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Abstract
Background: Structure identification of dynamic models for complex biological systems is the
cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly
convenient solution because its parameters are kinetic-order coefficients which directly identify the
topology of the underlying network of processes. We have previously proposed a numerical
decoupling procedure that allows the identification of multivariate dynamic models of complex
biological processes. While described here within the context of BST, this procedure has a general
applicability to signal extraction. Our original implementation relied on artificial neural networks
(ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an
alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role
within a robust, fully automated structure identification procedure.

Results: In this report we propose a robust, fully automated solution for signal extraction from
time series, which is the prerequisite for the efficient reverse engineering of biological systems
models. The Whittaker's smoother is reformulated within the context of information theory and
extended by the development of adaptive signal segmentation to account for heterogeneous noise
structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise
process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The
smoothed solution that is free of parametric bias permits differentiation, which is crucial for the
numerical decoupling of systems of differential equations.

Conclusion: The method is applicable in signal extraction from time series with nonstationary
noise structure and can be applied in the numerical decoupling of system of differential equations
into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of
mechanistic model descriptions from multivariate experimental time series.
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Background
The reverse engineering of biological systems from exper-
imental data often cannot be achieved on first principles.
This is as much a reflection of the lack of plausible
hypotheses as it is an indication of excessive parametric
sensitivity when alleged mechanistic formulations are at
hand. Consequently, there is a critical need for a descrip-
tion of dynamic behaviors that can be used as a machine
learning tool (e.g., as a generic "black box"), but with
parameters capable of shedding light on the topology of
the underlying mechanisms. Biochemical Systems Theory
[1-3], offers such formalism, especially in the form of S-
systems, where kinetic-order coefficients characterize the
topology of a biological network as well as the magnitude
of each interaction. A drawback of this approach is that
the parameterization of S-systems is a difficult problem,
even for five metabolic species [4]. In a previous report
[5], we proposed to overcome this challenge by tracing
each species independently with a universal function of
time, x(t) = f(t), such that dx/dt = g(t), and where g(t) =
df(t)/dt is deduced symbolically from the neural network
transfer function; see also [6]. The independency of each
metabolic profile allows solving the S-system lineariza-
tion problem by decoupling it, which reduces the compu-
tational effort in the system parameters identification by
preventing numerical integration. In the earlier report we
suggested using artificial neural networks (ANN) with
optimized topology and early stopping procedures [7].
The distinctive advantage of using an ANN is that it is a
universal function [8] with a closed form for which we
were able to determine the first derivative symbolically
[5]. The ANN solution, however, is not without problems.
The most significant issue is that its discriminant function
often leads to artifacts in its derivatives, which distort the
solution, even when they are not visually apparent in the
smoothed signal. The artifacts reflect the sigmoidal trans-
fer function of the ANN model. That conclusion drove the
pursuit of an entirely implicit solution that is driven solely
by the experimental data and is free of all parametric bias.

The task of inferring signal from noisy time series falls into
the general category of developing denoising filters. In an
effort extracting signal from noise in chromatograms, Paul
Eilers [9] recently proposed a "perfect smoother", which is
basically a matrix form of a much older implicit method
known as Whittaker's smoother [10]. Those works [9,10]
are the starting point for the procedure introduced here.
Consideration of the denoising problem as the task of
"learning" an arbitrary signal suggests the possibility of
applying principles from Information Theoretic Learning
[11-14], which allows signal scaling without causing bias
in signal extraction. Specifically, the use of quadratic
Renyi's entropy for assessing the learning process offers a
foundation for the re-identification of smoothers based
on Error Entropy Minimization (EEM). This procedure

has been successfully applied to chaotic time series predic-
tion and in nonlinear system identification, where the
mean square error was replaced by error entropy as cost
function, for instance, in the training of ANN models
[11]. In this report, we explore the use of error entropy as
optimization criterion for reconfiguring the Whittaker's
smoother. In complementary research, we, as well as
many others, have been working on parameterization
procedures for S-systems [e.g., [15] and references
therein], implicitly assuming that noisy time series and
their slopes could efficiently be smoothed by some uni-
dentified procedure. The algorithm reported here
describes such a procedure.

Results
Metabolic profiles
The proposed signal extraction method was tested with an
application to metabolic profiles. These had been meas-
ured with in vivo NMR methods at a sequence of time
points and quantify glycolysis in the lactic acid producing
bacterium Lactococcus lactis [16]. The experimental data
are very interesting because the underlying molecular
mechanisms are relatively well understood, because of the
high frequency of sampling, and because the data have a
complicated time course and noise structure. They were
therefore recently proposed as a reference case study for
testing reverse engineering methods for biological net-
works [17]. The data were included in our open source
MATLAB toolbox and stand-alone GUI application,
described in the Section Availability and requirements.

