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Abstract
Background: Serial analysis of gene expression (SAGE) is used to obtain quantitative snapshots
of the transcriptome. These profiles are count-based and are assumed to follow a Binomial or
Poisson distribution. However, tag counts observed across multiple libraries (for example, one or
more groups of biological replicates) have additional variance that cannot be accommodated by this
assumption alone. Several models have been proposed to account for this effect, all of which utilize
a continuous prior distribution to explain the excess variance. Here, a Poisson mixture model,
which assumes excess variability arises from sampling a mixture of distinct components, is
proposed and the merits of this model are discussed and evaluated.

Results: The goodness of fit of the Poisson mixture model on 15 sets of biological SAGE replicates
is compared to the previously proposed hierarchical gamma-Poisson (negative binomial) model,
and a substantial improvement is seen. In further support of the mixture model, there is observed:
1) an increase in the number of mixture components needed to fit the expression of tags
representing more than one transcript; and 2) a tendency for components to cluster libraries into
the same groups. A confidence score is presented that can identify tags that are differentially
expressed between groups of SAGE libraries. Several examples where this test outperforms those
previously proposed are highlighted.

Conclusion: The Poisson mixture model performs well as a) a method to represent SAGE data
from biological replicates, and b) a basis to assign significance when testing for differential
expression between multiple groups of replicates. Code for the R statistical software package is
included to assist investigators in applying this model to their own data.

Background
Serial analysis of gene expression (SAGE) is a technique
for obtaining a quantitative, global snapshot of the tran-
scriptome [1]. The method extracts short sequence tags
(containing 10, 17, or 22 bp of information, depending
on the protocol) from each messenger RNA; these are seri-

ally ligated, cloned and sequenced, and can then be
counted to obtain a profile [1-3]. SAGE has been used to
study the transcriptome of a variety of tissue and cell types
from a diverse set of organisms. The technique was origi-
nally conceived to study the cancer transcriptome, and has
been utilized extensively to do so.
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As a counting technology, SAGE produces profiles consist-
ing of a digital output that is quantitative in nature. For
example, a statement can be made with reasonable cer-
tainty that a SAGE tag observed 30 times in a library of
100,000 tags corresponds to a transcript that comprises
0.03% of the total transcriptome; the same statement can-
not be made reliably with analog values, like that
obtained from a microarray. Accordingly, a reliable statis-
tical model should account for the discrete, count-based
nature of SAGE observations. When testing for differential
expression between groups, where each group can contain
multiple libraries, statistical methods that incorporate a
continuous probability distribution (e.g. the Normal dis-
tribution assumed by Student's t-test) should be avoided.
Indeed, such tests require tag counts be normalized by
division with the total library size; this removal of library
size from the set of sufficient statistics discards an inform-
ative facet of the data.

The sampling of SAGE tags can be modeled by the Bino-
mial distribution which describes the probability of
observing a number of successes in a series of Bernoulli
trials. Here, the library size corresponds to the number of
trials and the count of a particular tag is the number of
successful trial outcomes. When the probability of an
event is small, the Binomal distribution approaches the
Poisson distribution as the number of trials increases. This
is the case for SAGE (since the tag counts are small relative
to a large library size), so the form of the Poisson and
Binomial distribution is essentially the same. A fortunate
characteristic of both of these distributions is that they are
a function of a single parameter only, since the variance in
observed data is directly calculable from the mean.

However, in practice, the variance of SAGE data is often
larger than can be explained by sampling alone. Several
authors have attributed this effect, termed "overdisper-
sion", to a latent biological variability [4-6]. [4] refers to
this as "between"-library variability, as opposed to
"within"-library variability caused by sampling. Examples
of factors that could contribute to this variability are
numerous, including: sample preparation or quality, arte-
facts intrinsic to the library construction protocol, differ-
ences in gene transcription due to environment, or the
intrinsic stability or regulatory complexity of transcription
at a particular locus. This will adversely affect statistical
analysis because additional variance results in an over-
stated significance. Procedures for using hierarchical mod-
els which incorporate a continuous prior distribution to
explain the excess variance have been presented for both
the Binomial (viz. beta-binomial using logistic regression
[5], tw-test [4], or Bayes error rate [7]) and Poisson (viz.
negative binomial a.k.a. hierarchical gamma-Poisson
using log-linear regression [6]) distributions. Attempts to
use the log-normal and inverse-Gaussian as prior distribu-

tions (both of these have longer tails) did not show an
appreciable improvement and are computationally diffi-
cult to fit (data not shown).

