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Abstract
Background: Protein structural data has increased exponentially, such that fast and accurate tools
are necessary to access structure similarity search. To improve the search speed, several methods
have been designed to reduce three-dimensional protein structures to one-dimensional text strings
that are then analyzed by traditional sequence alignment methods; however, the accuracy is usually
sacrificed and the speed is still unable to match sequence similarity search tools. Here, we aimed
to improve the linear encoding methodology and develop efficient search tools that can rapidly
retrieve structural homologs from large protein databases.

Results: We propose a new linear encoding method, SARST (Structural similarity search Aided by
Ramachandran Sequential Transformation). SARST transforms protein structures into text strings
through a Ramachandran map organized by nearest-neighbor clustering and uses a regenerative
approach to produce substitution matrices. Then, classical sequence similarity search methods can
be applied to the structural similarity search. Its accuracy is similar to Combinatorial Extension (CE)
and works over 243,000 times faster, searching 34,000 proteins in 0.34 sec with a 3.2-GHz CPU.
SARST provides statistically meaningful expectation values to assess the retrieved information. It
has been implemented into a web service and a stand-alone Java program that is able to run on
many different platforms.

Conclusion: As a database search method, SARST can rapidly distinguish high from low similarities
and efficiently retrieve homologous structures. It demonstrates that the easily accessible linear
encoding methodology has the potential to serve as a foundation for efficient protein structural
similarity search tools. These search tools are supposed applicable to automated and high-
throughput functional annotations or predictions for the ever increasing number of published
protein structures in this post-genomic era.

Background
The number of proteins found in structural databases has
increased at such an unprecedented rate in recent years
that achieving speed and accuracy simultaneously in pro-
tein structure similarity searches has become a formidable
task. During evolution, three-dimensional (3D) structures

are more conserved than amino acid sequences [1], and
protein homologs that share highly conserved 3D struc-
tures may have unrecognizable sequence homology [2].
Amino acid sequence search tools are fast; however, they
have proven to be insufficient for detection of remote
homology in structural databases [3]. Structure alignment
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using delicate geometric algorithms is much more accu-
rate than amino acid sequence comparisons, especially
when the sequence homology is low [3]. Many brilliant
pairwise comparison tools have been created, such as Dis-
tance Alignment Tools, DALI [4], Combinatorial Exten-
sion, CE [5], and FAST Alignment and Search Tool, FAST
[6], but still there is a demand for rapid similarity search
tools because protein structure databases have outgrown
the utility of pairwise-based searches.

Protein structures are not fully flexible; there are physical
constraints on polypeptide conformation [7-11]. It is
believed that the 3D structure can be reduced to a simpler
form while maintaining the intrinsic structural informa-
tion [12-24]. With the reduced data, a similarity search
can become much easier and faster. A number of methods
have been designed based on this idea to one-dimension-
alize the 3D protein structure. For instance, Levine et al.
(1984) compared 3D protein structures using the
sequence of dihedral angles (ϕ, ψ) in a pairwise manner
[14]. Lesk (1998) modified Efimov's dissections on the
Ramachandran diagram [15] and combined them with a
reduced amino acid alphabet to linearly encode protein
structures [16]. Martin (2000) developed TOPSCAN,
which uses topology strings to represent protein structures
[17]. However, most of these methods could not reach the
accuracy comparable to conventional 3D structural com-
parison methods, and furthermore the implementation of
some of them were limited because their methodology
could not conveniently analyze fragments with missing
residues [18]. Consequently, linear encoding methods
have long been considered to compromise accuracy for
speed in protein structure comparisons [14]. Neverthe-
less, there are advantages of the one-dimensional (1D)
representation of protein structure, such as its easy appli-
cability to multiple structural alignments [16], fold-recog-
nition and genome annotations [19,20]; besides, local
backbone structure prediction has long been using linear
encoding methodologies [24-27].

In recent years, linear encoding has been applied to large
scale structural database searches. Methods like YAKUSA
[21] and 3D-BLAST [22] can scan thousands of proteins
thousands of times as rapid as CE with good performance
in searching accuracy. In this post-genomic era when pro-
tein structural data increase exponentially, we believe that
linear encoding methodology is capable of serving as the
foundation for efficient protein structural similarity
search tools and that there is still much valuable room left
for its improvement.

Here we propose a linear encoding algorithm, Ramachan-
dran sequential transformation, and introduce an effi-
cient protein structural similarity search method, SARST
(Structural similarity search Aided by Ramachandran

Sequential Transformation) [28]. SARST improves the lin-
ear encoding methodology and achieves higher search
speed with less sacrifice of accuracy than previous meth-
ods. SARST converts 3D protein structures into two-
dimensional Ramachandran maps [29] and further to 1D
sequences by predefined assignments of regions to text
letters (Ramachandran codes). Finally, conventional
sequence similarity search methods can be applied to
retrieve homologous proteins from structure databases.
These approaches are illustrated in Figure 1.