In addition to the data analysis described above, the per-
formance of the proposed filter was evaluated for simu-
lated data, in an effort to assess its ability to detect and
filter different noise structures correctly. These tests
included the processing of noise-free signals, where the
smoothing procedure succeeded in automatically deter-
mining splines with appropriate order. These and other
tests can be verified by either running the Matlab code,
provided as a open-source, in the appropriate program-
ming environment or using the corresponding stand-
alone (compiled executable), public domain application,
for which no commercial license is needed (Figure 3).

Discussion
In this report, Rényi's second-order entropy of the cross-
validation error entropy (cvEE) was used as optimization
criterion for the parameters estimation in Whittaker's
smoother. The optimization process is based on gradient
ascent of the information potential of cvE in λ direction,
where Parzen Windows with Gaussian kernel are used for
the pdf estimation. In general, this type of pdf estimation
faces one particular problem: the kernel size σ. This varia-
ble is crucial for convergence of the gradient method
because it causes the algorithm to reach an optimal local
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minimal if its value is misestimated. The estimation of
kernel size from the data covariance has yielded good
results in some applications [18]. In our software, the user
can choose an alternative automatic method that uses a
machine learning kernel [19] or set the value of σ manu-
ally. The effect of this parameter for specific data sets can
therefore be studied by systematically screening a range of
values for the particular application. Although we found
the automatic setting to be generally satisfactory, this is
only an empirical result, which suggests that pdf estima-
tion warrants further investigation.

The application of the proposed combined procedures
(adaptive smoother and the segmentation algorithm)
described in the Methods Section to the Lactococcus data
demonstrates the quality of the smoothing algorithm
(Figures 1 and 2). Most impressive may be that these
results were obtained in a fully automated fashion. As we
suspected in previous analyses of biological systems and
their reverse engineering [5,16,17], the results here sug-
gest that the structure of the noise appears to be specific to
distinct phases of the molecular machinery underlying the
observed behavior. For example, Figure 2 clearly indicates
that depletion of glucose is associated with relatively little
noise in the signal from intermediate metabolites (Figure
2 before t < 6 min). The exhaustion of substrate (t ~ 6
min), however, triggers a synchronized effect in all but
one of the metabolites, which results in a marked increase
in noise and is reflected by the synchronized break point
in the corresponding window segmentations. Since the
analytical method (in vivo NMR) does not change and the
window segmentation procedure is applied to each
metabolite independently, the sharp increase in signal
noise may be best interpreted as a change in the function-
ing of the glycolytic machinery, which for instance could
be mediated by a shift in the NADH/NAD ratio [1]. The
synchronized succession of distinct periods with relatively
invariant noise structure may be specific to biological
processes, where a succession of dynamic behaviors is
often associated with a shift between physiological states.
The windowing approach reveals these shifts.

It should be noted that the reliance on cross-validation
implies that time points at the edges of each window can-
not be used for signal extraction. This loss at break points
might appear to be a significant drawback of the filtering
procedure. However, as established in prior work [6], the
identification of decoupled systems is discontinuous in
nature as it consist on the generation of pairs of (dx/dt, x)
values. Therefore, it suffers only mildly from a few missing
or omitted data points. More important is that multiple
independent time series are available to narrow the
boundary estimates for the system parameters to the point
where the topology of the biological network can be
inferred with reliability.

Conclusion
The goal of developing a "perfect smoother" that can be
used as an automated tool for signal extraction has been
an elusive goal in the field of signal processing. Based on
historical work that started with the Whittaker's smoother
and was advanced by cross-validation in Eilers' smoother,
here we take that approach one step further by removing
the parametric bias of using squared deviations as an opti-
mization criterion. In its place we proposed an informa-
tional measure of variation in the form of cross-validated
error entropy. The crucial step of the proposed methodol-
ogy is the identification of the matrix format of the cvE
(Equation 12) that permits a closed-form solution for its
derivative with respect to the smoothing parameter λ
(Equation 15). That solution is also used to segment the
signal in windows where the consideration of the neigh-
boring values would decrease the optimality of within-
window signal extraction. The resulting algorithm is fully
automated and was successfully applied to reference,
notoriously difficult biological time series. Applicability
to signal extraction in other areas may be anticipated.

