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Abstract
Background: In practice many biological time series measurements, including gene microarrays,
are conducted at time points that seem to be interesting in the biologist's opinion and not
necessarily at fixed time intervals. In many circumstances we are interested in finding targets that
are expressed periodically. To tackle the problems of uneven sampling and unknown type of noise
in periodicity detection, we propose to use robust regression.

Methods: The aim of this paper is to develop a general framework for robust periodicity detection
and review and rank different approaches by means of simulations. We also show the results for
some real measurement data.

Results: The simulation results clearly show that when the sampling of time series gets more and
more uneven, the methods that assume even sampling become unusable. We find that M-
estimation provides a good compromise between robustness and computational efficiency.

Conclusion: Since uneven sampling occurs often in biological measurements, the robust methods
developed in this paper are expected to have many uses. The regression based formulation of the
periodicity detection problem easily adapts to non-uniform sampling. Using robust regression helps
to reject inconsistently behaving data points.

Availability: The implementations are currently available for Matlab and will be made available for
the users of R as well. More information can be found in the web-supplement [1].

Background
The detection of periodically behaving gene expression
time series has been an area of enormous interest lately.
Since more and more microarray [2] data is becoming
available, including time series, the periodicity detection
methods from other branches of science are being modi-
fied for use in gene expression studies. Periodicity detec-

tion methods can be broadly divided into generic and
more specific detection rules. The generic approaches use
the available statistical theory to seek strong periodic com-
ponents at all the available frequencies [3-7] and use exact
tests to yield significance values with multiple correction.
The more specific methods try to find periodic phenom-
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ena at specific frequencies, e.g. the assumed cell cycle fre-
quency (see e.g. [8-15])

Some of the most severe problems of processing gene
expression time series data include short time series
length, the presence of noise of unknown distribution,
outliers (i.e. points that are clearly inconsistent with most
of the other points in the data), non-uniform sampling
used in performing the experiments and other non-linear-
ities involved in the measurement technologies them-
selves. Outliers can be thought of as low-probability
values from a mixture model where with a high probabil-
ity the noise in the signal is modelled by a (Gaussian) dis-
tribution and with a low probability by another
distribution whose variance is much higher than that of
the first one. In earlier work we presented a robust modi-
fication [5] of Fisher's g-test [6] for finding hidden perio-
dicities in time series data. The method performs well
both under the Gaussian noise assumption and when out-
liers and other non-linearities are present. However, non-
uniform sampling, other than the one resulting from
missing values, was not considered and the aim of this
paper is to evaluate different robust methods for periodic-
ity detection that can handle non-uniform sampling.
Non-uniform sampling in periodicity detection has been
previously considered in [7]. The authors use a so-called
Lomb-Scargle periodogram to find the spectral estimate
for a time series, not limited by non-uniform sampling,
and then test whether the maximum value of the spectral
estimate is significantly higher than the other values.
While the method is mathematically sound and is based
on an exact test, it is non-robust, as is the basic Fisher's
test. The same issue applies to most of the other previ-
ously published methods. Exceptions to this are in [5] and
in [15], where the authors use Bayesian detection and
show that the method can handle data that is corrupted
with uniform and Laplacian noise as well (besides Gaus-
sian).

The matter of choosing the sampling scenario in a cost-
effective way is discussed in [16] where the authors
present an active learning based online algorithm for
choosing the sampling strategy.

In [17] the authors have developed a periodicity detection
method in which they fit orthogonal periodic polynomi-
als to non-uniformly sampled data. If the periodicity of
interest is not sinusoidal (e.g. narrow pulse signals), the
method improves on the performance of the Lomb-Scar-
gle periodogram, but reduces to it in the case of sinusoidal
model, which is the case of interest for us. An approach
based on similar ideas is presented in [18] where the
authors use least squares fitting of wavelets which is espe-
cially suitable if we want to search for periodicity in non-

uniformly sampled data with non-sinusoidal cyclic com-
ponents.

In [19] the authors use the Lomb-Scargle periodogram for
periodicity detection and show that it performs better
than the combination of interpolation to uniform sam-
pling and ordinary periodogram. They point out that
there is a low-pass effect involved in interpolation that is
a major problem. In [20] the authors use a complicated
approach of neural networks for periodicity detection in
non-uniformly sampled time series but use interpolation
to uniform sampling first, which, according to [19],
causes problems in the high frequency end of the spectra.
In [21] the authors actually make use of non-uniform
sampling in digital alias-free signal processing applica-
tions. However, their approach is based on the idea of
being able to choose the sampling intervals, which is not
the usual case in biological studies. A model similar to the
one in this paper is presented in [22], where the authors
aim to estimate a wide spectral range of frequencies of a
non uniformly sampled signal. Their approach is, how-
ever, aimed more at real-time applications and longer sig-
nals than those usually present in microarray studies.
Some of these methods can be thought to be improve-
ments over the standard periodogram but non-robust
when it comes to heavy tailed distributions and/or mix-
ture models where the presence of (low probability) out-
liers can cause large residuals in the estimators and thus
bias the results. The Bayesian approach [15] is a clear dis-
tinction to the aforementioned approaches and presents
an opportunity to make use of prior knowledge, such as
the frequency of the oscillation. It is shown in [15] that
the Bayesian detector performs better than methods that
assume a strict frequency of periodicity [9] in case the fre-
quency is not exactly known a priori. Other Bayesian peri-
odicity detectors are presented in [23-26].