Here, it is argued that the excess variation is due to a mix-
ing of two or more distinct Poisson (or Binomial) compo-
nents, and this mixing is the predominant source of total
variation. This assumption corresponds to a finite mixture
model, which have found wide applicability in several
fields (for a general introduction, McLachlan and Peel is a
good source [8]). To illustrate, consider a tag from ten
SAGE libraries of equal size (e.g. 100,000 tags) that has
observed counts where half are realizations of an expres-
sion of 0.0003 and the other half of 0.0004. As a result,
the probability distribution of observing a particular tag
count will be a combination of these two components
(Figure 1). Note the similarity between the shapes of the
probability distributions estimated from a fitted negative
binomial (which assumes sampling variability drawn
from a latent biological variability) and a Poisson mixture
model (which assumes a set of independent components,
each having sampling variability only).

If the Poisson mixture model is an accurate foundation to
explain SAGE observations, it is attractive for several rea-
sons. First, this approach does not rely on a vague and
continuous prior distribution to explain additional vari-
ance. Rather, the model asserts that a gene's expression
level will take on one of a number of distinct states. Sec-
ond, overdispersed models applied to SAGE data tend to
show a wide range of excess variation; in many cases, far
greater than can be attributed to counting. This is a trou-
bling prospect for studies that utilize a limited number of
libraries (e.g. pair-wise comparisons), since the observed
count may differ wildly from the underlying expression. If
a mixture model provides an improved fit to SAGE data,
this concern would be assuaged. Finally, mixture models,
by nature, allow for the concept of subsets (or latent
classes) in the expression values of each tag. Dysregula-
tion of genes in disease processes such as cancer are often
observed in only a proportion of profiled samples, and
these will be naturally identified during model fitting.
This property can also be utilized to identify sets of co-
expressed genes.

Results
Goodness of fit
In order to evaluate the efficacy of a mixture model
approach, a comparison of the goodness of fit of this and
previously described models on 15 sets of biological rep-
licates from publicly available SAGE data was performed
(see Methods).

Goodness of fit was assessed for: 1) the canonical log-lin-
ear (Poisson) model, 2) negative binomial (i.e. hierarchi-
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Probability density of several models applied to data generated from two Poisson componentsFigure 1
Probability density of several models applied to data generated from two Poisson components. 10 observations 
were randomly drawn from each of two Poisson distributions, one with a mean of 30, the other 40. The values drawn from the 
first component were (40, 34, 37, 28, 31, 21, 41, 27, 34, 27) and the values drawn from the second component were (36, 42, 
26, 57, 43, 37, 38, 39, 35, 35). The probability densities are shown for a single Poisson distribution, the negative binomial distri-
bution, and a two-component Poisson mixture distribution using maximum likelihood estimates (see Methods). The probability 
densities of the individual Poisson components from which the data were actually drawn are also shown. The individual obser-
vations are represented by triangles at the bottom of the plot.
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cal gamma-Poisson or overdispersed log-linear) model,
and 3) k-component Poisson mixture model (see Meth-
ods for a brief description of each). Since maximum like-
lihood estimation (MLE) is used to fit each of these
models, the log-likelihood was the basis for assessing rel-
ative goodness of fit. A comparison of the Akaike informa-
tion criterion (AIC) [9] and Bayesian information
criterion (BIC) [10] (both of which use the log-likelihood
and a term to penalize a model for estimating a larger
number of parameters) was performed on each of the
datasets (Table 1).

As expected, the canonical Poisson model, which does not
account for excess variance, performs poorly in all cases.
The Poisson mixture model consistently outperforms the
negative binomial model regardless of the metric used.
The competitiveness of the negative binomial model is
perhaps not surprising since a comparison of the fit of
these two models to simulated data indicates that the neg-
ative binomial can often fit better to data generated from
a two-component Poisson mixture. This becomes more
problematic as the component means draw closer (data
not shown, Figure 1 is a good example). However, several
hypotheses can be tested to further strengthen the case for
the mixture model approach. These are considered in
turn.

