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Abstract
Background: The discovery of functional non-coding RNA sequences has led to an increasing
interest in algorithms related to RNA analysis. Traditional sequence alignment algorithms,
however, fail at computing reliable alignments of low-homology RNA sequences. The spatial
conformation of RNA sequences largely determines their function, and therefore RNA alignment
algorithms have to take structural information into account.

Results: We present a graph-based representation for sequence-structure alignments, which we
model as an integer linear program (ILP). We sketch how we compute an optimal or near-optimal
solution to the ILP using methods from combinatorial optimization, and present results on a
recently published benchmark set for RNA alignments.

Conclusion: The implementation of our algorithm yields better alignments in terms of two
published scores than the other programs that we tested: This is especially the case with an
increasing number of input sequences. Our program LARA is freely available for academic purposes
from http://www.planet-lisa.net.

1 Background
In recent years, research in RNA sequences and structures
has dramatically increased: the discovery of functionally
important, not protein-coding, RNA sequences has chal-
lenged the traditional picture of the flow of genetic infor-
mation from DNA via RNA to proteins as functional units.
It is now well-established that RNA molecules introduce
an additional layer in genetic information processing.
They play a significant active role in cell and developmen-
tal biology and carry out many tasks that were previously
attributed exclusively to proteins. One of the most emi-
nent examples is the class of microRNAs [1,2], an abun-
dant class of small functional RNAs that regulate gene
expression by binding to a target in the mRNA. Other

examples include snoRNAs, which modify ribosomal
RNA [3], signal recognition particle RNAs [4], cis-acting reg-
ulatory elements, and piRNAs [5], a novel class of ncRNAs
whose function is still unclear. It is likely that only a small
fraction of regulatory RNAs has been identified so far and
that many more have yet to be discovered [6].

Computational analyses have contributed largely to the
discovery and advancement of biological knowledge.
Heuristic methods, such as BLAST [7], or exact approaches
based on dynamic programming, such as the Smith-
Waterman algorithm [8], are used as everyday tools to
analyze DNA and protein sequences. In case of RNA
sequences, sequence information alone is not sufficient
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anymore. An RNA sequence folds back onto itself and
forms hydrogen bonds between nucleotides. These bonds
lead to the distinctive secondary structure of an RNA
sequence.

RNA sequences evolve more rapidly than the structure
they are forming, because their evolutionary behavior fol-
lows the structure-function paradigm: RNA molecules with
different sequences but same or similar secondary struc-
ture are likely to belong to the same functional family, in
which the secondary structure is conserved by selective
pressure. Hence, computational analysis of RNA mole-
cules inevitably involves considering secondary structure
information in addition to the primary sequence. Com-
puting sequence-structure alignments is a key step in many
important applications. These include finding homolo-
gous structures of known ncRNA families [9], phyloge-
netic fingerprinting (as conducted for example for the
ITS2 database [10]), or the computation of a consensus
structure of a set of RNA molecules [11]. A recent study
shows that pure sequence-based pairwise alignments are
unable to produce satisfactory results if the pairwise
sequence identity drops below 50 to 60% [12]. Figure 1
illustrates this situation and shows two different align-
ments of seven tRNA sequences with a pairwise sequence
identity of 39%, where the upper alignment is based on
sequence information alone and the lower alignment
additionally rewards the conservation of structural ele-
ments. One can clearly see that the sequence-based align-
ment is unable to preserve the typical tRNA-cloverleaf
structure, whereas the structural alignment conserves the
structural features of the input sequences.

Unfortunately, considering structural information adds
an additional level of complexity to the problem of align-
ing two or several sequences. In the remainder of this sec-
tion, we present a classification of structural alignment
problem variants including previous work. Section 2
describes our new approach to multiple sequence-struc-
ture alignment. We employ methods from mathematical
programming and solve the problem as an integer linear
program resulting from a graph-theoretical reformulation.
Section 3 is dedicated to an extensive computational
study. We describe LARA, the freely available implementa-
tion of our novel approach, and present detailed results of
a comparative study including state-of-the-art programs
on a recently published benchmark database of structural
alignments. The results show that on average our software
is currently the best program in terms of alignment qual-
ity, outperforming other programs with an increasing
number of input sequences. Finally, we discuss our results
and suggest future research directions in Sect. 4.

In contrast to previous work [13-15] this article describes
a full integer linear programming (ILP) formulation that

does include arbitrary gap costs and an extensive perform-
ance analysis of our implementation for the first time.
Due to page limits the mathematical fundament and all
proofs are omitted: the interested reader is referred to the
companion paper [16] that focuses on an in-depth
description of the mathematical properties of the intricate
multiple case containing all proofs.

1.1 Previous approaches
Depending on the available knowledge about the (puta-
tive) structures that we want to align, there are three dif-
ferent alignment scenarios for two RNA structures, which
readily extend to the multiple case. Figure 2 gives a car-
toon illustration of the three scenarios.

1. Structure-to-structure alignments align two known sec-
ondary structures, typically the minimum free energy struc-
tures. This scenario applies if one searches for common
structural motifs that are shared by both structures and
there is reason to believe that the secondary structures are
correct.

2. Structure-to-unknown alignments align a given structure
to a sequence with unknown structure. Applications are
finding homologous sequences by inferring a consensus
structure to a sequence (this is done, for example, in the
verification phase of the FASTR package [9]), or finding
new family members of ncRNA families: This problem has
recently sparked considerable interest in the context of
searching homologous structures of noncoding-RNAs in
large genomic sequences. See [17] for a survey.

3. In the unknown-to-unknown alignment problem, no pre-
vious structural information is given. It applies when two
RNA sequences are suspected to share a common, but still
unknown, structure. We constrain the space of possible
structures by the entire set of possible Watson-Crick and
wobble pairs. A reduction of the size of this space is pos-
sible, for instance, by applying a folding algorithm to
obtain the base pair probabilities [18] and then consider-
ing only those interactions whose probabilities are above
a certain threshold.