SARST, using structurally meaningful Ramachandran
strings, converts structural similarity search problems into
sequence similarity searches. Besides inheriting the speed
advantages of sequence-based methods, it provides a
ranked hit list with similarity scores and statistically
meaningful expectation values (E-values) to assess the
reliability of the retrieved information.

Because SARST is aimed to be a database search method,
information retrieval (IR) techniques, which have been
widely used in the document, image, spatial database, and
3D protein structure database fields [30,31], were used to
evaluate it. SARST can detect remote homology and over-
come structural incompleteness; we also report its per-
formances on different structural classes (all alpha, all
beta, alpha/beta and alpha+beta).

Results
Algorithm – Ramachandran sequential transformation 
(RST)
One thousand domains, each composed of a single
polypeptide chain without missing residues, were ran-
domly selected as the training set from the ASTRAL SCOP
1.67 40% identities (ID) subset [32-34] [see Additional
file 1]. For every residue rn in the training set, the torsion
angle phi (ϕ) formed by atoms of rn-1 and rn, and psi (ψ)
formed by rn and rn+1 were calculated to convey the two-
residue-long backbone conformation involving three con-
secutive residues. All the torsion angle pairs (ϕ, ψ) were
mapped onto the Ramachandran (RM) plot, and their dis-
tribution was analyzed by counting the pairs contained in
each 10° × 10° unit cell. There were 36 × 36 = 1,296 cells
on the RM map, each with a known number of (ϕ, ψ)
spots. These cells were clustered into 22 groups based on
a parameter, RSAD (Root Square Angular Distance),
defined to represent the "distances" among cells:

where -180° < ∆ϕ < 180° and -180° < ∆ψ < 180°. They
represent the differences in ϕ and ψ angles between a pair
of cells. Sc is a scaling constant assisting in restricting the
number of clustered groups.

RSAD Sc= +( ) ( )2 2∆ ∆ϕ ψ (1)
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The 1,296 cells were first ranked in descending order by
their spot numbers and assigned as x1–x1296; then, each
cell was assigned a representative angle pair (ϕi, ψi), where
ϕi and ψi stood for the central ϕ and ψ angles of xi, respec-
tively. We defined ni as the spot number of xi and set up a
distance matrix D by assigning each element, Dij, the
RSAD between xi and xj. With this matrix, a nearest-neigh-

bor clustering algorithm [35] was performed following
the steps below:

(1) Set xi = x1 and g = 1.

(2) Assign xi to cluster Cg and let it be the center of Cg.
Now, Ng, the total number of spots in Cg, is ni.

Flowchart of SARST approachesFigure 1
Flowchart of SARST approaches. Three-dimensional (3D) protein structures are first transformed onto two-dimensional 
(2D) Ramachandran maps and then further converted into one-dimensional (1D) text strings. Thus, a structural similarity 
search could be performed by classical sequence similarity search methods. The Ramachandran plot shown here was generated 
by PROCHECK [54]. (Note that "similarity search" is more typically termed as "alignment search"; however, considering that 
SARST is designed as a search method rather than an alignment tool, we will use the former term throughout this report to 
avoid misunderstanding.)
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(3) Find the nearest neighbor of xi. Let xj denote it.

(4) For those xj with nj > 3:

a. If Dij is smaller than TD, the threshold of distance, Ng +
nj is smaller than TN, the threshold of spot number, and xj
has not been clustered, then assign xj to Cg.

b. If Dij <TD, Ng + nj <TN, and xj has been clustered in Cm,
compare Dij and the distance between xj and the center of
Cm. If Dij is the smaller, reassign xj to Cg.

(5) For those xj with nj ≤ 3: if Dij < 0.5 × TD, assign xj to Cg;
otherwise, simply assign it to C22.

(6) Repeat steps (4)–(5) with the next nearest neighbor
while Dij <TD.

(7) If every cell has been clustered, then stop. Otherwise,
find the cell possessing the most spots from those not yet
clustered, let it be the new xi and set g = 2, then go to step
(2).

In this procedure, we were able to adjust TD, TN and Sc in
formula (1) so as to cluster all the cells into 22 groups.
Finally, each group was assigned an English letter. As
shown in Figure 2, these assigned letters represented spe-
cific regions of the Ramachandran map, and were called
"Ramachandran codes". According to these codes, the
coordinates of a protein could be transformed into a text
sequence in the order of residue serial numbers. If a chain
contained missing or internal (ϕ, ψ) incalculable residues,
those positions would be labelled as "X"s. The "sequence"
generated by RST algorithm is structurally meaningful and
very different from the amino acid sequence in nature;
therefore, we call it Ramachandran sequence or Ramach-
andran string.

Building scoring matrices – a regenerative approach
Because RM codes differ from amino acids, suitable scor-
ing matrices were created to perform RM sequence align-
ment searches. We developed a "regenerative approach",
which started with a primitive (and trial) matrix and ena-
bled us to produce scoring matrices generation after gen-
eration until the quality was acceptable:

(1) The densest cell of each RM code region has been
assigned as the representative center during RST. Code
regions with smaller RSAD would be spatially close on the
map, which we believed could be given higher scores.
Based on this concept, we first calculated the average

RSAD ( ) of all the representative centers and then
built the "primitive scoring matrix I" (PSMI) using the for-
mula:

for i = j, the scores were uniformly appointed as 10.