In this paper we follow the general direction of Fisher's g-
test together with multiple testing correction for the detec-
tion of periodic time series in multiple time series data.
Several modifications are needed to take into account
non-uniform sampling and unknown noise characteris-
tics. We use several different robust regression based
methods [27-30] to find the spectral estimate of a time
series instead of using the basic non-robust periodogram.
By using regression we can readily take non-uniform sam-
pling into account.

After finding the spectral estimate we propose to replace
the periodogram in the g-test with the robust spectral esti-
mate. Since no analytical results for such modifications
exist, we resort to permutation tests in finding the p-val-
ues. We also note that the test can be modified to yield a
test for one specific chosen frequency if an a priori
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hypothesis is made about the frequency of the periodicity
of interest.

To compare the performance of the different regression
methods and some of the previously introduced novel
methods [5,7,15] in this framework, we use simulations
and show the receiver operating characteristic (ROC) fig-
ures under several noise and signal configurations and
non-uniform sampling. The computational complexity of
the different methods is also briefly considered.

As an application we choose one of the best performing
methods and apply it to microarray data measured from
the mussel Mytilus californianus. Our experiments indicate
that there is no statistically significant connection
between the circadian rhythm and cell cycle regulated
genes that could be expected to show periodic expression.

Results and discussion
Simulation based performance
The performance of the different introduced estimators
when using the g-test framework is now verified by simu-
lations and through the use of receiver operating charac-
teristic curves (ROC, see e.g. [31]). The following
simulations are first based on the assumption that we do
not know the frequency of the underlying periodic signal.
In addition, we iteratively subtract the fitted sinusoidals in
the process of calculating the Fourier coefficients when
using the robust regression based methods (as suggested
in [30]). We then simulate time series where we have
approximate a priori knowledge on the frequency of peri-
odicity and compare the performance of the regression
approach to the rank based method presented in [5] and
the Bayesian detector presented in [15].

Before going into the details of the ROC curves, we first
present two non-uniformly sampled simulated periodic
time series of length 20 and their estimated power spectra
as examples. The periodic time series and the correspond-
ing spectral estimates are shown in Figure 1. The sampling
of the first time series (Figure 1a)) is chosen according to
the experimental mussel data (Gracey et al., to appear in
ArrayExpress [32]) that was conducted at time points
8.67, 10.52, 12.42, 15.67, 20.27, 23.52, 27.52, 30.52,
33.77, 37.32, 40.67, 45.22, 48.52, 51.67, 55.17, 58.47,
62.52, 65.52, 68.52 and 71.02 hours after the beginning
of the experiment (see further description in subsection
The methods in practice), so that the samples are taken usu-
ally approximately every three hours but sometimes there
are four to five hour gaps. This sampling is a good repre-
sentative of a real world measurement. The sampling of
the second time series (Figure 1c)) is an artificially deteri-
orated version of the first one, so that sometimes the sam-
ples are closer together and sometimes farther apart. These
artificial sample times were chosen to be 8.97, 10.12,

12.52, 18.67, 20.27, 22.12, 27.52, 32.52, 33.77, 34.32,
35.67, 43.22, 43.52, 47.67, 55.17, 58.47, 60.52, 65.52,
66.52 and 68.02 hours after the beginning of the experi-
ment. The three spectral estimates in Figure 1b) and Figure
1d) correspond to an ideal spectral estimate (as if the sam-
pling was uniform and there was no additive noise), the
periodogram of the samples (ignoring time indices) and
the regression based M-estimate. As we can see, in the first
case (b) the periodogram estimate is still quite good but
when the sampling gets worse (d), the periodogram no
longer operates properly since it assumes uniform sam-
pling. To test more formally which of the methods, if any,
outperforms the others we now resort to the ROC curves.

The ROC curve is a plot of sensitivity  on the

y-axis, versus 1-specificity  on the x-axis. TP

stands for true positive, FN for false negative and so on.
For a perfect test the sensitivity is 1 for a specificity of 1.
For any non-ideal tests the ROC curve shows the sensitiv-
ity-specificity tradeoff. The line segment from (0,0) to
(1,1) is called the chance diagonal since the discrimina-
tion ability of a test is near to random if the curve is near
to the diagonal.