There are four major alignment models for RNA structures
that tackle the previous described alignment scenarios:
annotated sequences, tree models, probabilistic models, and
graph-based models. We give small examples for each
model in Fig. 3: Note that we did not show an example of
probabilistic models because the representation of proba-
bilistic and tree models are the same. The underlying algo-
rithms, however, are completely different. Table 1
classifies previous work in the area of structural RNA
alignment according to the different models and scenar-
ios.
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Tree-based models
Tree-based structural alignment algorithms view an RNA
secondary structure as a tree. Depending on the particular
model (either tree-editing [19] or tree alignment [20]),
one either searches for the minimal number of operations
(node inserting, node deletion, and node substitution) to
transform one tree into the other, or into a common
supertree. Algorithms employing the model from [20]
have time complexities in O(n4), thus making the compu-
tation expensive. Here and in the following, n denotes the
size of the longest sequence. Tree-alignment algorithms
have complexities that are on average only slightly worse
than conventional sequence alignment. More precisely,

their running time is in O(n2·Δ2), where Δ denotes the
maximum number of branches of a multiloop in the
input structures.

A tool that builds upon the tree paradigm is RNAFOR-
ESTER [21]. It computes multiple structure-to-structure
alignments of RNA sequences by performing tree-align-
ment in a progressive fashion.

Annotated sequences
We call a sequence that is augmented by structural infor-
mation an annotated sequence. Classical dynamic program-
ming (DP) algorithms can be extended to annotated

Comparison between sequence and sequence-structure alignmentsFigure 1
Comparison between sequence and sequence-structure alignments. Comparison between sequence-based (upper, 
computed by the CLUSTALW program [60]) and sequence-structure-based alignment (lower, computed by LARA, an imple-
mentation of our new approach). The left and right consensus structures are based on the ClustalW and LaRA alignment, 
respectively (consensus structures generated using RNAalifold [11]).
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sequences. The DP solution for the structure-to-structure
and structure-to-unknown problem then typically
requires O(n4) and O(n3) in time and space, respectively.
Bafna, Muthukrishnan, and Ravi describe an algorithm
that simultaneously aligns the sequence and secondary
structure of two RNA sequences [22]. Their method runs
in time O(n4), which still does not make it applicable to
instances of realistic size. Eddy [23] proposes an algo-
rithm that reduces the memory consumption to O(n2 log
n). The STRAL tool [24] uses the values of the base pair
probability matrices, as given by the partition function [18],
to compute the maximal pairing probability of a single
nucleotide and to align the sequences in a CLUSTALW-
like fashion.

In the restricted structure-to-structure scenario, one can
resort to more sophisticated edit-models like the one pro-
posed by Jiang in [25] where the authors specify opera-
tions both on the sequence and the structure level. The
dynamic programming algorithm is in O(n4), making the
computation rather tedious for longer sequences. A pro-
gram that implements the Jiang model is MARNA [26]: it
computes pairwise sequence-structure alignments, but is
additionally able to compute multiple alignments. To this
end, MARNA computes all pairwise structural alignment
and uses T-COFFEE to compute the actual multiple align-
ment incorporating the structural information of the pair-
wise alignments.

The unknown-to-unknown scenario requires the simulta-
neous computation of the alignment and consensus struc-
ture. The computational problem of simultaneously
considering sequence and structure of an RNA molecule

was initially addressed by Sankoff in [27], where the
author proposed a DP algorithm to align and fold a set of
RNA sequences at the same time. The CPU and memory
requirements of the original algorithm are O(n3k) and
O(n2k), respectively, where k is the number of sequences
and n is their maximal length. Current implementations
modify Sankoff's algorithm by imposing limits on the size
or shape of substructures, e.g., DYNALIGN [28,29], or
FOLDALIGN [30] that combine a sliding window and
banded alignment approach. Hofacker, Bernhart, and Sta-
dler [31] have presented the PMMULTI software to align
base pair probability matrices. Their recursions are essen-
tially the same as the ones given by Sankoff in [27] and
subsequently used for sequence-structure alignment by
Bafna et al. in [22] with the only difference that they con-
sider probabilities instead of fixed structures. By banding
the range of possible alignment positions they bring the
time and space complexity of the pairwise case down to
O(n4) and O(n3), respectively. For the multiple case, they
align consensus base pair probability matrices in a pro-
gressive fashion. Similar in spirit are FOLDALIGNM [32]
or LOCARNA [33], two recent reimplementations of the
PMMULTI approach. FOLDALIGNM provides both sev-
eral restrictions on the alignment and a two-stage proce-
dure to fill the DP matrix: this further reduces the running
time to O(n2δ2) where n is the length of the longer
sequence and d is the maximal length difference of the
alignment of two subsequences. LOCARNA on the other
hand takes advantage of the sparse base pair probabilities
matrices to reduce the running time.

Table 1: Classification of previous work

tree-based annotated sequences probabilistic graph-based

structure-to-structure [20-22,61] [22,25,26,62] [34] [14,41,43]
structure-to-unknown -- [22] [34,38] [14,41,43]
unknown-to-unknown -- [22,27–29,31] [37] [14,41,43]

Input scenariosFigure 2
Input scenarios. Different input alignment scenarios of 
RNA sequences (pairwise case): (a) the alignment of two 
known structures, (b) of one known and one unknown struc-
ture, and (c) of two unknown structures.
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(a) (b) (c) RNA representationsFigure 3
RNA representations. Different models representing 
RNA structures: (a) tree representation, (b) annotated 
sequences, and (c) graph-based models.
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Probabilistic models
Eddy and Durbin [34] describe covariance models for meas-
uring the secondary structure and primary sequence con-
sensus of RNA sequence families. They present algorithms
for analyzing and comparing RNA sequences as well as
database search techniques. Since the basic operation in
their approach is an expensive dynamic programming
algorithm, their algorithms cannot analyze sequences
longer than 150–200 nucleotides. Therefore, recent
approaches reduce the running time by incorporating
additional information, e.g. Holmes et al.'s STEMLOC
[35,36] where the authors propose the concept of align-
ment/fold envelopes that constrain possible alignments.
Along these lines, in [37] the authors keep a set of proba-
bilistically derived alignment positions fixed: these align-
ment positions serve subsequently as anchors for the
structural alignment which prune away large parts of the
search space. The authors of [38] describe a method based
on conditional random fields to align an RNA sequence
with known structure to one with unknown structure.
They estimate their parameters using conditional random
fields and compute the alignment using the recursions
from [39].