(2) Using PSMI, all-against-all RM sequence alignments
were performed between the training set and the ASTRAL
SCOP 1.67 50% ID subset by blast [36,37]. FAST [6] was
used as a filter to pick the pairs with alignment lengths
larger than 50% to form a "primitive pair database".

(3) The algorithm of BLOSUM matrices [38] was imple-
mented to this pair database to build primitive scoring
matrix II (PSMII).

(4) After performing recursive all-against-all RM sequence
alignment on the ASTRAL SCOP 1.67 50% ID subset
using PSMII, the pairs with FAST alignment lengths larger
than 80% were picked to form a "50% ID primitive pair
database", which then generated PSMIII.

(5) With PSMIII, we repeated step (4) for ASTRAL SCOP
1.67 10, 20, 30, 40, 50, 70, 90, and 100% ID subsets and
produced the SARST Scoring Matrix (SARSTSM) 10, 20,
30, 40, 50, 70, 90 and 100, respectively.RSAD

Score
RSAD

RSAD
i jij

ij= × −
×

≠5
0 5

log(
.

) for (2)

The Ramachandran map of SARSTFigure 2
The Ramachandran map of SARST. The 1,296 cells on 
the map were clustered into 22 groups by the Ramachandran 
sequential transformation algorithm. See text for details.
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Optimization of the scoring matrix
A. Selection of the scoring matrix
In 2004, Aung collected 34,055 proteins covering about
90% of the ASTRAL SCOP 1.59 dataset to form a large tar-
get database, from which 108 query proteins were selected
[30]. To assess the applicability of the SARSTSM, we
adopted this database as well as the following parameters
commonly used in the information retrieval experiments:

A protein is regarded as "relevant" if it belongs to the same
SCOP family classification as the query. These two param-
eters always had opposite tendencies; when attempts were
made to ask for higher recalls with the same query, the
precision would decrease. Because of this property, to
judge the quality of IR experiments, the F-measure [39]
was also used:

F = 2 × Recall × Precision/(Recall + Precision) (5)

For every query protein, RM sequence searches were per-
formed asking for 50 to 5,000 retrievals. We observed that
SATSTSM20 outperformed other matrices in most of the
cases [see Additional file 2].

B. Determination of the score scaling factor
BLOSUM matrices were generated using Henikoffs' for-
mula [38]:

Scoreij = fs × log2(qij/eij) (6)

where qij is the observed and eij is the expected probability
of the occurrence for each i, j pair, and fs is a scaling factor.
In their study, fs was appointed as 2. To optimize our scor-
ing matrix, we selected the "20% ID pair database", which
produced SARSTSM20, and then adjusted the scaling fac-
tor. The highest average F-measure (70.0%) after the
retrieval of 500 proteins was determined with fs = 1.78.
Accordingly, the matrix produced from the 20% ID pair
database with fs = 1.78 was chosen as the standard scoring
matrix for SARST (Table 1).

C. Determination of the X scores
In RM strings, code "X"s stood for missing residues, resi-
dues with incomplete backbone coordinates, or those
providing insufficient information for the calculation of
torsion angles. We supposed the X scores should be zero
to exert a minimum effect on the accuracy of SARST. After

the retrieval of 500 proteins with integer X score ranging
from -3 to 3, the highest average F-measures (70.0%) was
found at zero X score, in agreement with our supposition.

Evaluation of speed
Aung and Tan have used their large database to assess the
performances of ProtDex2 and several other methods
[30]. We adopted their system and added our assessments
to CE, FAST, YAKUSA [21], 3D-BLAST [22], BLAST [37]
and SARST.

As shown in Table 2, when using a single 3.2-GHz CPU to
search this large database (34,055 proteins), SARST regis-
tered an average running time of 0.34 second, almost as
rapid as BLAST (0.30 second). The SARST running time is
approximately 243,500, 18,400, 250, 105, 27 and over 2
times faster than CE, FAST, TOPSCAN, YAKUSA, 3D-
BLAST and ProtDex2, respectively. In a multi-processor
system, SARST is capable of distributing the calculation
work. If dual 3.2-GHz hyperthreading processors were
used, its average running time would be 0.16 second,
about 5 times faster than ProtDex2 and 517,400 times
faster than CE, which itself could not recruit multiple
processors.

Evaluation of accuracy
The goal of SARST is to create an efficient database search
method, information retrieval techniques that have been
widely used in many database search and management
fields were used to evaluate its accuracy. As shown in Fig-
ure 3, FAST was the most accurate method. SARST was the
third most accurate, and had a higher accuracy when com-
pared with YAKUSA, 3D-BLAST, TOPSCAN, BLAST, and
ProtDex2, the former three of which are linear encoding
methods.