A priori unknown frequency

We use the model of Equation (1) in the generation of
300 periodic time series corresponding to the alternative
hypothesis and 300 nonperiodic time series correspond-
ing to the null hypothesis. We consider the same two cases
of non-uniform sampling described above. For each time
series we calculate the g-statistic and order the values. We
repetitively accept one more time series as periodic and
since the ground truth is known, we can now tell the
number of true and false positives and true and false neg-
atives to construct the ROC curves for each of the meth-
ods. Since we assume the null distribution to be the same
for all the time series we do not use permutation tests
here. We chose to consider three types of noise for both of
the non-uniform samplings, namely where the additive
noise is Gaussian (std. 0.5,1.0), Gaussian (std. 0.75) with
outliers at random locations (1,2 or 3 outliers, amplitude
uniformly randomly chosen from ± (5 . . . 6)) or Laplacian
(std. 1.0). The underlying periodic signal in the alternative

hypothesis set always has an amplitude of  (the
amplitude of the sum of zero phase cosine plus sine) as in
[3] and the frequency of periodicity is uniformly random

chosen in the interval [0.05,0.45]2π.
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Figure 2 shows that the robust method (denoted as
Robustperiodic) we introduced in [5] performs the best in
the case of the less non-uniform sampling and Gaussian
or Laplacian noise. The ROC curves show that when the
sampling is more non-uniform, the methods that assume
uniform sampling no longer work at all. In these three
cases the Lomb-Scargle periodogram and M-estimator
based method still work rather well. Figure 3 clearly shows
that outliers negatively affected performance of most of
the methods. In the case of one or two outliers the M-esti-
mator method outperforms the rest, but at 15% contami-

nation (3 outliers, time series length 20) only the LTS
based method can make a clear distinction from random
guessing. It is discussed in [33,34] that any method that
can not tolerate 10% of outliers should be used with cau-
tion. In addition, the methods that are not designed to
handle non-uniform sampling quickly start to perform
poorly the more random the sampling gets. It is interest-
ing to note that the method introduced in [5] performs
relatively well under the non-uniform sampling scenario
of the mussel data although the method is not designed
for non-uniform sampling.

Example signalsFigure 1
Example signals. Two example signals and their spectral estimates (scaled). The first simulated time series (a) is sampled 
according to the experimental mussel data. The sampling of the second time series (c) is an artificially deteriorated version of 
the first one. The corresponding spectral estimates, (b) and (d), include the ideal periodogram (Ideal periodogram), as if the 
time series was sampled uniformly and had no added noise, the periodogram of the samples (Periodogram). ignoring time indi-
ces, and the M-estimate (Robust (M) estimator).
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Receiver operating characteristic curves 1Figure 2
Receiver operating characteristic curves 1. The receiver operating characteristic curves for three different test cases and 
two sampling scenarios. On the left hand side the sampling is according to the mussel data while on the right hand side, the 
results for more deteriorated sampling are seen. The additive noise in this case is either Gaussian with varying standard devia-
tion or Laplacian. The figure legends refer to the regression types except for Periodogram which is the ordinary periodogram 
ignoring time indices and Robustperiodic which corresponds to the method presented in [5].
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Receiver operating characteristic curves 2Figure 3
Receiver operating characteristic curves 2. The noise in this case is additive Gaussian with standard deviation of 0.75 and 
outliers of varying amount and amplitude. The figure legends refer to the same methods as in Figure 2.
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A priori known frequency
In case we have prior knowledge on the frequency of the
periodicity of interest, it is desirable to take this into
account when trying to rank the time series according to
periodicity. For the purpose of performance comparison
we compare here the simulated ROC curves of three meth-
ods under the two presented sampling scenarios when the
frequency is approximately known. We choose for the
simulations the M-estimator as a representative of the
regression estimators, the Bayesian approach method pre-
sented in [15] and the rank based method not designed
for not-uniform sampling [5]. The strength of the Baye-
sian method [15] is that it is training-free and it does not
assume a single frequency for the periodicity but rather a
prior distribution whose mean and scale can be tuned
according to prior knowledge.

We generate four sets of 300 time series according to the
null hypothesis with Gaussian noise (std. 1) and 0, 1, 2 or
3 (0 in the time series of the first set, 1 in the second and
so forth) randomly placed outliers of amplitude ± (5 . . .
6) per series. For the alternative hypothesis sets (4) we

generate sinusoidals of random phase, amplitude 
and frequency uniformly distributed in the range

[0.09,0.11]2π in addition to the additive noise similar to
the null hypothesis set. We then deliberately choose the
frequency that is given to the periodicity detectors incor-

rectly as 2π 0.125 (as in [15]) and observe the ROC curves
for the three methods. The standard deviation for the
Bayesian method was set to 0.1 as in [15].

As we can see in Figure 4a) and 4b) (alternative represen-
tation in Figure 5), the Bayesian method is superior to the
other chosen periodicity detectors in case the additive
noise present in the signals is pure Gaussian and our
knowledge on the frequency is inaccurate. However, a sin-
gle outlier changes the whole situation and, as can be
seen, the performance of the M-estimator in case of 3 out-
liers (out of 20 samples), although suboptimal on Gaus-
sian data and having chosen the frequency incorrectly, is
approximately the same as the performance of the Baye-
sian method in case of one outlier. Thus, the M-estimator
is much more robust when it comes to inconsistencies in
the data.

