertheless, differ-
ent methods have different limitations and exploit
different information to various extents. For example,
most docking procedures are computational expensive,
homology modeling and multimeric threading rely on the
availability of complex structure templates and correlated
mutation methods need a large set of sequence alignment
for each possible protein pair. Current efforts are directed
at attaining higher prediction accuracy through incorpora-
tion of additional information such as local interface
geometry or water mediated interactions into our predic-
tor.

The important contacting residues across gelsolin G4–G6 domains and actin (PDB code: 1H1V) assigned by our predic-tor based on (a) known binding sites and (b) putative binding sitesFigure 15
The important contacting residues across gelsolin G4–G6 
domains and actin (PDB code: 1H1V) assigned by our predic-
tor based on (a) known binding sites and (b) putative binding 
sites. The high scoring residues at the binding site (yellow) of 
actin (green) were colored orange. The high scoring residues 
at the binding site (purple) of gelsolin G4–G6 domains (light 
blue) were colored red.
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Methods
Data set
A non-redundant data set of dimer complexes was com-
piled using the method of Zhou et al. [26] modified as fol-
lows. All non-NMR multiple-chain protein entries with
resolution better than 3.5 Å were collected from the PDB
(March, 2004) [43]. For each entry, two chains were
selected as an interacting protein pair if both have more
than 20 residues that formed interfacial contacts with
each other. A residue was considered to form an interfacial
contact if the distance between any of its heavy atoms and
any heavy atoms of its interacting proteins were <5 Å. The
pairs containing chains with < 80 amino acids or SCOP
class >= 8 were then filtered out.

Each of the collected chains was further compared against
all other chains by BLAST. Chains were assigned to the
same cluster if the sequence identity was > 30% and >
90% of the amino acids were aligned. All interacting pro-
tein pairs were mapped to these clusters and the represent-
ative pairs were selected. In order to consider dimers only,
the representative pairs with chains interacting with more
than one chain were discarded. Homo-dimers with both
chains having > 30 interface residues and hetero-dimers
with both chains having > 20 interface residues were col-
lected, in order to roughly exclude those from crystallo-
graphic complexes [30]. This resulted in a non-redundant
data set of 584 homo-dimers and 196 hetero-dimers. The
data are available upon request from the authors.

The calculations of contact preferences of interface 
residues
We have surveyed the preferences of contacts between dif-
ferent groups of interface residues. We classified the resi-
dues into 20 groups in terms of amino acids, 3 groups in
terms of secondary structures (alpha helix, beta strand,
and others, including coil) and 2 groups in terms of the
extent of water exposure (fully exposed: ASA >= 40% of a
residue's nominal maximum area [59]; partially exposed:
15% <= ASA < 40%). The secondary structure and ASA of
residues for each protein chain were calculated using the
DSSP program [60] with the coordinates of a single chain
obtained from the corresponding complex structure.

The contact preference (L) for interface residues from
group a and group b was calculated as follows [49]:

L(a, b) = Fobserved(a, b)/Fexpected(a, b)

where the observed contact frequency was defined as:

Fobserved(a, b) = Nobserved(a, b)/Ntotal

and Nobserved(a, b) was the number of contact residue pairs
between residue group a and group b. Ntotal was the total

number of all contacting residue pairs. The expected con-
tact frequency was defined as:

Fexpected(a, b) = F(a) × F(b)

where F(a) and F(b) were the frequency of residue group
a and group b at interfaces respectively. In this study, a res-
idue was defined as a surface residue if its ASA was at least
15% of its nominal maximum area [59]. A surface residue
was defined to be an interface residue (residue at a bind-
ing site) if it formed an interfacial contact. The definition
of interfacial contact was described in the data set section.

Support vector machine (SVM) classifiers
The SVMs were trained to predict if two binding sites inter-
act with each other. The SVM software used in this study
was SVMlight [61]. The radial basis function exp(-γ||b - a||2)
was chosen as a kernel with γ = 0.01 and regularization
parameter C = 10.