Tags with ambiguous mappings are represented by a 
greater number of components
Consider an idealized situation where a gene's expression
can take on one of two states (and can therefore be mod-
elled by a two-component Poisson mixture). A significant
proportion of SAGE tags are ambiguous (correspond to
more than one gene) and, under the idealized model,
would result in tag counts that are modelled by 2g compo-
nents (where g is the number of expressed genes the tag
corresponds to). Therefore, the number of components in
the mixture should be higher for ambiguous tags.

Simply partitioning the data into ambiguous and unam-
biguous tags and comparing the number of components
is unlikely to be informative since, for any given ambigu-
ous tag, it is not known how many of the possible genes
are actually expressed. However, two normal brain librar-
ies used in this study were generated using LongSAGE
(GSM31931 and GSM31935), which provides 17 base
pairs of information rather than 10. The tag sequences in
these libraries were shortened before inclusion in the nor-
mal brain dataset used in the previous section. However,
by comparing the shortened tag list to the original library,
tags that actually correspond to two or more LongSAGE
tag sequences (and presumably represent different tran-
scripts) were identified. Tags counts of one or two were
considered artefacts of PCR amplification or sequencing
and were not used in this determination.

The number of ambiguous and unambiguous tags was tal-
lied for each estimated number of components (Table 2).
Ambiguous tags are represented more highly in the set of
model fits that consist of a larger number of components.
This effect, which is statistically significant, is consistent
with the mixture model hypothesis.

Component assignment of libraries is non-random
If the mixture model approach holds, then the Poisson
components should cluster the libraries into recurring
groups. Such an enrichment of certain component assign-
ments would be expected for a number of reasons. Two
possibilities are: a) if one or more libraries are misla-
belled, the tag expression in those libraries should show a
preferential assignment to a separate component; and b)
if the genes corresponding to a set of tags are co-expressed,
the component assignment should be similar amongst
these genes. Conversely, if the negative binomial model is
more appropriate then component assignments should
essentially be random, since the distribution assumed to
give rise to biological variability is continuous and uncon-
ditional.

For each of the datasets, the component assignments for
tags where the estimated number of components is two
were tallied. The individual assignment was based on the
component with the highest posterior probability, given a
tag count and library size. In all cases, there were a signif-
icant number of tags where the parent libraries were parti-
tioned into the same two components (Table 3). For
example, in the AML libraries containing the cytogenetic
abnormality t(8;21), of the 225 tags that had expression
that could be fit to two Poisson components, 110 were
partitioned in the form -++-- (p = 4.5E-67; Binomial test).
In other words, almost half of the tags that fit to two com-
ponents were assigned to a single component configura-
tion (for 5 libraries, (25/2)-1 = 15 such configurations are
possible).

Determining differentially expressed genes
In previously described overdispersed models, the iden-
tity of a library is included a priori as a model covariate.
Significance is then determined by testing the null hypo-
thesis that the fitted β coefficient for this covariate is zero
[5,6]. A Bayesian significance score has also described,
although this was developed using a beta-binomial model
[7]. In contrast, the Poisson mixture model does not
require the identity of the libraries be included (although
the addition of such covariates is possible). Rather, once a
mixture model has been fit, the posterior probabilities of
membership in a particular component given the
observed tag counts can be used to determine how well
the components can differentiate between two or more
sample types (e.g. normal versus cancer). Here, a score is
presented based on the confidence that a sample is of type
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ω given that it arises from component(s) k. Using Bayes
Theorem, one can derive the following expression [see
Additional file 1]

where ω is the set of libraries corresponding to some label
of interest (e.g. normal or cancer) and τjk is the posterior
probability of the tag count from library j arising from
component(s) k. Using this expression, one can deter-

mine which tags have a set of mixture components that
are closely linked with the sample type(s) of interest.