As we can see, there is no single best approach to periodic-
ity detection and one must weigh the options. If we want
to reject outliers and have non-uniformly sampled data,
the M-estimation based regression estimator is a safe
choice. If we have a reason to trust in the Gaussian noise
model (or other well behaving symmetric distribution)
and we have weak prior knowledge on the frequency of
the cycle period, the Bayesian approach [15] should be the

best alternative. In the case of uniform sampling and no
prior knowledge on the frequency, the rank based estima-
tor [5] is also a considerable option, among others.

Computational complexity
Without going into more subtle considerations of asymp-
totic time complexity we just present the needed time to
calculate the Fourier coefficients for two signal lengths
using a modern laptop computer and Matlab. Although
this running time comparison is not absolute and
depends on particular implementations, it is indicative of
general computational costs. In Table 1 we can see that the
least trimmed squares (LTS) and minimum covariance
determinant (MCS) regression methods take a lot of time
if compared to the Lomb-Scargle and the Tukey's biweight
M-estimator. In case of non-uniform sampling we there-
fore suggest to use the M-estimator since it performs quite
fast and robustly as was seen in the subsection Simulation
based performance. The Bayesian detector is not included
in this comparison since it does not involve similar spec-
tral estimation of the whole spectrum as the regression
based methods here do. The implementation of the Baye-
sian detector is relatively slow if compared to the M-esti-
mator when considering single frequency detection.

The methods in practice
We analyse here the microarray time series data set
obtained from the mussel species Mytilus californianus, by
measuring the gene expression over several days with non-
uniform sampling. It is expected that the gene expression
of some of the genes of the population would correlate
with the tidal cycle or day and temperature cycle. We
therefore seek the genes that are periodically expressed in
the 24-hour cycle and show the annotations and time
series profiles of the best ranking signals. In practice we
use M-estimator based regression to fit sine and cosine sig-
nals of 24-hour cycle to the time series. To estimate the
null hypothesis distribution (i.e. no periodicity present)
for the estimated coefficients we use 300 random permu-
tations of each time series.

Because we use a finite number of permutations in form-
ing the null hypothesis distributions, p-values of zero (i.e.
less than 1/300) are now possible. In fact, 12 of the best
time series had a p-value of zero. The (grouped) best 12
time series are plotted in Figure 6 with the x-axis showing
time in hours. As the first time point is at 8:40 am, we can
see that there is a positive peak in (a) and a negative peak
in (b) at around 12:00 am, and every 24 hours from then
on. Since 12:00 am usually corresponds to the highest
daily temperature, this suggests that these genes could
have temperature (among other things) as a regulator.
Two of the genes were not sequenced and seven of the
genes were not annotated as of yet. The annotations for
Myt_12D11, Myt_22J13 and Myt_12P18 are Transcrip-
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Table 1: Computational complexity. The approximate time in seconds needed for the different spectrum estimation methods to 
evaluate one spectral estimate. Random signals were used in the evaluation. FFT is the acronym for fast fourier transform, LTS for 
least trimmed squares and MCD for minimum ovariance determinant. The method Robustperiodic f fcorresponds to the method in 
[5]

FFT Robusst periodic Lomb-Scargle Tukey LTS MCD

Signal length
20 0.00005 0.003 0.004 0.01 3.1 16.0
30 0.00004 0.004 0.004 0.15 5.0 22.3

tion elongation factor B polypeptide 2 (RNA), Protein
C3orf17 and Ubiquinol-cytochrome c reductase complex
7.2 kDa protein, correspondingly. As a comparison, we
also applied the Bayesian detector [15] to the mussel data
set. Forty genes were found that were in the list of top hun-
dred ranked genes according to both of the methods,
implying that the methods produce fairly similar results.

To determine how many of the best ranked genes we
should accept as periodic we use the false discovery rate at
a level of 0.1. This corresponds to 33 of the best time series
out of 7679. This is quite a conservative decision bound-
ary since the visual inspection of the first few hundred
time series clearly shows similar patterns as in Figure 6.

The best detected genes were mostly expressed at small
amplitude. To determine if there was a biological theme
to the best detected genes, a Gene Set Enrichment Analysis
(GSEA) [35] was performed using the list of genes ranked
by the significance of periodic signal against 245 gene sets
which were defined by their shared participation in a spe-
cific biological process in the Gene Ontology database.
These gene sets covered biological processes which are
known to be under circadian regulation in mammals such
as the cell cycle and metabolic pathways. This analysis
revealed that none of these gene sets were statistically sig-
nificantly enriched towards the top of the ranked list of
periodic genes. One explanation for this finding is that
biological prior knowledge may be incomplete and does
not capture the sets of genes that are under circadian reg-

