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Abstract
Background: Researchers using RNA expression microarrays in experimental designs with more than two treatment
groups often identify statistically significant genes with ANOVA approaches. However, the ANOVA test does not
discriminate which of the multiple treatment groups differ from one another. Thus, post hoc tests, such as linear contrasts,
template correlations, and pairwise comparisons are used. Linear contrasts and template correlations work extremely
well, especially when the researcher has a priori information pointing to a particular pattern/template among the different
treatment groups. Further, all pairwise comparisons can be used to identify particular, treatment group-dependent
patterns of gene expression. However, these approaches are biased by the researcher's assumptions, and some
treatment-based patterns may fail to be detected using these approaches. Finally, different patterns may have different
probabilities of occurring by chance, importantly influencing researchers' conclusions about a pattern and its constituent
genes.

Results: We developed a four step, post hoc pattern matching (PPM) algorithm to automate single channel gene
expression pattern identification/significance. First, 1-Way Analysis of Variance (ANOVA), coupled with post hoc 'all
pairwise' comparisons are calculated for all genes. Second, for each ANOVA-significant gene, all pairwise contrast results
are encoded to create unique pattern ID numbers. The # genes found in each pattern in the data is identified as that
pattern's 'actual' frequency. Third, using Monte Carlo simulations, those patterns' frequencies are estimated in random
data ('random' gene pattern frequency). Fourth, a Z-score for overrepresentation of the pattern is calculated ('actual'
against 'random' gene pattern frequencies). We wrote a Visual Basic program (StatiGen) that automates PPM procedure,
constructs an Excel workbook with standardized graphs of overrepresented patterns, and lists of the genes comprising
each pattern. The visual basic code, installation files for StatiGen, and sample data are available as supplementary material.

Conclusion: The PPM procedure is designed to augment current microarray analysis procedures by allowing
researchers to incorporate all of the information from post hoc tests to establish unique, overarching gene expression
patterns in which there is no overlap in gene membership. In our hands, PPM works well for studies using from three to
six treatment groups in which the researcher is interested in treatment-related patterns of gene expression. Hardware/
software limitations and extreme number of theoretical expression patterns limit utility for larger numbers of treatment
groups. Applied to a published microarray experiment, the StatiGen program successfully flagged patterns that had been
manually assigned in prior work, and further identified other gene expression patterns that may be of interest. Thus, over
a moderate range of treatment groups, PPM appears to work well. It allows researchers to assign statistical probabilities
to patterns of gene expression that fit a priori expectations/hypotheses, it preserves the data's ability to show the
researcher interesting, yet unanticipated gene expression patterns, and assigns the majority of ANOVA-significant genes
to non-overlapping patterns.
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Background
In DNA microarray and other massively parallel measure-
ment technologies, analysis of data from two-treatment
group experimental designs can be viewed as yielding
three 'patterns': 1-significantly upregulated, 2-signifi-
cantly downregulated, and 3- no significant change.
Because the third 'pattern' (no significant change) is typi-
cally ignored, only the two patterns, 'upregulated' and
'downregulated', are reported. As more treatment groups
are added [e.g., [1,2]], pattern assignment becomes more
complex. Although a number of pattern recognition tech-
niques are available [3,4], researchers often choose
ANOVA for an overall statistical test.

Faced with identifying/discriminating different patterns
of expression among the significant genes, researchers typ-
ically employ 'directed' pattern discovery. A priori infor-
mation/assumptions are used to construct templates of
expected changes in gene expression across treatment
groups [5-10], of which time course based pattern discov-
ery could be considered a specialized subset [11-26].
These approaches are often applied post hoc to an overall
test. Directed pattern discovery has the advantage of iden-
tifying the subset of ANOVA significant results that sup-
port the investigator's assumptions. However,
disadvantages of this approach include missing unex-
pected but highly prevalent patterns and not estimating
the likelihood of the directed pattern's occurrence by
chance. 'Down-weighting' is a unique subset of this
directed approach in which the contribution of one or
more of the treatment groups is deemphasized [e.g.,
[1,2]], turning the study into a modified two-group com-
parison by primarily focusing on differences between only
the two 'most important' groups. 'Less important' treat-
ment groups may be used to triage/classify changes
between the two important groups, but do not carry equal
weight in the overall analysis.

Alternatively, some researchers use 'undirected' pattern
discovery approaches, in which patterns of expression are
discovered using clustering methodologies, and do not
take a priori expectations into account [27-30]. These
undirected techniques have the advantage of handling
highly complex data sets [31,32]. However, estimating the
number of clusters is not a trivial process and can dramat-
ically affect the outcome of the analysis [e.g., see [33]] and
clusters identified in one study may not be directly rele-
vant to clusters found in another study, although recent
advances have been made regarding these determinations
[34]. While bootstrapping (e.g., 'Leave-One-Out-Valida-
tion') and other techniques can help identify stable clus-
ters [35-37], the likelihood that any given cluster, even a
stable one, would have that number of genes by chance
can be difficult to assess. Finally, these 'undirected'
approaches also can identify important sources of vari-

ance that are not associated with treatment. This is a pow-
erful tool for identification of abnormally behaving
microarray data and even for the isolation of procedure-
related contributions to technical variance, and therefore
is critical to microarray analysis and normalization steps.
However, this same property can make 'undirected' clus-
tering approaches less desirable for the assessment of
treatment-based effects.