Graph-based models
Kececioglu [40] has introduced a graph-theoretical model
for the classical primary sequence alignment problem. In
[41] the authors present a first extension of this model to
RNA structures and propose a branch-and-cut approach
based on an integer linear programming formulation.
Based on this formulation and inspired by the successful
application of Lagrangian relaxation by Lancia and
Caprara [42] to the related contact map overlap problem, in
[43] the authors switch from branch-and-cut to the
Lagrangian relaxation technique. They are able to solve
instances a magnitude larger by simultaneously reducing
the running time significantly. In [44] the authors give a
graph-theoretic model for the computation of multiple
sequence alignments with arbitrary gap costs. In the next
section we will combine the formulations given in [43]
and [44], resulting in a novel graph-based formulation for
sequence-structure alignment with arbitrary gap costs.

Note that the graph-based model naturally deals with all
three alignment scenarios. In addition, unlike other algo-
rithmic approaches, the graph-based algorithms do not
restrict the input in any way and hence can handle arbi-
trary pseudoknots: Pseudoknots have been shown to play
important roles in a variety of biological processes, see
[45] for a recent review. Most DP-based algorithms
assume nested secondary structures to compute subprob-
lems efficiently. Few exceptions exist, for example [46],
but these algorithms are always restricted to certain classes
of pseudoknots (like H-type pseudoknots) and do not
handle the general case.

2 Results
This section deals with our novel graph-based approach to
structural RNA alignment. We first give the problem defi-
nition and then describe the graph-theoretical model we
use, which combines the models presented in [43] and
[44]. We convert the nucleotides of the input sequences
into vertices of a graph, and we add edges between the ver-
tices that represent either structural information or possi-
ble alignments of pairs of nucleotides. Based on the graph
model we develop an integer linear programming formu-
lation. We find solutions using an algorithmic approach
employing methods from combinatorial optimization.
For sake of simplicity, we will limit the description to the
two-sequence case. We want to stress, however, that the
model can be extended to the multiple case without
changing the core algorithms and ideas. The interested
reader is referred to an extensive theoretical description
including proofs and a computational complexity discus-
sion appearing elsewhere [16].

2.1 Graph-theoretical model for structural RNA alignment
Problem definition

Given two RNA sequences, we denote by  an alignment

of the two sequences. Let sS( ) be the sequence score of

alignment  including gap penalties, and let sP( ) be

the score of structural features that are conserved by the
alignment . We now aim at maximizing the combined
sequence-structure score, that is, we search for an align-

ment  with

Figure 4 gives a toy example showing two annotated
sequences and two possible alignments, one maximizing
the score of sequence and structure, and the other one just
the sequence score alone. This problem definition com-
prises the one addressed by Bafna et al. in [22]: Our
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Problem statementFigure 4
Problem statement. Given the annotated sequences on 
the left side as the input, we search for an alignment maxi-
mizing the sequence plus the induced structure score. The 
alignment in the middle conserves the entire annotation 
(highlighted in grey), whereas the alignment on the right hand 
side maximizes the sequence score and does not conserve 
any structure.
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GGAUACCAUC
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GG-AUA-CCA-UC
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model, however, also allows tertiary elements, which is
not covered by their recursions.

Basic model
Let s = s1, ..., sn be a sequence of length n over the alphabet
Σ = {A, C, G, U}. A pair (si, sj) is called an interaction if i <
j, and nucleotide i pairs with j. In most cases, these pairs
will be Watson-Crick or wobble base pairs. The set p of
interactions is called the annotation of sequence s. Two
interactions (sk, sl) and (sm, so) are said to be inconsistent, if
they share one base; they form a pseudoknot if they "cross"
each other, that is, if k <m <l <o or m <k <o <l. A pair (s, p)
is called an annotated sequence. Note that a structure where
no pair of interactions is inconsistent with each other
forms a valid secondary structure of an RNA sequence,
possibly with pseudoknots.

We are given two annotated sequences (sA, pA) and (sB, pB)
and model the input as a structural graph GS = (V, L). The

set V denotes the vertices of the graph, in this case the

bases of the sequences, and we write  and  for the

ith base in sequence A and B, respectively. The set L con-
tains undirected alignment edges between vertices of
sequences A and B, for sake of better distinction called

lines. A line l ∈ L with l = ( ) represents the align-

ment of the k-th character in sequence A with the l-th char-
acter in sequence B. By s(l) and t(l) we refer to the adjacent
vertices of line l in sequence A and B, respectively. A subset

 ⊂ L represents a valid sequence alignment of sequence A

and B, if there are no two lines k, l ∈  such that k and l
cross or touch each other [40]. Crossing or touching lines
induce ordering conflicts in the alignment (see Fig. 5 for

an illustration). We denote with the set  the collection

of all maximal sets of mutually conflicting lines.

We extend the original graph GS = (V, L) by the edge set I

to model the annotation of the input sequences in our
graph. Consequently, we have interaction edges between

vertices of the same sequence, i.e., an edge ( ) repre-

senting the interaction between nucleotides i and j in
sequence A. Figure 6 illustrates these definitions by means
of an example. Note that at this stage gaps are not mod-
elled in our formulation. Hence, we have to extend our
model to incorporate gap penalties in our model.