Receiver operating characteristic curves 3Figure 4
Receiver operating characteristic curves 3. The receiver operating characteristic curves for the two sampling scenarios, 
(a) according to the mussel data and (b) according to the deteriorated sampling, with prior knowledge on the frequency of the 
periodicity. The methods correspond to the rank based estimator (Robustperiodic), which does not take non-uniform sam-
pling into account, Tukey's biweight regression estimator (M-estirnator) and the Bayesian method (Bayesian) presented in [15]. 
The frequency at which to look for periodicity is deliberately different from the true underlying frequency by approximately 
25% to observe the effects of choosing the frequency incorrectly. In both (a) and (b) the effect of 1, 2 or 3 outliers is seen by 
the shift towards the chance diagonal (the closed to the chance diagonal corresponding to the 3-outlier case) from the case of 
no outliers.
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Receiver operating characteristic curves 4Figure 5
Receiver operating characteristic curves 4. This figure shows the data from Figure 4 but with the different noise cases 
separated.
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ulation in mussels, or that the circadian cycle is attenuated
in the tidal environment and does not really contribute
much to the cyclic expression of the genes.

Replicate spots of each gene (that appear on the array)
were removed prior to enrichment analysis to prevent
false hits.

Conclusion
The usual motivation for using methods based on least
squares and a Gaussian model assumption, is that the the-
oretical background is thoroughly understood and com-
putations are easier than in the case of robust methods.
However, in reality, outlying data points are present in
biological high throughput measurements such as micro-
arrays. We have shown here that even a small number of
outliers cause problems in periodicity detection if least
squares methods are used. Taking into account the
amount of data produced by microarray experiments, the
manual replacing of these outliers is not possible and
even if it was, the question of how to replace the outliers
raises even more questions.

This leaves us with two reasonable approaches: we could
either use a robust filter to clean the data first and then use
methods based on least squares or use robust methods in
the first place. If we however take a closer look at the filter
cleaner proposed in [30], the method first evaluates a
robust spectral estimate with M-estimator regression and

then takes the inverse discrete Fourier transform to yield a
cleaned time series. If we then evaluate the periodogram
of the time series we end up with the same estimated
power spectrum as we would have gotten by just using the
M-estimator. This shows that in this case the two men-
tioned approaches are actually the same.

In addition to robustness against outliers we have shown
in this paper that if sampling is not performed uniformly,
it is very important to choose analysis methods that can
adapt to not-uniform sampling. The regression based peri-
odicity detection method implemented with the Tukey's
biweight M-estimator was shown to have excellent per-
formance in simulation studies and provided visually
good results with real measurement data as well. Since the
method can be readily implemented and is relatively fast
to use, we propose it to be used as a first choice in perio-
dicity detection with non-uniformly sampled data.

Future work includes the use of wavelets in periodicity
detection. This has been previously considered in the lit-
erature in the context of spectrum estimation (e.g. [36])
and gene expression periodicity analysis [37] but it would
be interesting to try to robustify the wavelet transform to
reject outliers. Besides straightforward periodicity detec-
tion with wavelets, the robustify interpolation of the non-
uniformly sampled time series to uniform sampling
would be one reasonable approach as well. The ever grow-
ing need for data integration is also an urgent matter that

The grouped periodic time seriesFigure 6
The grouped periodic time series. Two groups of periodic time series signals measured from the mussel Mytilus Califor-
nianus. The x-axis is time in hours and the first time point corresponds to 8:40 am. The approximately 24-hour cycle can be 
seen well. The figure legends show the gene names corresponding to the plotted time series.
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must be given much attention in the future. Combining
computational predictions from different data sources to
increase statistical power is of utmost importance.

Methods
The assumptions about the time series model and differ-
ent methods for periodicity detection are first introduced.
We then perform simulations and show the ROC curves
for the methods when using the Fisher's g-statistic.

Time series model
We use a similar (cyclo) stationary model for time series
as in [3-5].

yn = β cos(ωn+ φ) + εn, (1)

where β ≥ 0, ω ∈ (0, π), n = 0,..., N - 1(∈ Z), φ ∈ (-π, π],
and εn is an i.i.d. noise sequence (distribution unknown).
To test for periodicity, define the null hypothesis as H0: β
= 0, i.e., the time series consists of the noise sequence
alone, yn = εn.

To take non-uniform sampling into account we loosen the
definition of Equation (1) so that n is replaced by tn. Time
index tn can be any real number to allow the evaluation of
the sine signal at arbitrary time points. For the practical
implementation, see Appendix A.

Periodicity detection
We first briefly review Fisher's test for the detection of
periodic time series. We then generalise the test for differ-
ent robust spectral estimators and finally we modify the
test for the detection of a specific frequency.

Testing of all frequencies
Suppose we have a power spectral estimate I(ω). If the
spectral estimate is obtained by using the classical perio-
dogram (see e.g. [5,8] or [3]) at the (harmonic) normal-
ised frequencies

where a = [N/2] and the brackets denote the integer part
of the rational number, then Fisher's g-statistic is defined
as the maximum periodogram ordinate divided by the
sum of all of the ordinates. Formally

where q = [(N - 1)/2] and we can analytically find the p-
values for the statistic under the Gaussian assumption (see
e.g. [8] or [6]). Other test statistics have been proposed for

periodicity detection as well. For example, Chen [4] used
a test called Hubert's C-test to complement the Fisher's
test. The C-test tests whether a time series is a Gaussian
white noise sequence. However, like Fisher's test, the C-
test is based on the standard periodogram. Therefore, the
C-test is not robust and even if the underlying sequence is
Gaussian, a few outliers (e.g. measurement errors) can
lead to incorrect results.