All of these approaches are valid and have contributed
importantly to microarray-based investigations of biolog-
ical processes and many array analysis tools have been
developed [reviewed in [38]]. Further, new cutting edge
techniques merge directed and undirected approaches to
allow for more powerful analyses [39]. Finally one of the
most highly successful applications (at least in terms of
popularity among bench researchers), has been the Signif-
icance Analysis of Microarrays (SAM) application [40],
which combines multiple testing correction with permu-
tation analysis using classical statistical tests. However, to
date no work has been published demonstrating a non-
clustering-based approach for treatment-associated, statis-
tically validated gene expression pattern identification
within multi-group microarray data.

Here, we developed an algorithm using 1-way ANOVA,
followed by all pairwise Fisher's Protected Least Signifi-
cant Difference (PLSD) testing, to categorize ANOVA sig-
nificant genes by their expression patterns (as determined
by the results of their post hoc pairwise comparisons). The
number of genes falling into each expression pattern is
compared to the number of genes that fall into that pat-
tern by chance (using a Monte Carlo-based random
number simulation. The patterns of expression are Z-
scored according to their Monte-Carlo-based chance
probability estimates. The algorithm was applied to a pre-
viously published microarray dataset [2] and discovers
patterns reflecting the major findings of that study, as well
as a novel pattern with implications for the neurobiology
of aging. Further, results from other pattern detection
approaches (support tree hierarchical clustering, K-means
support with Figures of Merit cluster number estimation,
Pavlidis template matching), are compared.

The PPM analysis technique is useful for identifying sig-
nificant patterns of gene expression within datasets hav-
ing 3–6 treatment groups that are initially tested by
ANOVA. The PPM approach should allow researchers to
group significant genes into expression patterns and to
estimate probabilities for each of those patterns' occur-
rence.
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Results
Algorithm
Figure 1 depicts the steps involved in the analysis process
(StatiGen-specific instructions are included in the soft-
ware's help file). Steps are discussed in terms of Affyme-
trix-derived expression array data, although the algorithm
is applicable to any data with similar dimensions.

Importing
Signal intensity and presence call p-values are often pro-
vided by microarray core facilities as either an integrated
pivot table, or as separate tables. StatiGen accepts either
format and creates two tables, one containing signal
intensities and one containing presence call p-values. A
third table of annotation information (e.g., gene symbols)
should also be provided. The first column for these files
should contain the same unique identifiers (usually
probe_set ID) in the same order (although Statigen pro-
vides some limited protection against misaligned data by
checking for an equal number of rows in all import sheets,
as well as by sorting on the first column).

Filtering
The user defines a presence call p-value cutoff (default =
0.05), and then establishes the number of chips that must
achieve at least this level of presence (default = 1/2 n of
the smallest treatment group). We routinely filter out
probe sets with no gene symbol annotation [1,2,41,42] as
a matter of convenience for subsequent functional group-
ing analysis. Filtering at this level is also possible
(although not required) with StatiGen.

Monte Carlo simulation

A table of random numbers matching the filtered data
table's dimensions is created. The random numbers them-
selves can be regenerated/tested multiple times. Both fil-
tered and random data are run through the following
steps (the random data may be run through these steps
thousands of times, depending on the iterations selected
by the user).

Gene level statistics
Omnibus test
Numerous studies have demonstrated the utility of the
Analysis of Variance (ANOVA) approach for microarray
studies [43-45]. Here, we apply a basic one way ANOVA
(1-ANOVA, see Methods) approach. The mean squared
error within (MSEwithin) calculated during the ANOVA is
used again in post hoc testing.

Pairwise comparisons
In the present work, we chose Fisher's Protected Least Sig-
nificant Difference (PLSD) test. In general, the PLSD test
is less conservative than other post hoc all-pairwise tests.

StatiGen algorithmFigure 1
StatiGen algorithm. Microarray data (e.g., from Affyme-
trix pivot tables) is parsed into signal intensity and presence/
absence calls, and annotation information is appended. Data 
is then filtered according to user input (i.e., absent and unan-
notated probe sets are removed). Using the Filtered data, 
StatiGen constructs a Monte Carlo simulation of the data. 
Both the filtered and Monte Carlo datasets are tested by 1-
ANOVA and post hoc all pairwise Fisher's PLSD tests. Results 
from all pairwise comparisons are used to encode pattern 
IDs (see Methods). Pattern frequency is give by # genes iden-
tified in pattern and is statistically compared (Z-test) to that 
pattern's frequency in a Monte Carlo simulation. Graphic 
output of significantly overrepresented patterns, along with a 
list of member genes and annotation information, is included 
and can be saved as a separate worksheet for further analy-
sis.
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Therefore, if a significant ANOVA result is found, then
Fisher's PLSD is more likely than some other tests to iden-
tify a significant pairwise comparison. The p-value cutoff
for the the PLSD test is defaulted to 0.05, although users
can alter this.

Pattern level statistics
Number of pairwise comparisons
The number of pairwise comparisons is given by the for-
mula 'k choose 2' as:

c = [k (k - 1)]/2

where c is the number of pairwise comparisons and k is
the number of treatment groups. Thus, a study with 3
treatment groups would have 3 pairwise comparisons,
one with 4 treatment groups would have 6 comparisons,
one with 5 groups would have 10 comparisons, etc. Each
comparison generates three potential results (r): 'signifi-
cant increase', 'significant decrease', and 'not significant'.
For each ANOVA-significant gene, the results from all of
the pairwise comparisons are encoded into a single 'pat-
tern ID' (see Methods).