To illustrate, SAGE libraries from normal brain (n = 8)
and ependymoma (n = 10) (a type of brain tumour) were
analyzed using both the overdispersed log-linear and
Poisson mixture models. In the former case, significance
was calculated using the method described in [5] (see also
example R code in Methods). In the latter case, the
method described above was used. A plot of the two sets
of scores shows a moderate correlation and tags that are

P k jk
j

jk
j

( | )ω τ τ
ω

= ∑ ∑

Table 2: Mean number of mixture model components

Library k Unambiguous Ambiguous Significance

GSM31931 1 93 0 p < 2.2E-16 (χ2 = 134.1; df = 4)
2 405 15
3 210 32
4 27 12
5 5 12

GSM31935 1 74 34 p = 1.8E-6 (χ2 = 32.1; df = 4)
2 317 246
3 149 171
4 17 30
5 3 14

Expressed ambiguous and unambiguous 10 base pair tags for two LongSAGE libraries were distinguished based on the number of 17 base pair 
sequences that give rise to the same tag. The tags in each of these two groups were binned according to the number of estimated mixture 
components. The Chi-square statistic was used to test the null hypothesis that these two groups are equivalent.

Table 1: Comparison of model fits to a single group of biological replicates

mean AIC mean BIC

N tags k Poisson Negbin Mixture Poisson Negbin Mixture

BRAIN
astrocytoma 14 1141 2.6 238.2 105.2 103.6 238.9 106.5 106.3
ependymoma 10 1205 2.3 152.4 80.9 75.0 152.7 81.5 76.1
glioblastoma 7 1197 2.3 139.5 57.6 53.0 139.4 57.5 52.8
medulloblastoma 18 1045 2.7 280.6 128.7 128.7 281.5 130.5 132.6
normal 8 1099 2.4 156.8 68.0 59.8 156.8 68.2 60.1
AML
inv(16) 5 900 1.7 68.9 39.3 37.6 68.5 38.5 36.7
t(8;21) 5 1037 1.3 52.3 34.1 33.5 51.9 33.3 32.9
t(15;17) 5 709 1.8 127.7 46.0 38.9 127.3 45.2 37.9
t(9;11) de novo 4 954 1.8 58.5 34.6 30.1 57.9 33.4 28.5
t(9;11) treatment 3 1061 1.5 42.9 32.0 20.9 42.0 30.2 19.1
BREAST
normal 6 1259 1.8 71.6 43.9 41.6 71.4 43.5 41.0
DCIS 4 598 1.3 25.5 24.0 21.0 24.9 22.8 20.1
invasive 3 1069 2.0 60.4 27.8 22.8 59.5 26.0 20.1
SKIN
normal 4 1015 1.6 33.8 24.6 22.2 33.2 23.4 20.9
melanoma 3 992 1.8 38.2 24.0 19.6 37.3 22.2 17.4

SAGE tag counts from fifteen sets of biological replicates were fit to log-linear (Poisson), negative binomial (overdispersed log-linear), and Poisson 
mixture models. The table contains the number of replicates (N), tags tested, and mean number of mixture components (k). For each model, mean 
goodness of fit scores calculated using Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC) are shown. For both scores, 
a lower value indicates a better fit.
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found highly significant in one test tend to be so in the
other (Figure 2).

However, a number of observations are found significant
using the overdispersed log-linear model and not the

Poisson mixture model, and vice versa. A closer look at the
most extreme examples illustrates the superior perform-
ance of the mixture approach (Figure 3). In the first exam-
ple, tag ACAACAAAGA seems clearly expressed in normal
libraries, but is completely abolished in the ependymoma

Table 3: Top component memberships

Dataset

Component assignment Freq. p-value

BRAIN
astrocytoma (N = 14 nk = 2 = 454)

-+------------ 14 4.3E-28
---+++++++++++ 12 2.7E-23

ependymoma (N = 10 nk = 2 = 544)
-+-------- 16 6.0E-14
--+------- 15 9.3E-13

glioblastoma (N = 7 nk = 2 = 607)
---+--- 48 3.2E-19
-----+- 42 5.2E-15

medulloblastoma (N = 18 nk = 2 = 438)
-----------------+ 4 1.5E-9
-----------+-----+ 4 1.5E-9

normal (N = 9 nk = 2 = 588)
-----+-- 41 7.4E-37
-----+-+ 21 7.6E-14

AML
inv(16) (N = 5 nk = 2 = 387)