In [5] we developed a highly robust periodicity detection
method that utilises the equivalence between the periodo-
gram and correlogram spectral estimators. Robustness is
obtained by replacing the standard autocorrelation esti-
mator with a rank-based alternative. We used this robust
spectral estimator instead of the periodogram in Equation
(3). Since analytical results for the p-values of this modi-
fied distribution-free test do not exist (as of yet) we used
permutation tests and simulated distributions to estimate
the p-values. The rank-based method proposed in [5] does
not, however, easily generalise to non-uniform sampling.
In practice many biological time series measurements,
including microarrays, are conducted at time points that
are of biological interest and not necessarily at fixed time
intervals. To tackle this problem, we propose to use robust
regression based methods in the estimation of the spectral
content. This way we can also take non-uniform sampling
into account. Further motivation for this approach can be
found by recalling that yet another (but still equivalent)
formulation of the standard periodogram is obtained by
using the frequency representation of a signal

where the last term is omitted if N is odd. Parameters a1i
and a2j now represent the frequency content of a time
series signal. Under the commonly invoked i.i.d. Gaussian
assumption, the optimal, i.e. minimum variance unbi-
ased (MVU), estimates of the parameters can be obtained
by using ordinary least squares regression (or simply
inverse) to solve

for [a0 a1 
T a2 

T aN/2]T. where y is the measured time series
and again omitting aN/2 (and the last column in the
matrix) if N is odd. Matrices A1 and A2 are defined as
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We should also verify that the above design matrix is
invertible (full column rank), which should be the case
unless the measurement times tn (or frequencies) are
"pathological". To elaborate, for any frequency ω it is pos-
sible to choose tn so that, e.g., the cos term in one column
of A1 is always equal to 1, making that column linearly
dependent with the first column vector (vector of ones). It
should, however, be unlikely that this happens in practice.
Furthermore, given time instants tn, we can define the fre-
quencies (perhaps slightly differently if needed) so that
the columns are always linerly independent.

By choosing ω according to Equation (2) and assuming
uniform sampling we can estimate the harmonic Fourier
coefficients in a1 and a2. Evaluating

yields a power spectral estimate B(ω) that coincides (see
[38] p. 395) with the periodogram if the time series sam-
pling is uniform. This explicitly shows that the periodog-
ram can be obtained directly from a least squares estimate
and is hence sensitive to different anomalies in data. On
the other hand, the above regression based formulation
opens up the possibility of developing alternative robust
periodicity detection methods (and also robust spectrum
estimation, see [30]) that can naturally handle non-uni-
form sampling. Since the dimensionality of the model
matrix in Equation (5) is high and robust regression esti-
mators do not necessarily yield optimum solutions easily
for high dimensional models, we propose to find the
parameters one frequency at a time. Therefore, for the pur-
poses of robust estimation, we consider the following
reduced model

y = X(ω)b + e, (11)

where y is the measured time series vector, b is the
unknown parameter vector and e is a residual term. The
matrix X(ω) is formed in the following way

where ω is defined similarly as in Equation (1) and tn is
the real-valued index.

To estimate b at the different frequencies we propose to
use robust regression methods. The different robust
regression estimators we chose for evaluation are reviewed
in subsection The different estimators. It is suggested in [30]
that when calculating the coefficients one frequency at a
time, the fitted sinusoidal of the latest iteration should be
subtracted from the signal y (i.e. leaving the residual).
This residual is then used in place of y when estimating
the parameter b of the next frequency, thus avoiding the
problems caused by the loss of orthogonality. In addition,
the order in which the frequencies should be sought is
based on an initial spectral estimate, which is obtained by
regression of the coefficients without any subtraction. The
strategy is then to process the frequencies according to the
magnitude of the coefficients, in descending order. To
expand, in the case of uniform sampling, sinusoidals at
the Fourier frequencies constitute an orthonormal basis.
Thus in the least squares case, it is irrelevant in which
order we fit the sinusoidals, since they are independent
and the resulting spectral estimate will be the same [8]. If
we have non-uniform sampling or we use estimators
other than least squares we can no longer use this prop-
erty.

The dependence between the fitted sinusoidals and the
problem of overfitting can be corrected, at least to a rea-
sonably good degree [30], by removing the fitted signal
and fitting to the residuals. We should also mention that
the non-orthogonolity would not be a problem if all the
sinusoidals were fitted simultaneously, but this is not a
reasonable approach for the robust estimators (due to the
problems of high dimensionality and non-convergence.