Pattern ID
We combine results from all of the pairwise comparisons
for each probe set, creating a pattern ID. Pattern IDs are
constructed using logic gates that use 'increase', 'no signif-
icant change', or 'decrease' results from each pairwise
comparison. The first pairwise comparison is assigned 1,
0, or -1; the second is assigned 10, 0, or -10; the third is
assigned 100, 0, -100 and so on. In this way, the sum of
each combination of pairwise comparisons for a given
probe set creates a pattern ID encoding that pattern's sta-
tistically defined shape, and allowing researchers to easily
group different genes that belong to the same pattern. Fur-
ther, two patterns of opposite sign and the same absolute
value will be mirror reflections of one another, which may
have value for assessing opposing actions in single path-
ways [46].

Actual and estimated frequencies
Some patterns are statistically more difficult to generate
from random data. For instance, patterns in which all
pairwise comparisons are significant have a much lower
probability of occurring by chance than any other pattern.
Therefore, each pattern found in the actual data is
assigned its own probability (Z-score) based on that pat-
tern's frequency within the random Monte Carlo simula-
tion (estimated frequency- see Methods).

Output
Expression levels for each gene are standardized (so that
each gene has a mean of 0 and individual measures are
expressed in standard deviations), allowing genes of the

same pattern but different signal intensities to be averaged
and plotted together. Genes are grouped by pattern and
patterns are ranked by overrepresentation significance.
Graphs of the mean standardized expression levels for all
of the genes in each pattern, along with a list of that pat-
tern's genes, are displayed and can be saved to individual
worksheets for further analysis (Fig. 4).

Limitations
Algorithm
The number of different pattern IDs can be calculated by
PID = rc where PID is the number of different pattern IDs,
c is the number of pairwise comparisons and r is the
number of possible results. The PID value rises exponen-
tially as the number of treatment groups increases (Fig. 2).
Because of this, we feel this method is not useful for stud-
ies with more than 6 treatment groups, where the number
of patterns rivals the number of genes on the chip, obviat-
ing the tool's usefulness for reducing complexity. Further,
this exponential rise depends on the assumption that the
comparisons are independent, when they are actually con-
ditional. Therefore, some patterns (e.g., A v B increase, A v
C decrease, B v C increase), while predicted by the inde-
pendent calculation, are not possible in the conditionally
dependent data, reducing the number of possible patterns
(Fig. 2).

Complexity increases with number of treatment groupsFigure 2
Complexity increases with number of treatment 
groups. Quadratic increase between the number of treat-
ment groups (X axis) and the number of pairwise compari-
sons (right Y axis) is shown in black. The exponential 
increase in the number of post hoc patterns (left Y axis) is 
shown in gray. Note that by the time there are seven treat-
ment groups, we predict nearly a billion different patterns. 
However, due to the lack of independence among the com-
parisons, the actual number of possible comparisons gener-
ated in 100 iterations of a 10,000 gene, 30 array model data 
system (dotted gray line) is considerably less.
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In order to address this issue, only the union of patterns
found within the actual data and/or Monte Carlo simula-
tions are tested. This avoids testing for 'impossible pat-
terns'. Presently, we have restricted the test to
identification of overrepresented, rather than underrepre-
sented, patterns.

Selecting the number of iterations
Exceedingly rare patterns that occur in the real data may
not be detected by Monte Carlo. In these cases, the pattern
is included as significant, but is flagged. This failure of the
Monte Carlo to detect identified patterns is strongly
dependent on the number of iterations chosen, the
number of treatment groups, and the number of observa-
tions within each treatment group. To determine an
appropriate number of iterations, we repeat the analysis
and observe detected pattern stability. If the pattern detec-
tion is stable, then the number of iterations is at least suf-
ficient. If the pattern detection is not stable, then a rule of
thumb would be to double the iterations and recheck for
stability. The algorithm and software default to one thou-
sand iterations.

Excel
Statistical calculations in Excel have been reported to be
inaccurate in some cases [e.g., [47,48]]. Thus, in the
present work, ANOVA calculations were broken down
into individual calculations of Total, Within (which was
also used for the Fisher's LSD calculation), and Between/
Residual sum of squared errors using Excel's DEVSQ func-
tion. From these results, F statistics were calculated and
the FDIST function was used to look up p-values. These
values agree with output in SigmaStat (v. 3.01A, Systat).
Finally, the Monte Carlo simulation uses Excel's RAND
function, generating evenly distributed values between 0
and 1 (15 decimal places). This does not generate a nor-
mal distribution (much like the roll of a single die does
not), however, the combined results of multiple RAND
calculations do closely approximate a Gaussian distribu-
tion (Fig. 3).