Implementation: Performance using different structural 
classes
The 108 query proteins from Aung [30] were composed of
SCOP entries belonging to the four major classes with an
average family size of ~80. To examine the performances
of SARST using different structural classes, a measure
known as "fallout" was calculated after the retrieval of 80
proteins.

Fallout is a measure of the false positive rate; it is the prob-
ability of retrieving an irrelevant protein [40]. Accord-
ingly, an effective retrieval system will yield lower fallout.
SARST generated lower fallout values when compared
with recent linear encoding database search methods,
YAKUSA and 3D-BLAST (Figure 4). The fallout rates of

Recall
Number of relevant retrievals

Total number of releva
=

nnt proteins
(3)

Precision
Number of relevant retrievals

Total number of ret
=

rrieved proteins

(4)

Fallout
Number of irrelevant proteins retrieved

Total numbe
=

rr of irrelevant proteins

(7)
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SARST are close to those of CE. Unlike BLAST, SARST and
other structure-based algorithms, inclusive of linear
encoding ones, had limited bias among the four structural
classes.

Performance on incomplete structures
Linear encoding methods may have a weakness in trans-
forming structural information for proteins with incom-
plete backbone coordinates or missing residues [18],
which constituted about one-fifth of Aung's query pro-
teins [30] and the entire ASTRAL SCOP dataset. The fall-
out values of SARST for query proteins with incomplete
structures were compared with those of several other

methods. As illustrated in the right part of Figure 4, SARST
generated fewer false positives than other linear encoding
methods and, more interestingly, CE (see Additional file
5 for further information). These data indicate that SARST
has achieved improved performance on incomplete struc-
tures.

Effects of low sequence identities
To more precisely assess the efficiency of searching meth-
ods challenged with low sequence identities, a well-organ-
ized, non-redundant target database in which all query
proteins have remote homologs is necessary. Since Aung's
databases do not satisfy this purpose [30], we have gener-

Table 1: The standard scoring matrix of SARST

A B C D E T K V N F G H I L M Q S Y R P W Z X

A 3 2 2 1 1 0 -2 -3 -3 -8 -11 -11 -13 -8 -8 -9 -14 -9 -7 -8 -7 -4 0
B 2 2 2 1 1 1 0 -1 -2 -6 -12 -10 -10 -7 -7 -6 -10 -8 -5 -6 -4 -6 0
C 2 2 2 1 1 3 -1 -2 -3 -6 -13 -11 -9 -7 -8 -7 -9 -10 -2 -7 -5 -3 0
D 1 1 1 3 1 2 2 -1 -1 -4 -9 -7 -8 -4 -6 -5 -7 -4 1 -3 -4 -2 0
E 1 1 1 1 3 1 2 3 1 -5 -7 -6 -7 -4 -4 -4 -7 -2 -1 -5 -3 -1 0
T 0 1 3 2 1 5 -1 2 -1 -2 -6 -6 -4 -4 -5 -2 -4 -4 2 -1 -1 3 0
K -2 0 -1 2 2 -1 4 1 3 -3 -6 -6 -5 -3 -3 -2 -5 -2 -2 0 0 -1 0
V -3 -1 -2 -1 3 2 1 9 3 -3 -4 -4 -2 -2 -2 0 0 3 2 -1 3 4 0
N -3 -2 -3 -1 1 -1 3 3 5 -2 -4 -4 -3 -2 0 -2 -3 -2 -1 1 1 1 0
F -8 -6 -6 -4 -5 -2 -3 -3 -2 5 -1 1 0 3 0 3 0 2 0 -2 -2 1 0
G -11 -12 -13 -9 -7 -6 -6 -4 -4 -1 4 3 3 0 2 0 1 -3 -5 -5 -6 -2 0
H -11 -10 -11 -7 -6 -6 -6 -4 -4 1 3 4 1 2 2 0 -1 -2 -4 -3 -5 -1 0
I -13 -10 -9 -8 -7 -4 -5 -2 -3 0 3 1 4 0 1 2 4 0 -1 -4 -7 -2 0
L -8 -7 -7 -4 -4 -4 -3 -2 -2 3 0 2 0 4 1 1 -1 0 0 -1 -2 1 0
M -8 -7 -8 -6 -4 -5 -3 -2 0 0 2 2 1 1 4 0 1 -1 -4 -2 -2 1 0
Q -9 -6 -7 -5 -4 -2 -2 0 -2 3 0 0 2 1 0 6 1 3 1 -3 -3 1 0
S -14 -10 -9 -7 -7 -4 -5 0 -3 0 1 -1 4 -1 1 1 7 5 2 -3 -3 3 0
Y -9 -8 -10 -4 -2 -4 -2 3 -2 2 -3 -2 0 0 -1 3 5 10 7 2 2 7 0
R -7 -5 -2 1 -1 2 -2 2 -1 0 -5 -4 -1 0 -4 1 2 7 11 3 0 7 0
P -8 -6 -7 -3 -5 -1 0 -1 1 -2 -5 -3 -4 -1 -2 -3 -3 2 3 8 7 4 0
W -7 -4 -5 -4 -3 -1 0 3 1 -2 -6 -5 -7 -2 -2 -3 -3 2 0 7 9 5 0
Z -4 -6 -3 -2 -1 3 -1 4 1 1 -2 -1 -2 1 1 1 3 7 7 4 5 6 0
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Speed comparisons for 108 queries on a database of 34055 proteins