Gap edges

The initial model containing only lines (the set L) and
interaction edges (the set I) is augmented by a set of gap
edges G, which represents gaps in the alignment. For sake

of compactness, we just describe the gap edges of
sequence A, the gap edges of sequence B are defined anal-

ogously: We have an edge  from  to  with k, l ∈

1, ..., |sA| representing the fact that no character of the sub-

string  is aligned to any character of the sequence

B, whereas  (if k - 1 > 0) and  (if l + 1 ≤ |sB|) are

aligned with some characters in sequence B. We say that

 are spanned by the gap edge . Figure 7 shows

the graph extended by gap edges.
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Initial graph modelFigure 6
Initial graph model. (a) Initial graph model representing 
two annotated sequences sA = GCAGCAU and sB = AGAU-
UCC. Solid lines represent lines, dashed lines represent 
interaction edges. Please note that in this toy example mini-
mum loop lengths constraints on the interaction edges are 
violated for sake of compactness of the illustration. Interac-

tions ( ) and ( ) are in conflict with each other, 

( ) and ( ) form a pseudoknot. Sequence sA 

contains only nested interactions. (b) A subset of all possible 
lines is shown representing the alignment (c).
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Crossing linesFigure 5
Crossing lines. Sequences sA = AG and sB = AU are given. 
The solid line between G and A represent the alignment of 
these two nucleotides. If we added the gray dashed line, this 
would induce an ordering conflict.
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Two gap edges  and  ∈ G are in conflict with each

other if {k, ..., l + 1} ∩ {m, ..., n} ≠ ∅, that is, if they over-
lap or touch. This is intuitively clear, because we do not
want to split a longer gap into two separate gaps: Conse-
quently, there has to be at least one aligned character
between any two realized gap edges. See Fig. 8 for an

example. We denote with the set  the collection of all

maximal sets of mutually conflicting gap edges. Finally,

we define  as the set of gap edges that span the

nodes .

Interaction match

We call two interactions  and 

an interaction match if there exist two alignment edges

 and  that do not cross each

other. We say that a subset  ⊆ L realizes the interaction

match if {a, b} ⊆ . Interaction matches realized by a set

 represent common interactions that are preserved by
aligning the begin and end nucleotides of the interaction.
Figure 9 illustrates the definitions.

Gapped structural trace

A triple ( , , ) with  ⊆ L,  ⊆ I, and  ⊆ G is

called a valid gapped structural trace if and only if the fol-
lowing constraints are satisfied:

1. The vertices  and  of sequences A and B are either

incident to exactly one alignment edge e ∈  or spanned

by a gap edge g ∈ . In other words, a nucleotide is either

aligned or "aligned" to a gap.

2. A line l can realize at most one interaction match (l, m),
because a nucleotide can pair with at most one other
nucleotide in a valid RNA secondary structure.

3. There are no two lines k, l ∈ L that cross or touch each
other: Crossing lines induce ordering conflicts in the
alignment, whereas touching lines imply that two differ-
ent nucleotides are mapped to the same nucleotide in the
other sequence.

4. There are no two gaps edges  such that 

is in conflict with , and there are no two gaps edges

 such that  is in conflict with .
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Interaction matchFigure 9
Interaction match. The pairs (k, m) and (k, o) are valid 
interaction matches. The pair (l, n), however, is not a valid 
interaction match since l and n cross each other.
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Graph model augmented gap edgesFigure 7
Graph model augmented gap edges. (a) Initial model 
additionally augmented with gap edges. The figure shows 

possible alignments edges and all gap edges starting from  

(for sake of clarity, all other gap edges and interaction edges 
are not displayed). Note, however, that every node has out-
going gap edges to all other nodes in the sequence. The sub-
set of lines and gap edges (b) corresponds to the alignment 
(c).
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Figure 10 visualizes these properties by showing a toy
example for a gapped structural trace.

We assign weights wl and wkl for each line l and interaction

match (k, l) that represents the benefit of realizing l or (k,
l). By default, we set these scores along the lines of stand-
ard scoring methods, e.g., BLOSUM matrices for the
weight of the lines, base pair probabilities [18] for the inter-
action match scores, or by using the RIBOSUM scoring
matrices derived from alignments of ribosomal RNAs
[47]. Our model, however, is not limited to standard scor-
ing schemes. Since we can set each (sequence or structure)
weight separately, the user can assign completely arbitrary
scores to each line or interaction match which makes the
incorporation of expert knowledge into the computation
of structural alignments easy. Furthermore, we assign neg-

ative weights to gap edges  with representing the gap

penalty for aligning substring  with gap charac-

ters. Note that the model allows for arbitrary, position-
dependent gap scoring.

Approaches for traditional sequence alignment aim at
maximizing the score of edges in an alignment . Struc-
tural alignments, however, must also take the structural
information encoded in the interaction edges into
account. The problem of structurally aligning two anno-
tated sequences (sA, pA) and (sB, pB) corresponds to finding
an alignment such that the weight of the sequence part
(i.e., the weight of selected lines plus gap penalties) plus
the weight of the realized interaction matches is maximal.
More formally, we seek to maximize

, where ( , ) rep-

resents an alignment with arbitrary gap costs, and  con-

tains the interaction matches realized by . Observe that
this graph-theoretical reformulation matches the problem
statement given at the beginning of this section.

Biological aspects
The basic entities of our model are the alignment, interac-
tion, and gap edges in the structural graph, which contrib-
ute to the objective function rather independently. Hence,
one could argue that the model does not capture impor-
tant features of RNA structures, like the incorporation of
stacking energies or loop scores that depend on the actual
size of the loop. We are aware of these limitations.

Nevertheless, the results of our computational experi-
ments presented in Sect. 3 show that this approach yields
high-quality structural alignments. In the pairwise case,
our graph-based model is competitive with state-of-the-
art approaches and develops its strength with an increas-
ing number of sequences, outperforming all other pro-
grams that we tested (for details see Sect. 3). Additionally,
the authors of [48] showed that models that do not cap-
ture stacking energies and loops are still competitive.

Beyond, our graph-based approach offers the possibility
to change the model from nucleotides as the working enti-
ties to stems: Instead of taking single nucleotides as the
vertices of the structural graph, we could search for candi-
date stems in the sequences and introduce a vertex for each
half-stem. This would allow us to incorporate energy-
based scoring into our model, which then, however, will
have to be adapted to take into account overlapping stem
candidates.

2.2 Integer linear program and Lagrangian relaxation
Given the graph-theoretical model it is straightforward to
transform it to an integer linear program (ILP). We associate
binary variables with each line, interaction match, and
gap edge, and model the constraints of a valid gapped
structural trace by adding inequalities to the linear pro-
gram.