Data reanalysis
Blalock et al., 2003 (Gene Expression Omnibus ID: GSE 854)
Nine to ten chips per treatment group, and three treat-
ment groups (Young, Mid-Age, and Aged), were used (see
Methods for description). Of the 8799 probe sets, 5865
were rated present (having 5 or more chips with 'present'
calls) and 673 were significant by 1-ANOVA (p < 0.05). Of
these ANOVA significant probe sets, 2 probe sets did not
have any significant post hoc Fisher's PLSD comparisons,
138 were significant between Mid-Age and Age; 353
between Young and Mid-Age; and 497 between Young
and Aged. A Venn diagram (Fig. 5) shows the relative over-
lap among the three pairwise comparisons. Nearly three
quarters of all genes found significant by ANOVA were

also significant by the Young vs. Aged comparison. The
Young vs. Mid-Age comparison was the second strongest
comparison and Mid-Age vs. Aged had the fewest signifi-
cant comparisons (statistically, each of these pairwise
comparisons have the same probability of identifying
genes).

When pairwise comparisons are considered in concert
using StatiGen's post hoc pattern matching algorithm (Fig.
1), interesting patterns emerge. Five of twenty-four pat-
terns are significantly overrepresented (Fig. 6 and Table
1). The list of significant genes contained within each pat-
tern (Additional File 1) was uploaded to: 1) DAVID [49]
website and compared with a custom background list con-
taining all probe sets in the study rated present and anno-
tated, and 2) Onto Express [50] and contrasted with the
RG-U34A chip as a background. Some selected functional
categories that agreed between the two analyses and
appeared to represent biological processes of the individ-
ual patterns are listed (Fig. 6).

The most significant pattern (1110) was not the pattern
with the most genes, but one among six possible patterns
with the least likelihood of occurring by chance (all three
pairwise comparisons significant). Many of the genes in
this pattern reflect a well-characterized and robust
increase in inflammatory markers seen in our and other
researchers' microarray-based studies of the aging brain
[51-53]. Also note that pattern 100 reflects a weaker, but

Normality of Excel's random number generatorFigure 3
Normality of Excel's random number generator. The 
average of 10 random numbers generated using Excel's 
RAND function were recalculated one million times, and the 
% of observations (Y axis) is plotted against the reported 
mean (X axis). The generated data (black dots) were fit in 
SigmaPlot (v. 9.0, Systat Software) using a Gaussian model 
(gray lines- see R2 value in graph).
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significant monotonic rise with aging that appears to con-
tain genes associated with similar functional categories.

The second and third most prevalent patterns are mirror
reflections of one another (110 and -110), and highlight
genes whose expression levels were significantly different
in two comparisons (Young vs. Aged, and Young vs. Mid-
Aged), but no different in the third (Mid-Aged vs. Aged).
Downregulated in Aged relative to Young (-110) genes in
this category are enriched in immediate early genes (e.g.,
transcription factor activity) and genes associated with
intracellular signaling cascades (e.g., lipocalcin). Upregu-
lated in Aged relative to Young (110 pattern) genes
included functional categories associated with stress
response (e.g., Metabolism of Xenobiotics and Glucoron-
osyl transferase activity).

Finally, although there were relatively few genes that were
significantly changed from Mid-Age to Aged, a subset of
genes (pattern 1100: no significant difference from Young

to Mid-Age, a significant difference from Young to Aged
and from Mid-Age to Aged) was rated as significantly over-
represented by StatiGen and included genes related to cal-
cium binding and antigen presentation.

Comparison to other approaches
The PPM algorithm was developed to assign statistical
probabilities to patterns identified post hoc to 'per gene'
statistical testing in a multi-treatment group setting, and
shares some features with other approaches. Therefore, in
this section we compare PPM output to two popular clus-
tering approaches that use resampling techniques to
assess stability (Support Trees and K-Means Support), as
well as a template matching approach (Paul Pavlidis'
Template Matching, PTM; [6]), using TIGR's MeV software
[54]. Standardized gene expression data for the probe sets
previously identified as present and annotated were
imported into MeV. Because the goal of StatiGen is iden-
tification of patterns present among the ANOVA-signifi-
cant (and therefore heavily treatment-group biased) data,

StatiGen output example showing a significantly overrepresented patternFigure 4
StatiGen output example showing a significantly overrepresented pattern. 1. The pattern summary box gives details 
regarding the pattern's significance, rank among significant patterns, and # genes in pattern. 2. Below the pattern summary box, 
there is a drop down menu allowing users to rapidly switch their view to other significant patterns. 3. The export button 
allows users to export their list to another Excel worksheet for further analysis. 4. A graph of the average (± SEM- standard 
error of the mean) of the standardized expression values from all genes in the pattern (Y axis) across the treatment groups in 
the study (X axis) is displayed. 5. The list of this pattern's member genes is presented. The first column is probe set ID, and the 
last column is hyperlinked to the National Cancer Institute's database of Affymetrix probe set IDs. The intermediate columns 
are provided by the user at the 'annotation information' stage of the algorithm (see Fig. 1).
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these other approaches were also applied to the ANOVA-
significant genes.