-++++ 110 2.5E-39
-+-++ 36 0.028

t(8;21) (N = 5 nk = 2 = 387)
-++-- 110 2.5E-39
-++-+ 36 0.028

t(15;17) (N = 5 nk = 2 = 225)
-++-- 110 4.5E-67
-++-+ 36 1.0E-6

t(9;11) de novo (N = 4 nk = 2 = 502)
-+-+ 143 1.6E-16
-+-- 132 1.4E-12

t(9;11) treated (N = 3 nk = 2 = 405)
-++ 216 1.1E-16

BREAST
normal (N = 6 nk = 2 = 571)

---+-- 82 3.6E-29
-----+ 65 4.0E-18

DCIS (N = 4 nk = 2 = 154)
--++ 97 1.4E-43
-+++ 41 4.5E-5

invasive (N = 3 nk = 2 = 765)
-+- 337 4.6E-10

SKIN
normal (N = 4 nk = 2 = 500)

---+ 215 1.8E-54
melanoma (N = 3 nk = 2 = 650)

-+- 405 2.1E-51

For each set of biological replicates, the top one or two component states were selected from tags where the estimated number of components is 
2. One component was represented with -, the other with + (i.e. -+- is equivalent to +-+). The significance was calculated using a zero-truncated 
Binomial test. The number of possible ways for the libraries to be assigned to the two components is (2N/2)-1, where N is the number of libraries.
Page 6 of 14
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libraries. However, according to the overdispersed model,
the observation is not at all significant (p = 0.9998). The
mixture model, however, produces a confidence score of

99.42%, which suggests this tag is highly informative with
respect to sample type. This example demonstrates the dif-
ficulty that the log-linear model has with fitting groups

Comparison to significance scores for a test of differential expression calculated using a negative binomial modelFigure 2
Comparison to significance scores for a test of differential expression calculated using a negative binomial 
model. Using the tag counts from 8 normal brain libraries versus 10 ependymoma libraries, differential expression between 
these two sample types was assessed using two methods. Plotted are the significance scores calculated for a negative binomial 
model versus a Poisson mixture model. The negative binomial (x-axis) is a p-value, so smaller values are more significant. The 
Poisson mixture (y-axis) is a confidence score, so larger values are more significant. Circled are two examples of SAGE tags 
where one model shows significance while the other does not.

p

ACAACAAAGA

CAGTTGTGGT
Page 7 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:282 http://www.biomedcentral.com/1471-2105/8/282
where tag counts are zero, a problem that is even more
pronounced when using a logistic regression model (for a
more thorough discussion of this problem see [6]).

In the second example, tag CAGTTGTGGT clearly has
increased expression in some libraries from both the nor-
mal and ependymoma groups. However, according to the
overdispersed model, the observation is highly significant
(p = 8.8E-7). The mixture model, however, produces a
confidence score of 59.8% which is only nominally better
than chance. This example demonstrates how the log-lin-
ear model seems to downweight the occasional extreme
observation in one group, even if it is in agreement with
observations in the other group. This can result in candi-
date lists based on the log-linear significance containing
tags that have extreme observations that occur at a higher
rate in one group over another, which are typically of little
interest.

Similar results were obtained when comparing to the
Bayes error rate described in [7]. Again, a moderate corre-
lation is seen and tags found highly significant in one test
tend to be so in the other (Figure 4). Overall, the Bayes
error rate is in better agreement with the mixture model

confidence score and appears to be more robust in assess-
ing tags with zero counts in one group. However, the
assumption of a hierarchical model (in this case, a beta-
binomial) used to calculate the Bayes error rate versus a
Poisson mixture model results in differences between the
two methods. Two examples, analogous to those
described above, are highlighted (Figure 5). In both cases,
the Poisson mixture model appears to give confidence val-
ues that are in better agreement with the observations.