We can now use the robust power spectral estimate B(ω)
in Equation (3) without the requirement of uniform time
series sampling. However, if the time series sampling is
not uniform, the notions of Nyquist frequency and har-
monic Fourier frequencies are no longer clear. We can still
approximate the sampling frequency as if the sampling
was uniform, as explained in Appendix A, and thus approx-
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imate the Fourier frequencies as well. For more discussion
on the subject, see [39]. p-values can be estimated using
simulated distributions or permutation tests. The use of
simulated distributions is now more awkward than in the
case of the rank-based method of [5]. It was noted in [5]
that the rank-based method is "distribution-free", which
implies that it is sufficient to simulate the null hypothesis
distribution for only one noise type (e.g., Gaussian) under
the assumption that the noise is i.i.d. The proposed regres-
sion based methods are not distribution-free and we
would have to generate the null hypothesis distribution
for all the different imaginable noise types separately. Of
course, independent of the method, the null hypothesis
distribution must be generated separately for different
time series lengths. Therefore, based on the preceding dis-
cussion we propose to use permutation tests with multi-
ple correction method of Benjamini and Hochberg [40] in
the same way as in [5] to find the significance values.

Testing of one frequency
If we have a priori information about the frequency of the
interesting periodic phenomenon, we do not need to seek
periodicities at all the frequencies. There are different
ways of modifying Equation (3) to take this additional
information into account. In [5] we replaced max1 ≤ l ≤ aI
(ωl) with just the power spectral estimate at the index of
interest to concentrate on just the interesting frequency. If
we want to extend our search to other than the harmonic
Fourier frequencies then the denominator in Equation (3)
loses its meaning. Therefore we propose to use the follow-
ing modified statistic

where gm is the modified g-statistic, ωc is the frequency of

interest and  and  correspond to the coefficients of

the fitted sine and cosine terms (Equation 11) at this fre-
quency. The first problem arises with p-value computa-
tion. If we use ordinary least squares (OLS) for the
regression then we can just neglect the denominator in
Equation (3) since, as will be explained later, we will be
using permutation tests for p-value computation and the
denominator is the same for all the permutations of a sin-
gle time series; thus, there is no need for the scaling. How-
ever when using the robust regression based methods
there is no guarantee that the sum of the terms is a con-
stant for different permutations. On the other hand, in
many cases the effect of the omission of the scaling factor
in the denominator has little effect on periodicity detec-
tion. This is also verified with good results on real data in
subsection The methods in practice. Moreover, this way we
do not need to compute the whole spectral estimate but

just at the frequency of interest, which can now be other
than one of the harmonic Fourier frequencies as well. This
is a huge benefit for the use of the regression methods
since the robust ones are typically computationally time-
consuming. To sum up, we propose to use the following
procedure for finding periodicities at a known frequency:

1. For a time series, fit the model of Equation (11) at a
chosen frequency ωc

2. Evaluate Equation (13).

3. Randomly permute the original time series and for each
permutation repeat steps 1 and 2.

4. To estimate the null hypothesis distribution of the
modified g-statistic, compose a histogram of the popula-
tion of g-statistics generated in step 3.

5. Use the histogram as a distributional estimate to get a
p-value for the original test statistic computed in step 2.

6. Repeat steps 1–5 for all the time series to get the neces-
sary p-values.

7. use multiple correction for the obtained p-values.

Although the idea of robustly fitting sinusoidals of one
frequency to data is not new. we have here plausibly
incorporated it for periodicity detection by modifying
Fisher's test. We would like to note that exact tests are also
available for some robust tests (see e.g. [27]). However,
since these tests require some knowledge of the underly-
ing distributions and because they are not applicable to all
robust methods considered here, we propose to use the
general purpose non-parametric permutation tests.

The different estimators
In this subsection we present the different estimators that
we will use in periodicity detection. We will mainly con-
centrate on robust estimators but will also present for
comparison purposes the non-robust Lornb-Scargle peri-
odogram, a modification of the ordinary periodogram
taking non-uniform sampling into account.

M-estimators – the Tukey's biweight
We consider the popular redescending M-estimators
which are able to reject outliers in the response variables
entirely. Since the measurement time points are typically
known, it is reasonable to assume that the regressors (i.e.
the time points) are deterministic, a priori known and not
random variables. Tatum and Hurvich [30] used the M-
estimator with Turkey's biweight as the cost function to
yield a robust time series filter that performed well with
both simulated and real data. The central idea behind the
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filter is to first evaluate a robust spectral estimate of the
time series and then use inverse FFT to estimate the clean
time series. We therefore opt to use the biweight as a rep-
resentative M-estimator in our periodicity detection study.
It should be noted that the ordinary least squares is a spe-
cial case of M-estimators. The objective of M-estimators is
to find

where ρ is a symmetric function with a unique minimum

at zero, rn = yn - b is the residual of the nth datum,  =

[1, cos(ωtn), sin(ωtn)], and σn are scaling factors. The scal-

ing factors σn are chosen so that the resulting estimator is

approximately 95% as efficient as the least squares estima-
tor when applied to normally distributed data with no

outliers. In particular, σn = 4.685·  is used for

each n, where  = 1.4826 mad{ri} is the scaled median

absolute deviation of the residuals from their median and
hn = (X(XTX)-1XT)nn, i.e, the nth diagonal element of the