Support Trees (Figure 7)
Support Trees is a version of hierarchical clustering that
uses bootstrap methods to establish branch stability.
Here, we used Pearson correlation as a distance metric,
average linkage as a linkage method, and clustered on
both genes and experiments using one hundred boot-
strapping iterations. Branches are color-coded according
to stability (see caption text). Genes could be reliably
divided into two groups (left and right panels) but
showed highly unstable branching patterns at lower levels

(mainly red- 0% support) while experiments were more
stable, with a majority of aged chips being separated from
their young and middle-aged counterparts. Further, sub-
sets of chips formed highly stable experimental clusters
(from left to right): [A3, A4, A8, M8, Y4- a mix of different
age groups], [M6, A1, A5, A9, A7, A10, A6, M3, M7, M9-
the majority of aged subjects], [A2, Y3, Y6, Y2, Y7, Y8, Y9-
the majority of Young subjects] and [M2, M4, M5, M10,
M1, Y5, Y10- the majority of Mid-Aged subjects]. Finally,
it appears that the two experimental clusters most specifi-
cally enriched in aged vs young subjects (the middle two
experimental clusters), in large part drove the discrimina-
tion of the genes into the left and right panels, with the
outer two experimental clusters contributing relatively lit-
tle information at this level of branching.

K-Means Support (KMS; Figure 8)
KMS uses the K-Means clustering algorithm run multiple
times (here, 100 times) to establish 'consensus clusters'
that appear in at least 80% of the iterations, again demon-
strating clustering stability. The Pearson correlation met-
ric was used for distance, and Figure of Merit (FOM)
procedures were used to estimate number of clusters for K-
means. FOM analysis was difficult to interpret, showing
that more than one cluster was present, but indicating a
relatively flat line effect out to 20 clusters (graph in inset
truncated at 10 clusters). Using a combination of informa-

Venn diagram of pairwise comparisonsFigure 5
Venn diagram of pairwise comparisons. Among 
ANOVA significant (p ≤ 0.05) genes from the Blalock et al., 
2003 study, all possible pairwise comparisons were applied 
using Fisher's PLSD. The Venn diagram shows the number of 
ANOVA significant genes that were significant in at least one 
pairwise comparison, and notes overlap (direction of change 
was ignored). Interestingly, although all pairwise comparisons 
had an equal probability of detecting genes, the Young vs. 
Aged comparison was clearly the strongest comparison, and 
Mid-Aged vs. Aged was clearly the weakest.
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tion from FOM, and previous analyses by StatiGen, we
selected five clusters as a starting point for KMS. In the
resulting procedure (Fig. 8) KMS ran 100 five-cluster iter-
ations and reserved the genes that were clustered together
in at least 80 of those iterations. The resultant set of genes
fell into eight clusters which are depicted in Figure 8.
However the majority of ANOVA-significant genes (93%)
failed to be assigned to a cluster.

Pavlidis Template Matching (PTM; Figure 9)

The PTM approach allows researchers to construct a 'tem-
plate' expression pattern and use Pearson's correlation to
identify genes that significantly correlate with that tem-
plate. Here, we chose to apply PTM to those genes that
were significant by ANOVA, effectively turning the PTM
procedure into a post hoc test. PTM investigates one user-
defined pattern at a time and we used StatiGen-identified
patterns to establish templates for PTM.

The two monotonic patterns found by StatiGen (Fig. 6,
patterns 1110 and 100) were fit by the same template in
PTM (Fig. 9A), and, among the age-upregulated patterns
identified by StatiGen, this monotonic increase template
found the largest number of genes in PTM. However,
other upregulated patterns (Panels B and D) also found a
large number of highly overlapping genes in PTM as evi-
denced in the Venn diagram (inset), as well as the highly
analogous Biological Processes found to be overrepre-
sented among genes identified panels A, B, and D.
Decreased expression patterns from Young to Mid-Age,
and sustained through Age using PTM (Fig. 9C) revealed a
completely non-overlapping set of genes that were related
to cellular catabolism and neuronal plasticity- supporting

previous work suggesting that neuronal involution may
play a critical role in cognitive deficits seen with aging.

Discussion
Prestatistical filtering
Researchers often triage microarray results with metrics
that are blind to treatment groups, such as spot quality,
signal intensity, and/or Microarray Suite 4 or 5 (MAS4 or
MAS5) derived 'presence' calls. Such approaches can dra-
matically improve statistical performance and reduce the
error associated with multiple testing [e.g., [55,56]]. There
are a number of methods for such filtering. Observations
that fall below some criterion could be treated as missing
values, artificially brought up to a minimum intensity
value, weighted according to the strength of the quality
control measure, or the number of chips for which a given
probe set exceeds some threshold value can be calculated.
In the present work, we have opted for the latter approach.

Statistical tests
A number of different approaches could be used to assign
significant results to the data (e.g., fold change, coefficient
of variance, volcano plot style combinations of p-values
and fold changes). In theory, any of these approaches
would work as an initial step for the detection of patterns
within the data. In the present work, we focus on pre-
dicted reliability, rather than magnitude, of change.

Interestingly, studies in which magnitude of change, irre-
spective of variance, are applied (i.e., fold change) require
an a priori assumption on the part of the investigator, that
some level of change is necessary for a biological effect to
be exerted, and further, that such a level of change is the
same across all expressed genes. Moving to statistical crite-
ria ignores potential biological effects, instead focusing on
the degree of variance and the likelihood that such a dif-
ference in means, given the variance of the measures,
could have occurred by chance. Thus, the statistical results
infer relative security of findings, but it is still up to the
investigator to ascertain the biological meaning (or lack
thereof) of any change. A change in gene X may be very
reliable, yet epiphenomenal with regard to the biological
process under investigation.