Discussion
The exploration of statistical approaches to SAGE analysis
is important since the number of studies using the tech-
nology has resulted in a continuing rise in the amount of
available data. The notion of sampling variability being
the predominant source of "within"-library variability
and distinct components being the predominant source
of "between"-library variability is reassuring for investiga-
tors who choose the SAGE technique to obtain a compre-
hensive profile of gene expression in a limited number of
samples. Nevertheless, there is certainly a contribution by
a latent biological variability as evidenced by the
increased performance of the negative binomial as the
number of libraries increases. However, this work demon-

Counts for two tags assessed using a negative binomial model and the Poisson mixture model where one model shows signifi-cance and the other does notFigure 3
Counts for two tags assessed using a negative binomial model and the Poisson mixture model where one 
model shows significance and the other does not. The figure is divided to show separate plots of the expression level of 
two tags observed in 8 normal brain libraries and 10 ependymoma libraries. The x-axis is the normalized expression (count/
library size*100,000) and the y-axis is divided into the two sample types. In the top plot, the negative binomial model is not sig-
nificant and the Poisson mixture is significant; in the bottom plot, the situation is reversed. Light gray guide lines denote the 
expected expression level of the Poisson components.

0
2

0
6

0

n
o

rm
a

li
z
e

d
 t

a
g

 c
o

u
n

t

(t
a

g
s
 p

e
r 

1
0

0
k
)

normal ependymoma

0
2

0
6

0
4

0
4

0

•

•

•

•

•

•

•
•

• • • • • • • • • •

•

•

• • •
•

• •

•

• •

• • •
• •

•
•

ACAACAAAGA

log-linear p-val: 0.9998

 mixture model confidence score: 99.42%

CAGTTGTGGT

log-linear p-val: 8.767E-7

 mixture model confidence score: 59.75% 
Page 8 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:282 http://www.biomedcentral.com/1471-2105/8/282

Page 9 of 14
(page number not for citation purposes)

Comparison to Bayes error rate for a test of differential expression calculated using a beta binomial modelFigure 4
Comparison to Bayes error rate for a test of differential expression calculated using a beta binomial model. 
Using the tag counts from 8 normal brain libraries versus 10 ependymoma libraries, differential expression between these two 
sample types was assessed using two methods. Plotted are the Bayes error rate described in [7] versus a Poisson mixture 
model confidence score. For the Bayes error rate (x-axis) smaller values are more significant. The Poisson mixture (y-axis) is a 
confidence score, so larger values are more significant. Circled are two examples of SAGE tags where one model shows signif-
icance while the other does not.
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strates that a simple overdispersed model may overstate
this effect, and that certainly there is a clustering of expres-
sion into distinct components, which are then sampled.
This is consistent with the view of gene transcription for
any one locus consisting of (possibly several) inactivated
or activated state(s). The same idea holds for some known
mechanisms of genetic disease, such as loss of heterozy-
gosity (LOH) or amplification of a particular locus (e.g.
cancer).

For this reason, it is recommended that investigators try
the mixture model approach in comparisons of groups of
biological replicates. Failing this, some of the difficulties
that can be encountered with the negative binomial
model can be lessened by: a) setting a tolerance for how
much overdispersion (ϕ) is acceptable in a final list of can-
didate tags, although such a cutoff would be somewhat

arbritrary; and b) add a small value to the tag count to
avoid the problems the model has with groups consisting
of many zero counts. One strategy is to assume equal odds
that the next tag drawn is the one of interest by adding 1
to the count, and 2 to the library size (i.e. (count+1)/
(size+2)) (K. Baggerly, personal communication).

In the future, it may be worthwhile to combine both
approaches by defining a negative binomial mixture
model. However, at this point, such an approach is
unlikely to provide significant improvement given the
small number of libraries in a typical set of available bio-
logical replicates. In addition, applying the concept of
"information sharing" between tags may provide esti-
mates of statistically informative variables that apply
library-wide, and could be utilized to improve the power
of the method described in this paper [11,12].