"hat" matrix. For further details, see [41] and implemen-
tation details of robustfit function in [42]. In the search
for the solution of Equation (14) it is useful to solve for
the stationary point by setting

where the influence function ψ (Tukey's biweight func-
tion in this case) is the derivative of ρ. The idea of the
biweight M-estimator is to give zero weighting to those
data points whose residuals are large if compared to the
estimated scale. Therefore, if the scale is estimated
robustly as well, we expect the M-estimators to give us
good performance on data with different distributional
characteristics. For more information on M-estimators,
see e.g. [27,41]. In our computations we use the imple-
mentation in Matlab's Statistics Toolbox that uses itera-
tively reweighted least squares estimation.

Least trimmed squares (LTS)
The least trimmed squares regression [28] (LTS) is a
robust regression method that was developed to have sim-
ilar robustness properties as the least median of squares
(LMS) regression but that would perform better under the
Gaussian assumption and would be less computationally
expensive.

The central idea behind the LTS is that instead of consid-
ering complete sets we choose subsets of the measured

time points of the variables and use OLS for each of these
subsets. We then choose the estimate that yields the small-
est residual variance. Quantitatively, order the residuals of
the linear model as (r2)1 ≤ (r2)2 ≤ ... ≤ (r2)N. Then the LTS
is defined as

where [N/2] + 1 ≤ h ≤ N. In practice not all subsets can be
considered and only some hundreds or maybe thousands
of randomly chosen subsets are processed to yield the out-
put.

One important feature of the LTS (and the MCD, which
will be introduced shortly) regression is that it can tolerate
outliers in the predictor variables as well, whereas the M-
estimators cannot. However, this is not critical in spec-
trum estimation since the measurement time points usu-
ally contain no stochasticity. The implementation (FAST-
LTS) is introduced in [43].

Minimum covariance determinant
The minimum covariance determinant (MCD) regression
method [29] is a well performing robust regression
method that can also handle cases where both X and y are
multivariate. This method has similarities to the LTS
regression in that it also considers subsets instead of com-
plete sets in the estimation. The subset that yields the
smallest covariance determinant is chosen for the estima-
tion. For multivariate regression the model is presented as

y = βTX + α + ε, (17)

where y is q-variate, X is p-variate, β is the (p × q] slope
matrix, α is the q-dimensisnal intercept vector and ε is i.i.d
with zero mean and with a positive definite covariance
matrix.

Since the standard LS estimates of β and α can be written
as functions of the estimated empirical mean vector (loca-
tion) and the covariance matrix (scatter), a logical way of
robustifying the regression is to replace the location vector
and the scatter matrix with robust alternatives. In [29] the
authors use the minimum covariance determinant estima-
tor to yield the necessary robust estimators for the loca-
tion and covariance matrix, thus leading to robust
regression. It is shown that this is a positive-breakdown
and bounded-influence method, which, if properly
reweighted and iterated, has a high efficiency. The imple-
mentation of the algorithm (FAST-MCD) is introduced in
[44].
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b
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The Lomb-Scargle periodogram
The Lomb-Scargle periodogram (see e.g. [7]) can be seen
as a least squares fit of unequally sampled sinusoids to the
measured signal and thus an extension of the periodog-
ram. Exact tests for periodicity detection have been devel-
oped but problems include the well known outlier
sensitivity of the OLS [45].

A note on missing values
It frequently occurs that besides non-uniform sampling
there are some measurement points in some genes that
are missing although they are present in other genes, thus
reducing the quality of the data. Since we do not use an
analytical null hypothesis distribution for all the time
series but rather simulate the distribution for each time
series separately, these missing points are handled so that
we fit the sinusoidals only to the time points that are
present. The presented methods thus have no further need
for missing value imputation (a topic which has received
considerable attention lately, see e.g. [46]).

Appendix A. Supplementary information
To take non-uniform sampling into account, we loosen
the definition of the variable n in Equation (1) so that it
does not need to be integer-valued. We perform a scaling
of the measurement time points in the following way:
Denote the time points when the actual measurements
have been made as a vector

τ= [τ0, ..., τN - 1]T. (18)

Then form the vector

to correspond to the new indices, i.e. we normalise the last
time point to N - 1. Note that for any uniformly sampled
time series Eq. (19) yields an integer valued vector t.

To find the corresponding real time frequency for an
angular frequency ω ∈ (0, π) we consider two interpreta-
tions of the ω. The first one is in Equation (2) and the sec-
ond one is

ω = 2πf/Fs, (20)

where f is the frequency of periodicity and Fs is the sam-
pling frequency. Therefore

If sampling is not equidistant, we can approximate the
average Fs as if the sampling was equidistant with help of
the vectors τ and t

where the quotient is a constant and independent of the
index n (as long as the index exists).
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