Method Average time per query (sec) Average time per comparison (sec) Relative to SARST

CE 82789.20 2.43E+00 243497.65
FAST 6241.57 1.83E-01 18357.56
TOPSCANa 85.08 2.50E-03 250.24
YAKUSA 35.6 1.05E-03 104.71
3D-BLAST 9.07 2.66E-04 26.68
ProtDex2 0.76 2.23E-05 2.24
BLAST 0.30 8.76E-06 0.88
SARST 0.34 9.98E-06 1.00
SARST (2 CPUsb) 0.16 4.70E-06 0.47

aThese results were adapted from Aung and Tan's report [30].
bTwo hyperthreading 3.2 GHz CPUs were used to obtain these results, others were calculated using one CPU.
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ated a new database from the ASTRAL SCOP 1.69 dataset.
Query proteins were selected from the ASTRAL 100% ID
subset following these criteria: (1) belonging to the four
major classes (all-α, all-β, α/β and α+β), (2) having a fam-
ily size between 30 and 140 proteins, (3) sharing 10% or
less sequence identities, (4) having at least two family
members in the 10% ID subset, (5) having no missing res-
idues or incomplete backbone coordinates, and (6) being
able to reach 100% recall with all of the assessed tools.
The proteins meeting criteria (1)–(5) were grouped
according to the family classifications and ranked by their
lengths; then, the median length from each family was
chosen and tested for criterion (6). The 83 query proteins
that met these criteria were subtracted from the original
subset, yielding a target database of 24,337 proteins [see
Additional file 3].

Using this new target database, IR experiments were per-
formed to examine the effects of low sequence identities.
Various identity subsets of the target database were
searched. As shown in Figure 5, the precision of SARST
decreased as it encountered proteins with low sequences
identities but was not as negatively affected as the preci-

sion of BLAST, which decreased substantially when the
sequence identities fell below 30%. In comparison with
recent linear encoding methods like YAKUSA and 3D-
BLAST, the precision of SARST was generally improved. It
could be observed that, when tested with these non-
redundant datasets, the accuracy of linear encoding meth-
ods was substantially lower than geometric algorithms
like FAST and CE. We propose that this is because of the
unavoidable loss of structural information in the process
of 3D to 1D transformation, a phenomena discussed in
the latter part of this article.

Reliability of searching results
For every retrieved structure, SARST provides not only a
similarity score but an expectation value (E-value) to
assess the significance of the score (see Discussion). A
lower E-value correlates to a higher significance of the
score. IR experiments were done to test the reliability of
the E-value. As shown in Table 3, low E-values gave high
precisions and low fallouts at both the superfamily and

Average precision-recall curves of several search methodsFigure 3
Average precision-recall curves of several search 
methods. FAST was the most accurate search method. 
SARST ranked third and achieved precisions ~4% lower than 
CE, which was the second most accurate method in this 
experiment. Linear encoding methods TOPSCAN [17], 
YAKUSA [21] and 3D-BLAST [22] describe protein struc-
tures as strings. ProtDex2 transforms protein structures into 
indexes [30]. These curves of ProtDex2 and TOPSCAN 
were adapted from Aung and Tan's report [30]. The preci-
sion percentage is plotted on the y-axis and the recall per-
centage is plotted on the x-axis.

Performances among different structural classes and proteins with incomplete structuresFigure 4
Performances among different structural classes and 
proteins with incomplete structures. The average fall-
outs after the retrieval of 80 proteins were calculated. 
Because fallout is a measure of the false positive rate, these 
data demonstrate that the performances of SARST are fairly 
even (i.e. no obvious bias) among the four major classes as 
compared to those of BLAST. The fallouts of SARST are gen-
erally lower than YAKUSA [21] and 3D-BLAST [22], both of 
which are protein structural similarity search tools with lin-
ear encoding methodologies. When tested with query pro-
teins having incomplete local backbone structures, SARST 
outperforms other linear encoding methods and CE. The 
query proteins used in this experiment was set by Aung and 
Tan [30]; the subset of incomplete structures and the extent 
of incompleteness are listed in the supplementary materials 
[see Additional file 5].
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family levels. When E-values were below 10-10, for
instance, the average precision was greater than 92% and
the average fallout was lower than 0.04%. Thus, the rate

of negative answers' being retrieved (as positives) was at
most 0.04% by SARST in this particular database search.
The reliability of the E-value lends greater significance to
the structural, functional and even evolutionary related-
ness information retrieved by SARST.