The handling of lines and gap edges is straightforward: We
associate a x and z variable to each line and gap edge,

respectively. We set xl = 1 if and only if line l ∈ L is part of

the alignment , and za = 1 if and only if gap edge a ∈ G

is part of the alignment.

Interaction matches, however, are treated slightly differ-
ently: Instead of assigning an ILP variable to each interac-
tion edge, we split an interaction match (l, m) into two
separate directed interaction matches (l, m) and (m, l) that
are detached from each other. A directed interaction

match (l, m) is realized by the line set  if l ∈ . We then

akl
A

s sk
A

l
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Valid gapped structural traceFigure 10
Valid gapped structural trace. Valid gapped structural 
trace: every vertex is incident to exactly one line or is 
spanned by a gap edge. There are no crossing lines, and every 
line is incident to at most one interaction match.
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have ylm = 1 if and only if the directed interaction match (l,

m) is realized (note again that ylm and yml are distinct vari-

ables). Figure 11 gives an illustration of the variable split-
ting. Note that this does not change the underlying
model, it just makes the ILP formulation more convenient
for further processing. Splitting interaction matches has
first been proposed by Caprara and Lancia in the context
of contact map overlap [42].

As described in Sect. 2.1, the sets L, I, and G refer to lines,

interaction edges, and gap edges, and the sets  and 

contain subsets of mutually conflicting lines or gap edges.

We then give the following ILP formulation for the
gapped structural trace problem:

ylm = yml  ∀l, m ∈ L (7)
x ∈ {0, 1}L y ∈ {0, 1}L×L z ∈ {0, 1}G (8)

Lemma 2.1 (Proof in [16])
A feasible solution to the ILP (1)–(8) corresponds to a valid
gapped structural trace of weight equal to the objective function
and vice versa.

Observe that constraints (2)–(6) exactly correspond to the
properties of a gapped structural trace as described in Sect.
2.1.

In [49] the authors show that the problem of computing
an optimal gapped structural trace is already NP-hard,
even without considering gap costs. Hence, we cannot
hope to find an optimal solution to the problem in poly-
nomial time.

Commonly used mathematical programming techniques
for NP-hard problems therefore resort to various relaxation
techniques that are the basis for further processing. A relax-
ation results from the removal of constraints from the
original ILP formulation, and is often solvable in polyno-
mial time. A popular relaxation is the so called LP relaxa-
tion where the integrality constraints on the variables are
dropped, yielding a standard linear program, for which
solutions can be found efficiently.

Another possible relaxation technique is Lagrangian relax-
ation: Instead of just dropping certain inequalities, we
move them to the objective function, associated with a
penalty term that becomes active if the dropped constraint
is violated. By iteratively adapting those penalty terms
using, for instance, subgradient optimization, we get better
solutions with each iteration. A crucial parameter is there-
fore the number of iterations that we perform: the higher
the number, the more likely it is to end up with an opti-
mal or near-optimal solution.

Inspired by the successful approach of Lancia and Caprara
for the contact map overlap problem, we consider the
relaxation resulting from moving constraint (7) into the
objective function.

Lemma 2.2 (Proof in [16])
The relaxed problem is equivalent to the pairwise sequence
alignment problem with arbitrary gap costs.

2.3 Algorithms for the pairwise and multiple case
Our algorithm for the pairwise RNA structural alignment
problem consists of iteratively solving the primary
sequence alignment problem associated with the relaxa-
tion. The penalization of the relaxed inequality is reflected
in an adapted scoring matrix for the primary alignment.
Intuitively, these weights incorporate also the structural
information. In each iteration we get a new lower bound
for the problem by analyzing the primary sequence align-
ments and inferring the best structural completion of this
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Splitting of interaction matches. One interaction match 
is split into two directed interaction matches.
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alignment. In fact, this corresponds to solving a maxi-
mum weighted matching problem in a general graph. For
details see [16]. In the course of the algorithm, these solu-
tions get better and better. Furthermore, the value of the
relaxation itself constitutes an upper bound on the prob-
lem, which decreases with an increasing number of itera-
tions. When these bounds coincide, we have provably
found an optimal solution, otherwise, we get near-opti-
mal solutions with a quality guarantee. Assuming an
upper bound on the number of interaction matches per
line, which is typically the case with base pair probability
matrices of RNA sequences, we get a running time of
O(n2) for each Lagrangian iteration. Since we fix the
number of iterations, this leads to an overall time com-
plexity of O(n2).

For the multiple case, similar in spirit to the MARNA soft-
ware, we combine our pairwise method with the popular
progressive alignment software T-COFFEE [50]. Progres-
sive methods build multiple alignments from pairwise
alignments. The pairwise distances are usually used to
compute a guide tree which in turn determines the order
in which the sequences are aligned to the evolving multi-
ple alignment.

Progressive approaches often suffer from their sensitivity
to the order in which the sequences are chosen during the
alignment process. T-COFFEE reduces this effect by mak-
ing use of local alignment information from all pairwise
sequence alignments during its progressive alignment
phase. We supply such local alignment information based
on all-against-all structural alignments computed with
our pairwise approach, assigning a high score to con-
served interaction matches. The structural information is
subsequently passed on to T-COFFEE that computes a
multiple alignment, taking into account the additional
structural information.

3 Experiments
The basis of our computational experiments is the
recently published benchmark set BRALIBASE 2.1 [51].
We compared our program to four other alignment pro-
grams (MARNA, FOLDALIGNM, MAFFT, and STRAL)
using two established measures for the quality of struc-
tural alignments (Compalign and SCI score). We per-
formed all experiments with default parameters.