Counts for two tags assessed using a Bayes error rate and the Poisson mixture model where one model shows significance and the other does notFigure 5
Counts for two tags assessed using a Bayes error rate and the Poisson mixture model where one model shows 
significance and the other does not. The figure is divided to show separate plots of the expression level of two tags 
observed in 8 normal brain libraries and 10 ependymoma libraries. The x-axis is the normalized expression (count/library 
size*100,000) and the y-axis is divided into the two sample types. In the top plot, the Bayes error rate is not significant and the 
Poisson mixture is significant; in the bottom plot, the situation is reversed. Light gray guide lines denote the expected expres-
sion level of the Poisson components.
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Conclusion
The Poisson mixture model appears to be a rational
means to represent SAGE data that are biological repli-
cates and as a basis to assign significance when comparing
multiple groups of such replicates. The use of a mixture
model can improve the process of selecting differentially
expressed genes, and provide a foundation for ab initio
identification of co-expressed genes and/or biologically-
relevant sample subsets.

Methods
Test datasets
Test datasets were obtained from the Gene Expression
Omnibus (GEO) [13] and reflect a range of cancer studies,
including malignancies of the skin [14-16], breast [17-
19], blood [20], and brain [21]. The full description,
accession, and size for each library were recorded [see
Additional file 2]. In the case of breast and skin data,
libraries from a combination of studies were used. Data-
sets were filtered to remove tags expressed at a mean less
than 100 tags per million.

Model fitting
The open-source statistical software package R was used to
perform all calculations in this paper [22]. R code is
included with the explanation for each model. For each of
the models, let Yi be the observed tag count in library i, ni
be the total number of tags in library i, and N be the total
number of libraries. Also, let xi be the vector of explana-
tory variables (e.g. normal = 0 and cancer = 1) associated
with the library i, and β be the vector of coefficients.

Log-linear (Poisson) regression model
The log-linear model assumes that the observed tag
counts are distributed as

Yi ~ Poisson(μi)

μi = nipi

where pi is the actual expression in terms of the propor-
tion of all expressed tags.

Here, the unconditional mean and variance are E(Yi) =
Var(Yi) = μi. Using the log link function, which linearizes
the relationship between the dependent variables and the
predictor(s), we obtain the linear equation

log(Yi) = log(ni) + xiβ

pi = exp(xiβ)

Using iteratively reweighted least-squares (IRLS), the
value(s) for the coefficient(s) β are estimated. The stats

library included with R can fit a log-linear model using the
following code:

counts <- c(9, 13, 11, 8, 9, 20, 16, 19,
18, 15)

library.sizes <- rep(100000, 10)

# first 5 observations are from sample type
0 (e.g. normal)

# last 5 observations are from sample type
1 (e.g. cancer)

classes <- c(0,0,0,0,0,1,1,1,1,1)

fit <- glm(counts ~ off
set(log(library.sizes)) + classes,
famy=poisson(link="log"))

# get the beta coefficients

beta0 <- fit$coefficients[[1]]

beta1 <- fit$coefficients[[2]]

# get the expression (expressed as a pro
portion) for each group

prop0 <- exp(beta0)

prop1 <- exp(beta0+beta1)

# calculate significance score for differ
ential expression

# i.e. null hypothesis that beta_1 = 0

t.value <- summary(fit)$coefficients [,"z
value"][2]

p.value <- 2 * pt(-abs(t.value),
fit$df.residual)

Overdispersed log-linear regression model
In contrast to the canonical log-linear model, we assume
the actual expression is distributed as

θi ~ Gamma(μi, 1/ϕ),

μi = nipi

where, as above, pi is the actual expression in terms of the
proportion of all expressed tags. Here, the unconditional
mean and variance are E(θi) = μi and Var(θi) = μi

2ϕ. Since
Page 11 of 14
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we are now sampling from this latent Gamma distribu-
tion, the observed tag counts are conditional on this
underlying expression and are distributed as

Yi | pi,ϕ ~ Poisson(θi)

Now, the unconditional mean and variance are E(Yi) = μi
and Var(Yi) = μi(1+μiϕ).