Normalization of SARST scores
According to our observations, larger proteins generated
higher SARST scores, which did not always translate into
smaller root mean square distances (RMSD) in the actual
structural superimpositions. For this reason, in some situ-
ations, it would be better to normalize SARST scores. The
same formula used to normalize FAST scores [6] was used
to normalize SARST scores.

where S is the raw score and  is the normalized one. M
and N are the RM string lengths for two proteins. The pre-
cision increased when the hit list was rearranged in a

descending order according to the  value. For example,
when SARST was run with Aung's database [30] under the
recommended parameter settings (see Methods), the aver-
age precision increased from 84.1 to 86.3% after normal-
ization.

The normalized scores were more sensitive to global struc-
tural similarities and thus more likely to retrieve SCOP
family members, which were mainly clustered according
to their overall structural similarities. However, local sim-
ilarities, which measure the structural relatedness of sub-

S
S

M N
=

×
(8)

S

S

Effects of sequence identities on the precision of several search methodsFigure 5
Effects of sequence identities on the precision of sev-
eral search methods. The structure similarity search 
method, SARST, was able to detect remote homology with 
increased precisions compared with other linear encoding 
algorithms and the conventional amino acid sequence search 
method, BLAST. These data also show that there is still 
room left for the improvement of linear encoding methodol-
ogy. Possible solutions are proposed in Discussion. The aver-
age precisions used in this figure were calculated at the 
representative 60% recall level.

Table 3: Average recall and precision with various E-values

Family level Superfamily level

E-value Avg. recall (%) Avg. precision (%) Avg. fallout (10-4) Avg. recall (%) Avg. precision (%) Avg. fallout (10-4)

1.0E-40 30.37 99.83 0.01 20.75 100.00 0.00
1.0E-35 34.19 99.79 0.03 23.34 100.00 0.00
1.0E-30 38.75 99.69 0.09 26.49 100.00 0.00
1.0E-25 44.21 99.00 0.31 31.18 100.00 0.00
1.0E-20 49.85 98.28 0.60 35.80 99.94 0.05
1.0E-15 58.40 97.52 1.11 41.75 99.64 0.24
1.0E-13 61.40 97.10 1.95 44.14 99.33 0.78
1.0E-10 67.98 92.71 4.00 49.99 96.34 2.59
1.0E-07 74.13 83.61 14.71 56.26 83.80 15.88
1.0E-05 78.49 71.00 46.80 61.83 68.26 57.58
1.0E-03 83.04 60.37 141.24 68.83 49.16 193.98
1.0E-01 89.22 48.39 429.86 77.66 32.66 648.34

1 91.60 46.19 687.41 82.03 27.92 1127.10
10 94.12 43.60 1101.13 86.94 25.91 1911.62

100 95.98 40.92 1680.02 91.36 24.85 3004.44
1000 97.63 38.50 2335.32 95.20 23.83 4468.79
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structures such as domains, are also important in many
situations. Hence, the score normalization is adjustable
by the user in the SARST web service.

Distantly related homologs retrieved by SARST – two 
examples
We selected two pairs of proteins to demonstrate how
SARST could detect remote homology from a large struc-
ture database. These protein pairs were retrieved from the
ASTRAL SCOP 1.69 dataset. The coordinates of the posi-
tive positions aligned by RM strings were extracted to per-
form superimposition before calculation of their
minimum RMSD.

In the first example (Figure 6a), [SCOP:d1b3aa_] was the
query protein and [SCOP:d1tvxa_] was one of its relevant
retrievals. Both of these proteins are interleukin 8-like
human chemokines. Their amino acid sequence identity
was only 17.2% over a small alignment length (29 resi-
dues), whereas they were structurally very similar (mini-
mum RMSD: 1.68 Å) with a much larger RM string
alignment length (51 positions). This example indicates
that SARST could successfully identify protein homologs
sharing highly conserved 3D structures but low overall
sequence homology (also seen in Figure 5). In the second
example (Figure 6b), [SCOP:d1p3ca_], a Bacillus interme-
dius glutamyl endopeptidase, was a high score irrelevant
retrieval of the query protein [SCOP:d1tpo__], trypsin
from cow (Bos taurus). These two proteases exhibited only
a 22% amino acid sequence identity. They had similar
structures, and the catalytic triads were well aligned by
SARST even though they belong to different families in the
SCOP classification. There were several missing residues
in the query protein, and there were major differences in
length for some of the secondary structure elements (SSE),
which would normally cause some failure to previous lin-
ear encoding methods [18]. SARST successfully identified
the structural and functional similarities using suitable
"X" scores and gap penalties. (Note that SARST is a data-
base search tool that aims to rapidly distinguish high from
low similarities but not to give optimum pairwise struc-
tural alignments. The RM sequence alignments shown in
Figure 6 demonstrate how SARST works on protein
homologs sharing low amino acid sequence identity but
does not guarantee the best way to superimpose protein
structures.)

Discussion
On speed
SARST [28] transformed structural information into text
strings through the Ramachandran plot, and converted
complex geometric superimposition problems into rela-
tively simple sequence similarity search problems. There-
fore, SARST compared favorably with conventional
structure alignment search methods in terms of speed.