Other pairwise comparisons would be appropriate post
hoc to the ANOVA (e.g., Scheffe's, Tukey's). In the present
work, we chose Fisher's Protected Least Significant Differ-
ence (PLSD) test. In general, the PLSD test is less conserv-
ative than other tests. Therefore, if a significant ANOVA
result is found, then Fisher's PLSD is more likely than
some other tests to identify at least one significant pair-
wise comparison. By assembling genes into their post hoc
defined patterns, the statistical reliability of the pattern
may 'protect' statistically weaker findings. This approach

Table 1: PPM-Defined Expression Patterns

Pattern ID # Found # Expected Z-Score

1110 14 0 20.84964
-110 107 40 10.67321
110 99 38 9.826184
100 135 81 6.297468
1100 45 32 2.15279
-1110 1 0 1.089534
-100 83 80 0.306635

Pattern ID: Unique pattern number assigned by StatiGen to 
combination of pairwise comparison results. # Found: # Genes in the 
actual data identified as members of that expression pattern. # 
Expected: The number of genes one would expect based on the Monte 
Carlo estimation of chance occurrence. Z score: The distance (in 
standard deviations) away from the chance occurrence probability. 
Note that StatiGen does not report underrepresented patterns 
(negative Z scores; see Results [limitations]).
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Support TreesFigure 7
Support Trees. Hierarchical clustering using MeV software with 100 bootstrap iterations on samples and experiments was 
used to generate a dendrogram. For display purposes the most stable Upper Node (left) and Lower Node (right) are separated 
for display purposes. Branches in the dendrogram are color-coded according to reliability (as a percentage of all bootstrap iter-
ations in which cluster was identified: Black- 100%, Gray 90–100%, Blue- 80–90%, Green- 70–80%, Yellow- 60–70%, Orange- 
50–60%, Fuscia- 0–50%, Red- 0% and Pink- unrecovered), and shaded triangular areas are used to consolidate subjects/genes 
for display. Beneath each section of the dendrogram is a graph depicting mean standardized intensities for highlighted groups of 
subjects that were reliably clustered with one another. Below the graphs are representative Gene Ontology over-expressed 
Biological Processes for Upper and Lower nodes. Gene expression intensities are expressed in standard deviations from the 
mean for each gene (see scale bar).
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K-Means Support (KMS)Figure 8
K-Means Support (KMS). The KMS algorithm with 100 iterations and Pearson correlation for distance, established eight 
'consensus clusters' that appeared in at least 80 iterations. For each panel, individual observations are plotted along the X-axis 
and standardized signal intensity averaged for genes in the cluster, is plotted along the Y-axis. For reference, a '0 line' has been 
added indicating baseline (scale bar = one standard deviation). Within each panel, the members of the cluster are indicated. 
Panels A, B, E) These clusters show an apparent discrimination between young subjects and all others. Panel C) The cluster 
most analogous to a monotonic increase. Panels D & F-H) These clusters appear to be isolating patterns based on non-treat-
ment effects. Inset: Figure of Merit (FOM) procedures were used to estimate number of clusters for K-means but results were 
difficult to interpret.
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has been used to great effect in functional grouping anal-
ysis of microarray data [see [41,50,57-59]].

Patterns found in Blalock et al., 2003
The PPM method applied with StatiGen confirmed and
extended the work of the original paper, finding that a
majority of genes had changed by Mid-Age, and identify-
ing upregulated inflammatory genes and downregulated
genes related to neuronal function. The number of genes

significant by each pairwise comparison (Fig. 5) alone is
often useful, helping researchers determine which com-
parisons show the largest number of significant results
(suggesting treatments with the most powerful effects on
the transcriptome). Here, the expected result, that the
greatest age-dependent difference in transcriptional pro-
file would be between the Young and the Aged groups,
was clearly supported by this analysis. However, such
approaches are limited in their ability to assess a particular

Pavlidis Template Matching (PTM)Figure 9
Pavlidis Template Matching (PTM). Four PTM templates were created. For each template, the standardized signal inten-
sity average of all genes that fit the template are plotted by subject along with a superimposed template to which they were 
correlated. A. The 'monotonic increase' template matches two StatiGen-identified patterns, 1100 and 100 (Fig. 6). B. Young to 
Mid-Age increase corresponds to pattern 110 (Fig. 6). C. Young to Mid-Age decrease corresponds to pattern -110 (Fig. 6)- the 
mirror reflection of pattern 110. D. Mid-Age to Age increase corresponds to pattern 1100 (Fig. 6). Genes in each pattern were 
tested for overrepresentation of Biological Processes in the Gene Ontology using DAVID (see Methods). Selected overrepre-
sented categories are listed in each panel. Inset: High degree of overlap between A, B, and D, with the three templates identi-
fying similar sets of genes (by overrepresentation analysis, humoral immune response genes could not be distinguished among 
the three templates).
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comparison's effects on the transcriptome while simulta-
neously appreciating the effects of other comparisons.

Further, StatiGen identified a significantly overrepre-
sented pattern associated with a selective, Mid-Age to
Aged change, and many of the genes in this pattern are
associated with calcium dysregulation, a well-supported
hypothesis of neuronal dysfunction and cognitive deficit
in aging [60-62]. Thus, this approach identified not only
age-related and possibly precipitating causes of age-
related cognitive deficits in an animal model, but was also
able to isolate a pattern of expression that directly and
temporally correlated with that cognitive decline.