During the training process (Figure 5), two interface res-
idues, each from interacting binding sites, were consid-
ered to form a contacting residue pair (positive class) if
the distance between any of their respective heavy atoms
was less than 5 Å. A non-contacting residue pair (negative
class) was defined as any possible interface residue pair
between two non-interacting protein binding sites (bind-
ing sites from two non-interacting protein chains). Non-
interacting protein chains were generated from our data
set having determined that two proteins were not reported
to be in the same cellular location as defined by the Uni-
Prot database [62]. Since the number of non-interacting
protein pairs greatly outnumbered the number of interact-
ing protein pairs, we randomly selected a small portion
out of the large pool to be representative data, making the
number of non-interacting protein pairs equal to the
number of interacting protein pairs. For example, for the
combined data set of homo-dimers and hetero-dimers,
there were 780 interacting protein pairs. The number of
all possible non-interacting protein pairs was 460070.
780 non-interacting protein pairs were further randomly
chosen from this pool.

To reduce the data redundancy and training time, for each
binding site residue with multiple contacting residues at
the other site, only the pairing with the smallest distance
was selected to be included in the positive training set.
Since there were many more non-interacting residue pairs
than interacting residue pairs, a set of non-interacting res-
idue pairs was randomly selected so that the ratio of pos-
itive to negative data was 1:1.

The SVM was fed two surface patches, each included a res-
idue of an interface residue pair and its n spatially nearest
surface residues (n was an adjustable parameter). The
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input features were different combinations of sequence
profile, secondary structure and accessible surface area of
residues in these 2 surface patches. If all three input fea-
tures were used and surface patch size was set to 3, each
residue pair was encoded as a feature vector with a dimen-
sion of 2 × 3 × 24: 2 × (the surface residue to be predicted
+ 2 nearest neighbors) × (20 amino acids + accessible sur-
face area + 3 types of secondary structure). The sequence
profiles were obtained from 3 iterations of a PSI-BLAST
search against the NCBI non-redundant database (NR)
with e = 0.001 and h = 0.001 [63]. The 3 categories of sec-
ondary structure were: alpha helix, beta sheet, and others,
including coil regions (encoded 1 if it was in this category
and -1 if it was not). All input values were scaled between
-1 and 1.

During the testing process (Figure 6), two binding sites
A and B were predicted to interact with each other if the
number of positively predicted residue pairs between
them were above a certain threshold:

Npredicted ≥ P% × Ntotal

where Npredicted is the number of positively predicted resi-
due pairs. Ntotal is the number of total possible residue
pairs between binding sites A and B. Given the threshold,
the prediction performance was measured as follows:

Precision = TP/(TP +FP)

Accuracy for positive class, or recall, or true positive rate = TP/
(TP + FN)

Accuracy for negative class = TN/(TN + FP)

False positive rate = FP/(FP + TN)

Average accuracy = (TP + TN)/(TP + TN + FP + FN)

where TP is the number of correctly predicted interacting
binding sites, TN is the number of correctly predicted
non-interacting binding sites, FP is the number of non-
interacting binding sites incorrectly predicted to be inter-
acting and FN is the number of interacting binding sites
incorrectly predicted to be non-interacting.

Identification of the putative binding sites
The putative protein-protein binding sites were deter-
mined by a method modified from our previous work
[29]. A SVM was trained to locate binding site residues on
a protein surface by using sequence profile and accessible
surface area of spatially neighboring surface residues. 976
non-redundant chains (584 chains from one of the com-
ponents of homo-dimers, and 196 × 2 chains from both
components of hetero-dimers) were trained and tested

with 2 fold cross validation. Each of the other component
of a homo-dimer was tested by the training set which
didn’t contain its homolog. The residues ranked as the top
30% by SVM were further clustered using the clustering
method described in [29].
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