3.1 BRAliBase 2.1
We chose this data set, which is available from [52], as our
test set, since it covers a greater range of typical noncod-
ing-RNA families than the original BRALIBASE data set
[12]. BRALIBASE 2.1 contains 36 different RNA families,
ranging from approximately 26 nucleotides long Histone
3'UTR stem-loop motifs to approximately 300 nucle-
otides long eukaryotic SRP RNAs. See [51] for a detailed

listing of all instances. BRALIBASE 2.1 reference align-
ments are based on manually curated seed alignments of
the Rfam 7.0 database [53]. Out of the pool of all ncRNA
families that have more than 50 sequences in their seed
alignment, either 2, 3, 5, 7, 10 or 15 sequences were ran-
domly drawn considering constraints on the sequences
(e.g., average pairwise sequence identity or structural con-
servation). These subsets of the original seed alignments
form the instances of BRALIBASE: in the following we
stick to the BRALIBASE naming convention and refer to
the sets of instances by k2, k3, k5, k7, k10, and k15,
depending on the number of sequences per instance.

3.2 Compalign and SCI
We use two different scores to measure the quality of the
computed alignments: the Compalign value codes the
degree of similarity to a given reference alignment as given
by the percentage of columns that are identically aligned
as in the reference alignment. A value of 1 states that the
reference and test alignment are the same, whereas 0
denotes that no column was correctly aligned with respect
to the reference alignment.

The second score is the so called structural conservation
index [54] (or SCI in short). The SCI basically gives the
degree of conservation of a consensus structure induced
by a multiple alignment in relation to the minimum free
energy structure of each sequence (to be more precise, not
the actual structures are compared but their respective
energy values). A SCI value of ≈ 1 indicates very high struc-
tural conservation, whereas a value around 0 indicates no
structural conservation at all. Note that the SCI score can
be greater than 1, because covariance information is addi-
tionally rewarded in the computation.

We have used the programs compalignp and scif to com-
pute the Compalign and SCI score. Both tools are freely
available from the BRAliBase website.

3.3 Other structural alignment programs
We implemented our approach called LARA in C++
within the LISA framework. LISA (Library of Structural
Alignment algorithms) contains various methods for
aligning protein and RNA structures as well as biological
networks.

Furthermore, we selected several other multiple structural
alignment programs to compare the results. We used
MARNA [26] (available from [55]) using an ensemble of
three suboptimal structures as its input, STRAL [24] (a
sequence based algorithm incorporating McCaskill's base
pair probabilities, available from [56]), and a reimple-
mentation of the PMCOMP approach called FOLDA-
LIGNM [32] (a banded variant of Sankoff's algorithm that
aligns base pair probability matrices, available from [57]).
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Furthermore, to compare the performance of the struc-
ture-based alignment programs to purely sequence-based
ones, we performed the same tests with MAFFT [58], a
recent multiple sequence alignment program which is
available from [59]. We want to emphasize that we did
not perform any parameter tuning for any program (this
includes LARA), i.e., we downloaded the programs from
the respective websites and performed the computations
out of the box without specifying any optional parame-
ters.

Since earlier studies [12,51] showed that structural align-
ments only contribute an additional benefit – compared
to sequence-based approaches – if the pairwise sequence
identity drops below ≈ 50 – 60%, we restricted the test set
to instances of low homology, i.e., instances having a pair-
wise sequence identity below 50%.

3.4 LaRA
A scoring system for structural alignments has to provide
two different kinds of scores: scores for the sequence and
the structure part (in case of LARA, these correspond to
weights for the alignment and interaction edges, respec-
tively). Since the structure is considered to contain the
necessary information for "correct" alignments, we have
to make sure that the structure scores contribute the major
part to the overall score.

We do not generate the complete annotation for our input
sequence, that is, an interaction edge between every possi-
ble interaction, but restrict interaction edges to those hav-
ing base pair probabilities larger than a threshold pmin. For
our experiments we resorted to a value of 0.003, similar as
in PMCOMP. The impact of different pmin values is two-
fold: First, the lower the value is, the higher the structure
scores are. Secondly, a high pmin value leads to a sparser
structure graph.

For the scoring of the edges, LARA provides two different
schemes: First, a scoring system based on base pair proba-
bility matrices (BPP scoring in short) that rescales the
scores in spirit of PMCOMP. More precisely, given the
probability pij that nucleotide i and j pair, the actual score
sij for the structural interaction between i and j is given by

where lg is the natural logarithm. For the sequence scor-
ing, we take the entries from the RIBOSUM matrices [47]
as the actual sequence scores (that is the scores for pairs of
nucleotides) and multiply them by a user-specific adjust-
ment factor τ. The default value for τ is 0.05, leading to a
small sequence score contribution to the overall score. If
one knows, however, that sequence is equally or more

important than the structure (e.g., in case of ribos-
witches), one simply has to increase the value of τ.

The second scheme employs the RIBOSUM scoring matri-
ces both for sequence and structure scoring: these matrices
are based on given alignments of ribosomal RNAs from
which log-odds scores were derived. They provide both
sequence and structure scores, without rescaling the
scores.

The second crucial LARA parameter is the number of iter-
ations: the more iterations LARA computes, the more
often the penalty terms are adapted (yielding better align-
ments). As one can see in Fig. 12 the number of iterations
influences the quality of the computed alignment while
the running time increases linearly with the number of
iterations. In our experiments we set the number of itera-
tions to 500.

The scoring of gap edges follows the scheme of affine gap
costs with an gap open and extension penalty of -6 and -2,
respectively.

s
p

pij
ij=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟lg

min
Different number of iterationsFigure 12
Different number of iterations. Comparison of all k10 
instances of low homology between LARA running 100 or 
500 iterations. Each dot correponds to one problem 
instance, the thick lines were computed using Lowess regres-
sion. The x-axis gives the average pairwise sequence identity 
(APSI). The y-axis codes the Compalign score.
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Score vs. alignment accuracy

We were interested to what extent the accuracy of our
alignments correlates with the actual BPP score that we
computed. Since the score depends on the length of the
input sequences, we normalized the score with respect to
the number of paired bases in the minimum free energy
structure. Note that we did not use the actual structure,
but the number of base pairs in the structure to get a rough
estimate of how many pairings we expect in the structure.