Four of the five identified patterns (1110, 100, 110, and -
110) strongly validate conclusions of the original study
[2] that transcriptional levels in the Mid-Age group are
generally intermediate between Young and Aged groups,
or are similar to the Aged group. Further, the Mid-Age ani-
mals, although they had yet to show a statistically signifi-
cant cognitive deficit, generally had transcriptional
profiles more similar to Aged than to Young hippocampal
CA1 regions. The identification of these patterns by Stati-
Gen highlights the unambiguous manner in which pat-
terns can be defined and examined, and further
highlights, at least in the example shown, that the conclu-
sions of the researchers regarding transcriptional changes
were largely supported by the data.

The genes comprising the fifth pattern (1100) may be of
particular interest as their expression levels inversely cor-
relate with behavioral deficits observed with age (a mod-
erate and non-significant decrease by Mid-Age, followed
by a significant drop-off in the Aged group). Interestingly,
many of the genes found here represent inflammatory
(e.g., Lps, S100 A1 and A9, Rt1Dmb) and astrocyte/oli-
godendrocyte processes (e.g., Gfap, Mobp, Mag), suggest-
ing that these potential biomarkers may influence, or be
influenced by, cognitive status changes with age.

The potential interactions among oligodendrocytic, mye-
lin, and inflammation related genes, were a key, novel
proposition in the original work. The finding here sup-
ports that interaction's potential role in cognitive deficits
with age. Importantly, perturbed calcium homeostasis
seen here has been a long-standing hypothesis of brain
aging [reviewed in [60-63]] supported by numerous stud-
ies [e.g., [64-67]]. In the present context, it suggests that
calcium signaling perturbations are common to many cell
types in the brain. Further, altered calcium and inflamma-
tory changes together suggest that other popular aging
hypotheses [e.g., reactive oxygen species, see [68,69]] may
all play a role in altered cognition with aging. This pat-
tern's discovery therefore highlights the PPM algorithm's

second strength, discovery of patterns that were not antic-
ipated (based on the results of the previous work).

Other methods
As expected, support trees applied post hoc to the ANOVA
showed a strong tendency to group subjects according to
treatment, as the ANOVA selection should heavily bias
this procedure towards treatment-based clustering. How-
ever, expression pattern identification among genes was
not as refined, with a relatively stable discrimination
between up and down regulated genes among two of the
four experimental clusters, and other patterns of expres-
sion showing poor replication.

K-means support, in conjunction with Figure of Merit esti-
mation of cluster number, reliably identified eight clusters
but was unable to assign more than 90% of the ANOVA
significant genes. This suggests that some KMS parameters
may need further adjustment, the data may need further
transformation, the ANOVA criterion is inappropriate, or
that this approach is not adequate for this data set.

Pavlidis template matching (PTM) clearly identified sets
of genes using statistical Pearson's correlation probabili-
ties. However, because each fitted template is performed
in isolation, there is a high degree of overlap between dif-
ferent, but related patterns of expression. One way to
reduce the degree of overlap would be to increase the p-
value stringency criterion for inclusion in each template.
However, increased stringency would also reduce the pro-
portion of the ANOVA-significant data set identified by
the procedure. Interestingly, the PTM approach does point
to a potential improvement of the PPM strategy employed
by StatiGen. Presently, the PPM procedure considers each
unique combination of pairwise contrast results as a sep-
arate pattern. However, it is possible that, like the PTM
procedure, two patterns that completely correlate with
one another in PPM (e.g. Fig. 6, patterns 1110 and 100)
could be merged, reducing the complexity of pattern out-
put in PPM.

Conclusion
The PPM algorithm was born of necessity in our microar-
ray research dealing with multiple group studies and the
relatively large amount of data generated using arrays
[70]. Although newer methodologies are greatly improv-
ing undirected approaches at both the gene expression
and functional analyses levels ([71-73], cluster number
estimation, statistical likelihood of a cluster's occurrence,
and gene membership across iterations are still important
issues. Directed approaches are unable to detect unex-
pected patterns, as the discriminating features of the pat-
terns must be determined a priori by the investigator. The
PPM algorithm's implementation in StatiGen skirts these
issues: pattern number and statistical likelihood are
Page 12 of 16
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defined and estimated, and gene-to-pattern assignments
are stable. However, these improvements come at the cost
of limited complexity reduction. Large numbers of treat-
ment groups (e.g., > 6) are inadequately handled by this
process because the number of patterns increases with
increasing number of treatment groups (Fig. 2).

Applied to a published microarray experiment, the Stati-
Gen program successfully flags patterns that had been
manually assigned in prior work, and further identifies
other gene expression patterns that may be of interest.
Thus, over a moderate range of treatment groups, PPM
appears to work well, allowing researchers to assign statis-
tical probabilities to patterns of gene expression that fit a
priori expectations/hypotheses while still preserving the
data's ability to show the researcher interesting, yet unan-
ticipated gene expression patterns.

Important future work with this approach will include
adding the option to identify and merge highly similar
patterns, convert the software language to R format, and
provide options for noise reduction/outlier removal prior
to analysis.

Methods
PPM algorithm
The post hoc pattern matching algorithm was created step-
wise in Excel (v. 2003, SP2, Microsoft). All statistical cal-
culations were verified in SigmaStat (v. 3.0, SyStat) on
representative probe sets.