Methods
Starting point: Whittaker's smoother
The well-known Whittaker's smoother [10] was formu-
lated to fit a smooth series z to a given series y of N noisy
data points. The task was proposed as minimization of the
following function:

Equation 1 describes the balance of two additive compo-
nents: one quantifying the smoothness ∆zi of the output
data and the other quantifying the fidelity of the
smoothed model output to the raw data (yi - zi). Thus, the
parameterization of this smoother consists of finding an
optimal weighing of the two components of Q. The solu-
tion is signal specific and involves the identification of
optimal values for the order of the filter, d, and the weigh-
ing of its residuals, λ. The order d is an implicit parameter
that determines the specific definition of ∆zi. For example,
for a first order filter (d = 1), the smoothness measure ∆zi
of the output data is defined as the difference between two
consecutive points ∆zi = (zi+1 - zi). For a 2nd order filter, d =
2, the smoothness measure is formulated as the difference
between pair-wise differences among three consecutive
points ∆zi = (zi+2 - zi+1) - (zi+1 - zi). The accumulation of dif-
ferences proceeds for higher orders accordingly. The order
d is therefore an integer number that sets the flexibility of
the signal extracted. By contrast, the positive real scalar λ
weighs the smoothness term ∆zi such that high values
dampen the extracted signal. Accordingly, high values of d
and low values of λ tend to cause over-fitting, while the
inverse combination leads to more ragged output. In cases
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of very high values of λ, the filter behaves like polynomial
regression of degree d - 1 [9]. For implementation pur-
poses, the original proposition of a "perfect smoother"
rewrites the Equation 1 in its matrix form [9], where D is
a (N - d) × N matrix such that Dz = ∑∆z and |A|2 = ∑A2:

Q = |y - z|2 + λ|Dz|2 (2)

Minimization of Equation 2 is achieved by computing its
first partial derivate with respect to z and solving for zero:

In the Equation 3, I represents the identity matrix of order
N. The smoother equation can be written in a more gen-
eral form, where the noisy time series y can have missing
points. Let w be a vector of weights with the same dimen-

sion of y where for each missing point yi, wi = 0 and wi = 1
otherwise. Thus, Equation 3 can be rewritten as

z = (W + λDTD)-1Wy (4)

In the Equation 4, W is a diagonal matrix with w on its
diagonal. Therefore, the extraction of a signal from a given
data series consists of identifying the scalar λ and the inte-
ger order d (implicit in the matrix D) in the Equation 4.
One method to estimate these two parameters was
described in [9] as an exhaustive search for the pair-wise
(λ, d) that minimizes the cross-validation error (cvE), eas-
ily obtained by Equation 4

where H is the "hat matrix", given by

H = (W + λDTD)-1W (6)
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Scanning processFigure 1
Scanning process. Beginning of the first scanning, where 
the breakpoint (dotted line) segments the first four time 
points from the rest of the signal. b) End of the first scan, 
when the breakpoint separates the last four time points from 
the rest of the signal. c) Cost function of all scanned window 
partitions. The optimal break point is marked with an arrow. 
d) Signal extraction by the optimal window partition. The 
scanning process is now repeated for each of the two win-
dows individually. The two windows represent optimal parti-
tions of signals with distinct noise structures. Therefore, the 
optimal values of d and λ identified for each window reflect 
that distinction, are respectively 4 and 1 for the pre-partition 
signal and 4 and 106.7525 for the post-partition signal.

Result in real dataFigure 2
Result in real data. Illustration of the smoothing proce-
dure applied to in vivo Lactococcus lactis time series for Glu-
cose, Glucose 6-phosphate (G6P), Fructose 1,6-bisphosphate 
(FBP), 3-Phosphoglycerate (3-PGA), Phosphoenolpyruvate 
(PEP), and Lactate [16]. The first derivative is shown below 
the corresponding metabolic time series. The window parti-
tions are shown with distinct colors. It is noteworthy that 
the shift in noise structure, which segments the signal into 
smaller temporal windows with noise invariance, is approxi-
mately the same for all metabolites except FBP. Since the 
smoothing procedure is applied independently to each 
metabolite, this coupling suggests shared dependency on 
some molecular machinery, which changes when its main 
substrate, Glucose, is depleted at t ~ 6 min.
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The use of the cvE in an automatic Whittaker's smoother
optimization was advised as a limited procedure [9]. In an
early implementation using cvE as cost function, we found
out that the problem of automation using cvE is also asso-
ciated with the scale and skewness of the residual varia-
tion. An adaptive supervised method specifically
developed for the optimization of the smoother is
described in this report by identifying a novel formulation
that is not sensitive to signal scaling (it is therefore non-
parametric), but only to its distribution. This is an impor-
tant characteristic when a comparison of an error measure
between windows with different signal structures is made.
Symptomatically, we have observed that the exhaustion of
key metabolites like glucose will cause dramatic shifts in
noise structure. Accordingly, noise restructuring was tar-
geted as the defining feature to find window boundaries
by the segmentation algorithm, as if distinguishing what
could be thought as distinct signals. Despite the advan-
tages of the new formulation, the issue of the under-
smoothing with correlated data remains. This problem
might be addressable by weighting the cost function with
the eigenvalues of the covariance matrix as described in
[20], but is beyond the scope of this report.