Then, let  and n be the average score and the number of

base pairs in the MFE structure, then the base-pair normal-

ized score is given by /n. The left side of Fig. 13 shows the

results for all 189 k10 instances with an average pairwise
sequence identity less than 50%. The great majority of
instances behaves as expected: the higher the bp-score is,
the better is the corresponding Compalign score: There is,
however, a group of 10 outliers (represented by the red
boxes). Although they have a high bp-score (greater than
10.0), the alignment accuracy is bad: it turned out that
these 10 instances are all SECIS-elements, indicating that
the BPP scoring scheme is not appropriate for this group.

Furthermore, we assumed that there should a correlation
between the actual performance of our algorithm and,
again, the quality of our alignments: Remember that each
Lagrange iteration results in a new valid solution and a
new upper bound for the problem instance. Dividing the
value of the highest lower bound by the value of the low-
est upper bound gives an optimality ratio, i.e., a measure of
how close the best solution is to an optimal one. Assum-
ing an inverse correlation between the gap between lower

and upper bound and the quality of the alignment, we
again took all k10 BRALIBASE instances of low pairwise
sequence identity and computed the arithmetic mean of
the optimality ratios of all pairwise alignments. The right
side of Fig. 13 shows the plot for all 189 k10 instances
with a sequence similarity lower than 50%. Most of the
instances behave as expected: the higher the average opti-
mality ratio is, the closer is the computed alignment to the
reference alignment (and vice versa). There is, however, a
group of 19 instances that behave differently (marked as
red boxes in Fig. 13): Although their average optimality
ratio is high (> 0.7), the corresponding Compalign value
is rather low compared to instances of a similar average
optimality ratio. A closer inspection revealed that all
instances of the upper left corner (that is instances having
a Compalign value lower than 0.65 and an average opti-
mality ratio of greater than 0.7, represented by red boxes
in Fig. 13) comprises almost all instances of either bacte-
rial SRP RNAs or SECIS elements (just one SRP RNA
instance is not among the 19 instances). We therefore
increased the number of iterations for one SECIS instance
to see whether this would positively influence the quality
of the alignment. By setting the number of iterations to
500, 1000, and 2000 we got average optimality ratios of
0.83, 0.85, and 0.87, by simultaneously yielding Compal-
ign values of 0.39, 0.38, and 0.36, respectively. Obviously,
the better the computed alignments in terms of the opti-
mality ratio are, the worse they got with respect to the ref-
erence alignment.

Consequently, for the outlier instances described above,
we changed the scoring from BPP to RIBOSUM scores. Fig-
ure 14 shows the change in terms of the Compalign score
and optimality ratio for the 19 outlier instances: 16
instances had better Compalign scores by using the RIBO-

p̂

p̂

Score vs. alignment accuracyFigure 13
Score vs. alignment accuracy. All 189 BRALIBASE k10 instances of low pairwise sequence identity where each cross or 
box corresponds to one instance: The x-axis gives the Compalign score. The y-axis codes either a structure-normalized score 
(left side), or the optimality ratio (right side). The red boxes mark the outliers.
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SUM scoring, whereas the optimality ratio decreased in
the majority of instances.

In general, however, our experiments showed that RIBO-
SUM scoring is not superior to BPP scoring (at least for the
BRALIBASE benchmark and LARA): Figure 15 shows a
comparison of all low homology k5 instances using either
base pair probability matrices or RIBOSUM scoring, and it
is obvious that base pair probability scoring yields better
results on these input instances.

3.5 Comparison with other programs
As described in Sect. 3.2 we used two different scores to
assess the quality of the computed alignments: the Com-
palign (the degree of similarity between the test alignment
to a given reference alignment) and the SCI score (the
degree of structural conservation induced by the test align-
ment).

FOLDALIGNM performs an alignment and clustering of
the input sequences at the same time: in some instances,
FOLDALIGNM splits the input sequences into two clus-
ters. Since the scores that we use depend on the number of
input sequences, we dropped those FOLDALIGNM align-
ments that did not contain all sequences in the final align-
ment: This leads to 43, 30, 11, 15, 19, and 6 instances that
we did not consider in case of k2, k3, k5, k7, k10, and k15
instances.

In Fig. 16 we show the results of our experiments broken
down to the different input classes (either k2, k3, k5, k7,
k10, or k15). These graphics have the average pairwise
sequence identity and the Compalign score as their x- and
y-axis, respectively. The reference alignments therefore

Changing the scoring from BPP to RIBOSUMFigure 14
Changing the scoring from BPP to RIBOSUM. Change of the Compalign score and optimality ratio after changing the 
scoring from BPP to RIBOSUM matrices for the 19 outlier instances.

AVG OPTCOMPALIGN

BPP vs. RIBOSUM scoringFigure 15
BPP vs. RIBOSUM scoring. Comparison between base 
pair probability (BPP) and RIBOSUM scoring. The x-axis gives 
the average pairwise sequence identity (APSI). The y-axis 
codes the Compalign score.
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Compalign results on low homology instancesFigure 16
Compalign results on low homology instances. Results on all low homology instances containing 2 (upper left), 3 (upper 
right), 5 (middle left), 7 (middle right), 10 (lower left), and 15 (lower right) instances from the BRALIBASE benchmark set. The 
x- and y-axes give the average pairwise sequence identity (APSI) and the Compalign score. The legend from the upper left plot 
applies to the other plots as well. Mind that the different APSI-ranges in the six plots are a result of the BRALIBASE benchmark 
set: there are, for example, no k15 instances in BRALIBASE below 38%.
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SCI results on low homology instancesFigure 17
SCI results on low homology instances. Results on all low homology instances containing 2 (upper left), 3 (upper right), 5 
(middle left), 7 (middle right), 10 (lower left), and 15 (lower right) instances from the BRALIBASE benchmark set. The y-axis 
gives the SCI score. The legend from the upper left plot applies to the other plots as well. Mind that the different APSI-ranges 
in the six plots are a result of the BRALIBASE benchmark set: there are, for example, no k15 instances in BRALIBASE below 
38%.
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correspond to horizontal lines at a Compalign score of
1.0.