Because SARST uses a relatively simple scoring scheme
and an optimized scoring matrix, it ran remarkably faster
than previous linear encoding methods, like TOPSCAN,
YAKUSA and 3D-BLAST. There are several structure simi-
larity search tools that can run at impressively high speeds
by searching databases stored with pre-analyzed structural
information, such as ProtDex2. SARST was not only faster
than ProtDex2 but also much more accurate.

Given reasonable thresholds and a single CPU, SARST
could run more than two hundred thousand times faster
than CE. In a multi-processor system, SARST can automat-
ically distribute the calculation work and run even faster.
For example, when we used 2 hyperthreading CPUs to run
SARST, it executed over half a million times faster than
CE, which could not support multiple processors unless it
were run by multi-thread scripts programmed by the user.
If SARST is run in a clustered environment, mpiBLAST
[41-43] can be used as the search engine, and the increase
in its running speed would be even more impressive.

On accuracy
Although the current version of SARST could not match
FAST in terms of precision, its accuracy is only slightly
lower than that of CE. Additionally, SARST could achieve
much higher precision than common IR-based tools, such
as ProtDex2. In comparison with other linear encoding
methods like TOPSCAN, YAKUSA and 3D-BLAST, the
accuracy of SARST is improved. FAST is reportedly more
accurate than CE [6]. SARST alone can serve as an efficient
protein structural database search method; furthermore, a
good web service can be developed if we combine SARST
and FAST through a filter-and-refine strategy [31].

After examining the high score hits, we found that the
irrelevant retrievals obtained by SARST were largely due to
common substructures shared by proteins with different
overall structures. In fact, because SARST uses BLAST
(basic local alignment search tool) as the core search
method, it is suitable for local structural alignment
searches. We have suggested a method to normalize
SARST scores, which could promote accuracy in the situa-
tion that users are more concerned about the overall struc-
tural similarities. Parameters such as gap penalties could
be adjusted to achieve higher accuracy according to the
needs of the user.

Alpha-helices are the most abundant form of regular sec-
ondary structure, and therefore the alpha helix-related
codes inevitably have the highest occurrence in linear
encoding methods [22]. Because there is high probability
that two alpha helix-related codes could be aligned by
chance, one may expect that SARST, as well as many other
linear encoding methods, would produce more false pos-
itives in searching structural homologs for all-alpha pro-
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Examples of distantly related proteins retrieved by SARSTFigure 6
Examples of distantly related proteins retrieved by SARST. (a) The superimposed structures (cross-eye stereo view) 
of the interleukin 8-like chemokines from human, [SCOP:d1b3aa_] (blue) and [SCOP:d1tvxa_] (red). These two proteins have 
a low sequence identity while their structures are highly similar. The minimum RMSD calculated from positive positions of the 
Ramachandran sequence alignment is 1.68 Å. (b) Three-dimensional structures and the superimposition of [SCOP:d1tpo__] 
(blue) (SCOP sccs id: b.47.1.2), the trypsin from Bos taurus, and [SCOP:d1p3ca_] (red) (SCOP sccs id: b.47.1.1), a Bacillus inter-
medius glutamyl endopeptidase. These two proteases belong to different families but have similar structures. Although the 
amino acid sequence alignment fails to detect their functional similarities, the catalytic triad residues (highlighted in green) are 
well aligned by SARST. Their minimum RMSD is 4.17 Å, whereas their amino acid sequence identity is 22%. The secondary 
structural cartoons were generated by PROCHECK [54] and then modified with colors and gaps.
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teins. However, our results indicated that SARST and other
recent linear encoding algorithms had fairly even per-
formance for different structural classes (Figure 4) in com-
parison with traditional sequence alignment method. In
the case of SARST, which outperforms other linear encod-
ing methods, this improvement may result from two fac-
tors. (1) The substitution matrices were generated with
Henikoffs' algorithm [38], which calculates similarity
scores as the logarithm of the odds (lod) ratio of the
observed versus expected probabilities of every code pair.
The most abundantly occurring helix-related RM code
pairs thus do not have high lod scores, preventing the
overweighting of helical SSEs. (2) The introduction of TN,
the threshold of group size, into Ramachandran sequen-
tial transformation, resulted in fine dissections of the
helix-like region of the RM plot. There were nine helix-like
RM codes, e.g. ABCDETKVP, enabling SARST to detect
minor structural differences between two helical SSEs,
reducing the false positive rate.

On improvements
Missing residues can reduce the performance and accuracy
in protein structural similarity searches, as reported in the
SA-Search linear encoding system [18]. SARST, however,
uses "X" codes to represent missing residues and, given
suitable X scores and optimum gap penalties, it suppresses
the effects of structural incompleteness (Figure 4).