Statistics
Here, we apply a basic one way ANOVA approach, where
each probe set is tested individually, and total sum of
squared variance is partitioned into variance attributable
to treatment, and the remainder is considered residual.

where y is the observation, i is one of k groups, and j is the
number of observations within group. 'Between sum of
squared error' degrees of freedom equals the number of
treatment groups -1 (k - 1) and 'Within sum of squared
error' degrees of freedom equals the total number of
observations – the number of groups (N - k). The summed
errors are divided by their respective degrees of freedom to
produce their mean squared errors. A ratio of between/
within mean squared error generates the F-statistic, which,
along with the degrees of freedom for the numerator and
denominator of the F-statistic (k - 1 and N - k, respec-
tively), is used to generate a p-value for each probe set. The
mean squared error within (MSEwithin) is used again in post
hoc testing.

Post hoc to a significant ANOVA, Fisher's PLSD follows the
form:

where the MSEwithin is from the above ANOVA calculation,
the F-statistic is based on k-1 (in this case, equal to 1,
because only two groups are being contrasted), n is the
geometric mean of the n's in the two groups being com-
pared. The LSD then represents the minimum value of the
difference between two means in order for their difference
to be considered significant.

Pattern ID
We combine results from all of the pairwise comparisons
for each probe set, creating a pattern ID. Pattern IDs are
constructed using logic gates that use 'increase', 'no signif-
icant change', or 'decrease' results from each pairwise
comparison. The first pairwise comparison is assigned 1,
0, or -1; the second is assigned 10, 0, or -10; the third is
assigned 100, 0, -100 and so on. In this way, the sum of
each combination of pairwise comparisons for a given
probe set creates a pattern ID encoding that pattern's sta-
tistically defined shape, and allowing researchers to easily
group different genes that belong to the same pattern. Fur-
ther, two patterns of opposite sign and the same absolute
value will be mirror reflections of one another, which may
have value for assessing opposing actions in single path-
ways [46].

Z Score (probability of pattern's chance occurrence)
The distance, in standard deviations, of each pattern's
prevalence in the real data compared to its prevalence in
the Monte Carlo simulation is calculated using the Z-score
as follows:

where γ is the number of times a pattern appears in real
data, Σγ is the total for all unique patterns in real data, R
is the number of times pattern appears in Monte Carlo,
and ΣR is the total for all unique patterns in Monte Carlo.

Software
Description
StatiGen is written in Visual Basic using the .NET 1.1
architecture and recapitulates all of the steps described
above for the PPM algorithm. StatiGen also standardizes
gene expression levels, allowing multiple genes in a single
pattern to be averaged together and plotted. Graphic dis-
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plays of this output are provided, along with lists of iden-
tified genes. StatiGen also creates hyperlinks for probe set
ID information (these are relevant for Affymetrix-based
data only). The program runs on Windows 2000/XP oper-
ating systems and its performance is generally improved
by increased RAM. The installation file is Additional File 2
and source code is Additional File 3. Importantly, the
code 'passes' information across Excel worksheets; there-
fore, Excel must be installed for the program to work. Up-
to-date versions of the software will linked through our
Departmental [74] and Microarray Core [75] websites.

User input
Users are required to provide signal intensity, presence
absence call, and annotation data as either text files or
Excel worksheets (the unique identifier- probe set ID-
should always be in the same order in the leftmost col-
umn of all sheets, and the top row should contain title
information), although StatiGen provides some protec-
tion from misaligned inputs by sorting by the first column
and making sure the number of rows match across work-
sheet. A number of different signal intensity algorithms
are available [76-78] (e.g., PLIER, MAS4, MAS5, RMA,
gcRMA, DCHIP, GLA), and, within each of these, there are
multiple settings. Therefore, StatiGen makes no assump-
tions regarding signal intensity transformation. Users
should run their transformations (logging), etc. prior to
running StatiGen. Presence absence calls (P, M, A) or p
values (derived from Affymetrix-based algorithms), as
well as user-defined spot quality flags, can be used to pre
statistically-filter ('triage') data prior to statistical analysis.
Because annotation is based on current knowledge and is
therefore a 'moving target' [79], no attempt at annotation
is provided with StatiGen. Instead, users provide their
own annotation file. Importantly, this annotation file can
have as many columns (up to the 255 column limit in
Excel worksheets- less the leftmost unique ID column and
the StatiGen generated hyperlink column) as the user
would like.

Original data
Data from one of our laboratory's earlier microarray stud-
ies [2] is provided to highlight StatiGen's functionality.
Raw (.cel files), MAS4 signal intensity, and presence data
are available through the Gene Expression Omnibus (GSE
854), and signal intensity (Additional File 4), presence
call (Additional File 5) and annotation (Additional File 6)
files are also provided with this manuscript. In that study,
male Fischer 344 rats of three ages (3 month- Young, 12
month- Mid-Age, and 24 month- Aged; n = 9–10/group)
were behaviorally characterized on two hippocampus-
dependent cognitive tasks. Their hippocampi were
removed, the CA1 regions dissected, and each animal's
isolated RNA was hybridized to its own microarray (RG-
U34A, Affymetrix; one chip per animal). Microarray anal-

ysis included a 1-Way ANOVA followed by post hoc Pear-
son's correlation between signal intensity and pre mortem
behavioral scores.

Authors' contributions
RH wrote StatiGen and associated help files, and EMB
devised the algorithm and constructed prototype Excel
files depicting its use.
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