We have made several observations: First of all, in the
pairwise case (i.e., the k2 instances) LARA has a similar
performance as the Sankoff variant FOLDALIGNM up to a
sequence identity of ≈ 42%. For the range of ≈ 42 – 50%
all programs (even sequence-based MAFFT) have compa-
rable performance (except for MARNA). With an increas-
ing number of input sequences per instance, especially for
the k10 and k15 sequences, the results change tremen-
dously: LARA outperforms the other programs, yielding
average Compalign scores of ≈ 90%, whereas the other
structure-based alignment programs have scores around ≈
55 – 75%. This is quite remarkable, especially considering
that FOLDALIGNM and LARA show a similar perform-
ance in the pairwise case: FOLDALIGNM, however, com-
putes multiple alignments in a progressive fashion,
whereas LARA computes all pairwise alignments and
leaves it to T-COFFEE to compute an alignment that is
highly consistent with all pairwise alignments. With an
increasing number of input sequences, the consistency-
based approach generates better alignments than the pro-
gressive methods (at least in the case of our experimental
setup).

Another astonishing observation is the performance of
MAFFT, a purely sequence-based program: the k2 and k3
instances show a comparable performance for instances
above ≈ 42%, which is already surprising. With a growing
number of input instances, the performance of MAFFT
becomes even better: in case of 15 input instances, the
program yields – on average – the second best results
(behind LARA), outperforming even FOLDALIGNM and
STRAL, which incorporate structural information. It has to
be investigated whether the creation of the benchmark set
has to be revisited, because these plots clearly contradict
the hypothesis that sequence-based programs yields sig-
nificantly worse results for input instances of a pairwise
sequence identity below 50%.

In Fig. 17 we show the results with respect to the SCI score
(remember that the SCI is a measure for the structural
conservation of an alignment). The general trend is the

same as in Fig. 16. In the pairwise case, the LARA curve has
the same shape as the reference curve, but shifted to the
bottom by about 0.1. FOLDALIGNM yields the best
approximation to the reference line, having almost the
same performance for instances with an APSI greater than
30%. With an increasing number of input sequences, the
situation changes: from k5 on LARA generates the best
approximation to the reference line, with FOLDALIGNM
being the second best program. Taking a look at the vari-
ous result plots puts the extraordinary performance of
MAFFT into perspective regarding the k10 and k15 input
sets.

Comparison of running times

We compared the programs tested on the same computing
server with an Intel Xeon CPU running at 3.2 GHz, 3.5 GB
RAM, and Linux kernel version 2.6.16. It turned out that
memory requirement was not an issue, but the computa-

tion time instead: especially MARNA scales in (n4),
which makes the alignment of longer sequences (for
example the SRP instances of BRALIBASE) rather time-
consuming. This, however, is not the case with LARA and
FOLDALIGNM, since these two programs have running

times in (n2). To evaluate the time consumption within
reasonable time, we therefore set a time limit of 20 min-
utes per instance: If the computation was not finished





Running times of sequence-structure alignment programsFigure 18
Running times of sequence-structure alignment pro-
grams. The plot shows a comparison of the running times 
between the structural programs tested. With an increasing 
number of input sequences, a progressive alignment strategy 
pays off compared to the computation of all pairwise align-
ments. The x-axis lists the different input instances, either 
containing 2, 3, 5, 7, 10, or 15 sequences (denoted by k2, k3, 
k5, k7, k10, and k15, respetively). The numbers in brackets 
denote the number of instances per input class. The y-axis 
gives the number gives the computation time in seconds.
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Table 2: Failed instances. Unsolved instances within a time limit 
of 20 minutes.

Program k2 k3 k5 k7 k10 k15

LARA 0 0 0 0 0 0
FOLDALIGNM 0 0 0 0 0 0

STRAL 0 0 0 0 0 0
MARNA 0 49 23 17 12 6
MAFFT 0 0 0 0 0 0
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within 20 minutes, the process was killed and we took 20
minutes as the actual running time. In Table 2 we list the
number of instances that the corresponding program was
not able to align within 20 minutes.

We were especially interested in how the running times of
the programs that use structure information scaled with
respect to the number of the input sequences: FOLDA-
LIGNM is a progressive approach which computes (n - 1)
pairwise alignments given n input sequences. MARNA and

LARA, however, compute all  pairwise align-

ments. Figure 18 shows the execution time of all five pro-
grams on all k2, k3, k5, k7, k10, and k15 instances. As one
can see, with an increasing number of input sequences, a
progressive alignment strategy pays off compared to the
computation of all pairwise alignments.

4 Conclusion
We have presented a novel method for computing high-
quality pairwise structural RNA alignments. We approach
the original problem using a flexible graph-based model,
which naturally deals with pseudoknots.

We find solutions in our model by means of an integer
linear programming formulation and the Lagrangian
relaxation technique. For the multiple case, we compute
all-against-all pairwise solutions and pass this informa-
tion to T-COFFEE, a progressive alignment algorithm.

Our extensive computational experiments on a large set of
benchmark alignments show that LARA, the implementa-
tion of our algorithm, is competitive with state-of-the art
tools and outperforms alternative approaches with an
increasing number of input sequences. The difference to
other programs gets larger the more sequences that have
to be aligned. In this context, we also find the perform-
ance of MAFFT, a purely sequence-based program,
remarkable. MAFFT comes closer to manually curated ref-
erence alignments than all other structure-specific tools
besides LARA for alignments of more than ten sequences.

Our plans for the future include a local version of our
alignment algorithm. Furthermore, we are currently
implementing an exact branch-and-bound framework
around the Lagrangian approach and will develop a stem-
based variant of LARA. Furthermore, the openness to
pseudoknots is the main advantage of LARA over alterna-
tive approaches, and we plan to adapt our method to pro-
duce high-quality alignments of pseudoknotted
structures.

Availability and requirements
LARA (Lagrangian relaxed alignments) is part of the C++
library LiSA and is freely available for academic purposes
from http://www.planet-lisa.net. The binary runs under
the Linux operating system.

All alignments that we computed and the scripts for gen-
erating the plots are also available from http://
www.planet-lisa.net/.
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