Information-theoretic learning
During the past two decades, information theory has
become popular for solving signal extraction problems,
where a defined metric between the probability density
function (pdf) of the input signal and the pdf of the output
system is optimized [13,14,21,22]. In contrast to methods
that rely on some second-order statistic (systems with
mean-square error as optimization criterion), the pdf
"matching" can be validly applied to non-Gaussian signal
structures if one relies on high-order statistics (HOS) that
characterize the signal distribution [22]. This approach is
equivalent to minimization of the Kullback-Leibler dis-
tance between the pdf's of the input data and output sys-
tem [22,23]. From the point of view of information-
theoretic learning, minimization of the Csiszar distance
(of which the Kullback-Leibler distance is a special case)
between thepdf's of the input and output systems can be
achieved by minimization of Renyi's error entropy of the
system, which corresponds to the minimization of the
information contained in the error [11]. Therefore, the
average information recovered from a given signal with
pdf fy(·) can be quantified by Renyi's second-order
entropy, as defined in Equation 7, where the argument
V(y) is called Information Potential (IP) and defined in
Equation 8.

HR2(y) = -log(V(y)) (7)

The pdf fy(·) can be numerically approximated by a kernel
density function. Here, we use Parzen windows with
Gaussian kernel kσ with size σ to obtain a discrete solution
to the estimation of IP, which leads to

[11]. In our application, the parameters λ and d of the fil-
ter are optimized by minimizing Renyi's second-order
entropy of the cross-validation error.

Minimal cross-validation error entropy
The identification of values for λ and d in the Whittaker's
smoother is challenging to the point that the original
report advised against automation altogether [9]. The
computational challenge is exacerbated when automation
is combined with a nested estimation of the information
potential, IP (Equations 8 and 9). To overcome these
complications, the method proposed here minimizes
error entropy instead of the typical mean square error
(MSE), as it has been recommended for the extraction of
information in adaptive systems [12]. Specifically, we pro-
pose a new method for determining optimal values for λ
and d in Whittaker's smoother, where the cross-validation
error entropy (cvEE) is used instead of the cross-validation
error (cvE). As the logarithm is a monotonic function, the
minimization of Renyi's second-order entropy is equiva-
lent to the maximization of IP [12]. However, the optimi-
zation procedure has to be tailored to the integer nature of
d, which requires a different treatment than the gradient
method employed for the identification of λ. For this rea-
son, the algorithm searches for d within a reasonable set
of integer orders (between 1 and 6), and for each value of
d the λ parameter is found by the gradient of IP as
described in Equation 10:

λi+1 = λi + η∇λV(e) (10)

Here, η is the learning rate and e represents the cvE vector.
The adaptation of λ terminates when one of the stop cri-
teria is satisfied; that is, if either the cvE entropy increases,
or if the algorithm reaches the minimal gradient or the
maximum number of epochs. The order value d and the λ
value with the minimal cvEE are chosen as the optimal
parameters values (see next Subsection).

Gradient of cvEE
In order to optimize the value of λ, we propose a cross-val-
idation error entropy method as optimization criterion.

V y f dy( ) ( )=
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∞
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The gradient of the information potential of cvE in λ direc-
tion is given by Equation 11:

The leave-one-out cross-validation error vector can be
rewritten using the "entry-wise" Hadamard product repre-
sented by the symbol � in the Equation 12.

e = [y - Hy] � [dg(I - H)]�-1 (12)

In the Equation 12, dg(·) is an operator applicable on
squared matrices and it results in a vector which the ele-
ments are the diagonal of the matrix on its argument. The
Equation 12 is formed by two vectors and each compo-
nent of the first vector is "point-wise" divided by the cor-
respondent component of the second vector, where

 is the Hadamard inverse operation. In

order to simplify the equations' notation, the Equation 6
is rewritten as

H = W (13)

where  = [W + λDTD]-1. Determining the derivative of

the error with respect to λ, one thus obtains

Equation 14 can be simplified and rewritten as:

As proposed in [9], in order to speed up the process, we
optimize λ = 10ψ in the Equation 6, which results the
derivative of the inverse of the hat matrix to

where . Substituting Equation 16 into 15

and then 15 into 11 results in the gradient of IP of cvE, and

allows recursive determination of λ in Equation 10. To
prevent problems caused by an amplitude shift in the sig-
nal, we found it advantageous to normalize the signal to
a linear scale with the range [0, 1].