As above, using the log link function we obtain the linear
equation

log(Yi) = log(ni) + xiβ

pi = exp(xiβ)

Here, a maximum likelihood estimate of the values for the
coefficient(s) β and the overdispersion parameter (ϕ) can
be performed. The MASS library [23] for R can fit an over-
dispersed log-linear model using the following code:

library(MASS)

counts <- c(9, 13, 11, 8, 9, 20, 16, 19,
18, 15)

library.sizes <- rep(100000, 10)

# first 5 observations are from sample type
0 (e.g. normal)

# last 5 observations are from sample type
1 (e.g. cancer)

classes <- c(0,0,0,0,0,1,1,1,1,1)

fit <- glm.nb(counts ~ off
set(log(library.sizes)) + classes)

# get the beta coefficients

beta0 <- fit$coefficients[[1]]

beta1 <- fit$coefficients[[2]]

# get the dispersion parameter

dispersion <- 1/fit$theta

# get the expression (expressed as a pro
portion) for each group

prop0 <- exp(beta0)

prop1 <- exp(beta0+beta1)

# calculate significance score for differ
ential expression

# i.e. null hypothesis that beta_1 = 0

t.value <- summary(fit)$coefficients [,"z
value"][2]

p.value <- 2 * pt(-abs(t.value),
fit$df.residual)

A more complete discussion of this model and its applica-
tion to SAGE, including significance testing, is described
in [6].

Poisson mixture model
Like the canonical log-linear regression model, we assume
the observed tag counts are Poisson distributed. However,
the counts are conditional on the choice of a Poisson-dis-
tributed component, such that

Yi | k ~ Poisson(μik)

μik = nipik

where the component k = 1, 2, ..., K and pik is the actual
expression for component k in terms of the proportion of
all expressed tags. The posterior probability that an
observed tag count belongs to a component k is given by

where ψ is the parameter vector containing the compo-
nent means (θ1,...,θK) and mixing coefficients (π1,...πK-1).
f(.) is the Poisson probability density function. To fit the
model, one must estimate the values in ψ. This can be
done by maximum likelihood estimation (MLE) using the
EM algorithm [24]. The flexmix library for R uses the EM
algorithm to fit a variety of finite mixture models [25]. In
the case of SAGE data, the following code can be used:

library(flexmix)

counts <- c(9, 13, 11, 8, 9, 20, 16, 19,
18, 15)

library.sizes <- rep(100000, 10)

# first 5 observations are from sample type
0 (e.g. normal)

P k Y
f Y

f Y
i

k i ik

i ij
j

K
( | , )

( | )

( | )

ψ π μ

μ
=

∑
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# last 5 observations are from sample type
1 (e.g. cancer)

classes <- c(0,0,0,0,0,1,1,1,1,1)

# set fitting control parameters to set
tings that work

# well for SAGE

custom.FLXcontrol <- list(iter.max=200,

minprior=0,

tolerance=1E-6,

verbose=0,

classify="hard",

nrep=1)

custom.FLXcontrol <- as(custom.FLXcon
trol, "FLXcontrol")

# specify the maximum number of model com
ponents

maxk <- 5

fits <- list()

aic.fits <- rep(NA, maxk)

# increase number of components until AIC
decreases

for(k in 1:maxk) {

# make an initial "good" guess of class
membership

# using k-means – helps avoid falling
into a local

# likelihood maximum

cm <- rep(1, length(counts))

if(k > 1) cm <- kmeans((counts+1)/
(sizes+2),

centers=k)$cluster

fit <- try(flexmix(counts ~ 1,

k=k,

model=FLXglm(family="poisson",

offset=log(sizes)),

control=custom.FLXcontrol,

cluster=cm), silent=TRUE)

if("try-error" %in% class(fit)) break

# stop if there were less components
found then

# specified

if(max(cluster(fit)) > k) break

fits [k]] <- fit

aic.fits [k] <- AIC(fits [k]])

if(k == 1) next

if(aic.fits [k] >= aic.fits [k-1])
break

}

# what number of components minimized AIC?

k.optimal <- which(aic.fits ==
min(aic.fits, na.rm=TRUE))[1]

fit <- fits [k.optimal]]

# get the theta parameters

thetas <- array(dim=k.optimal)

for(i in 1:k.optimal) thetas [i] <- param
eters(fit,component=i)$coef

# get the pi parameters

pis <- attributes(fit)$prior

# what is the confidence score that the
fitted components

# differentiate between groups?

confidence <- pmm.confidence(fit, classes,
use.scaled=FALSE)
Page 13 of 14
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The confidence score, ranging from 50–100%, is
explained in the Results section and code for performing
the calculation is available [see Additional file 3].
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