Signal segmentation
The Whittaker's smoother assumes an invariant noise
structure throughout the signal [10]. This assumption is
often not valid for biological time series such as those
measured in metabolic profile analyses. To overcome this
problem, the proposed smoothing procedure includes a
process for segmenting the time series into windows with
similar noise structure.

The procedure starts by smoothing the entire signal and
calculating cvEE. This quantity is determined with a static
kernel size σs that is estimated from the raw data series and
will later be used as a stop criterion. In the next step, the
signal is divided into two windows. Window 1 (left) con-
tains initially only the first four points, while window 2
(right) consists of the complementary signal. For each
window, the smoother parameters are optimized using
the method described in the previous section. Next, the
cost function

is evaluated, where ||·|| signifies the absolute value. 

is the minimal cvEE found for window w, using kernel size

σw, and  is the entropy of the null vector with the
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Software applicationFigure 3
Software application. Snapshot of accompanying AutoS-
mooth application. The application and algorithm are pro-
vided both as open source (Matlab) code and as stand-alone 
applications that can be used without requiring commercial 
licenses. The application can also be managed conveniently as 
a BioinformaticStation.org module.
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same kernel size σw estimated from the points in the

respective window. For each iteration, window 1 is
increased by one time point and window 2 is correspond-
ingly decreased by the same point, and the process of
parameter optimization and evaluation of the cost func-
tion cf is performed again. After N-7 iterations the signal
is completely scanned and the entropy information of the
windows is evaluated (Figure 1). The window with mini-
mal cost function cf and its complementary window are
chosen, and the cvEE is updated for this new smoothed
configuration. The signal is definitely broken into two
windows if the new cvEE is lower than the current cvEE,
which had been obtained before of the scanning process.
The same search process for a break point (minimal cf
point) repeats inside each of the new two windows. The
recursion proceeds until the scanning of all windows pro-
duces cvEE values that are above the one obtained when
the window was segmented. To remove the effect of the
kernel size, the entropy values are considered in the cost
function cf as the signal's information and referenced by
the minimal possible information measured with the

same space metric, the kernel size σw. This normalization

removes the bias towards small windows, which would
result in extraction of the noise through over-fitting. In
summary, after each scanning run, the algorithm creates
two new windows for each current window if the cvEE of
the entire signal is minimized, and otherwise terminates
the recursive segmentation. The windows with minimal
entropy match with the assumption of "constant measure
of precision" made by Whittaker in the smoother equa-
tion [10]. In the unlikely event that more than one win-
dow reaches the same minimum cvEE, which would make
the cost function zero, the break point will be selected as
the one where the complementary window has the mini-
mum cvEE (Figure 1c). As the scanning process goes pro-
gressively through the signal where the two windows have
one fix point (the first point for the left window and the
last point for the right window), the algorithm works well
only with signal that presents a gradual changes on the
noise structure, no matters in which direction. One gen-
eral solution could be built by moving the fix points of the
windows, scanning all the possible segments of the signal.
It would require a great computational power, but fortu-
nately this solution is out of our main purpose. Most bio-
logical time series have a noise behavior addressed here
that makes the tool described sufficiently useful for appli-
cation on metabolomic profiles. Tests with a different syn-
thetics signal were performed [see Additional file 1]. The
segmentation algorithm together with the kernel density

estimation (in the parameters optimization procedure)
comes with a significant computational cost. However,
this cost allows independent model identification for
each metabolic in the time series. The resulting parallel
parameterization allowed by an efficient numerical
decoupling translates into immense net computational
gains even for S-systems models (or other systems of cou-
pled differential equations) with as few as 3 variables.

Availability and requirements
The library implementing the filter described in this
report is provided both with open source (MathWorks
Matlab) and as a stand alone application. The library is
provided at http://autosmooth.sourceforge.net/ with free
access and use, under a GNU GPL license. It can also be
conveniently obtained as a module of the Bioinformatics
Station resource http://bioinformaticstation.org.
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