The precision of SARST was higher than TOPSCAN,
YAKUSA and 3D-BLAST probably due to torsion angle
properties. Torsion angles are too local to describe long-
range residue-residue interactions and may be insufficient
for the development of structure "alignment" methods;
however, in developing "similarity search" methods
through linear encoding, this regional property may have
advantages. We hypothesize that linear encoding methods
lose structural information in the transformation process,
and thus the more information to be encoded the more
likely it would be lost. As shown in Table 2 and Figure 3,
SARST, encoding two-residue-long conformations by tor-
sion angles, was faster and more accurate than YAKUSA,
3D-BAST and TOPSCAN. The YAKUSA algorithm uses
alpha angle to convey four-residue-long interactions [21],
3D-BLAST uses alpha and kappa angles to describe five-
residue-long backbone conformations [22], and, TOP-
SCAN considers even longer topological changes of sec-
ondary structural elements [17]. These results may imply
that the "encoding ratio" has an inverse relationship to
the range of interactions and may play a major role in pro-
tein structural linearization methodologies.

We plan to modify the SARST algorithm to preserve more
structural information in the transformation process and
to achieve higher accuracy. Future versions of SARST may
consult the hidden Markov model and the methods of the

Camproux-derived structural alphabet 27 [44,45]. About
the alphabet size of Ramachandran codes, we had made
many preliminary tests ranging from 13 to 23 prior to the
choice of 23. It was found that, at least in this range, a
larger alphabet size gave a higher precision; however, the
performance of the current version of SARST is limited by
its search engine such that a maximum of only 23 symbols
can be used to compose RM sequences. We hypothesize
that if more symbols could be used, the dissection of the
Ramachandran plot would be finer, thereby increasing the
accuracy.

Significance of SARST score
After the database search, SARST produces a list of hits
ordered by a score measuring the structural similarity.
Additionally, SARST provides the statistically meaningful
E-value to assess the significance of the score (S). The E-
value is the number of different alignments with scores
equivalent to or better than S that are expected to occur by
chance in a database search [36,37,46]. Thus, lower E-val-
ues yield more significant scores. This statistical signifi-
cance is transferable to structural relatedness and
functional classifications. For instance, as shown in Table
3, the retrievals with E-values lower than 10-25 almost all
belong to the same family as the query protein (average
precision > 99%; average fallout < 3.1 × 10-5). A score with
an E-value lower than 10-13 can be regarded to have a
superfamily-level significance as the average precision at
the superfamily level is higher than 99% and the average
fallout is lower than 7.8 × 10-5 under this E-value thresh-
old. Thus, the chance that one retrieved protein with such
a low E-value belongs to a different superfamily from the
query is at most 7.8 × 10-5 in this particular database
search.

Proteins in the same SCOP family have a clear evolution-
ary relationship and those sharing the same superfamily
most likely have a common evolutionary origin [47].
Automated procedures like Classification by Optimiza-
tion (CO) [48] have been developed to link the Z-score, a
measure of the statistical significance of the result relative
to an alignment of random structures [4,5,49], to SCOP
classifications and thereby predict protein evolutionary
relationships, to which we hypothesize that the E-value
provided by SARST is also transferable.

Expected applications of SARST
The primary advantage of SARST is its speed. SARST pro-
vides a high search speed without substantially compro-
mising the accuracy. Identification of distantly related
protein homologs from a large structural database may
prove difficult for sequence search methods or be time-
consuming when using conventional structural alignment
methods; however, SARST can accomplish this task within
one second. In addition, this methodology is easy to
Page 11 of 14
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implement, and multiple parameters can be adjusted by
users to meet their research preferences. Moreover, the
stand-alone version of SARST is written in Java and can
run on many different platforms, turning a personal com-
puter into an efficient instrument for a protein structural
similarity searches.

Because of its high efficiency and portability, we hypothe-
size that SARST will be useful in automated and high-
throughput functional annotations or predictions of the
rapidly increasing protein structures produced by struc-
tural genomics researches. Because SARST describes pro-
tein structures as 1D strings, it can work together with
multiple sequence alignment tools such as CLUSTAL W
[50,51] to perform rapid structural, functional or evolu-
tionary clustering of proteins. In addition, fold-recogni-
tion and backbone structure predication have used the
one-dimensionalization of protein structures for years
[19,20,24-27] and may be applicable fields for SARST.

Conclusion
We have introduced a new protein structure similarity
search method, SARST (Structural similarity search Aided
by Ramachandran Sequential Transformation), which
transforms 3D protein structures into 1D strings through
a clustered Ramachandran map [28]. This technique uses
a regenerative approach to produce improved substitution
matrices and recruits classical sequence alignment search
methods to perform structural similarity searches. As a
hybrid, SARST combines the speed advantages of
sequence-based methods and accuracy advantages of
structural comparisons. Its precision is only slightly lower
than CE, and SARST executes hundreds of thousand times
faster, almost as rapid as BLAST. In addition, SARST pro-
vides E-values to assess the reliability of the retrieved
information.

SARST can detect remote homology that escapes a typical
amino acid sequence alignment search. Its performance
among different structural classes is similar to that of CE,
without the normal bias shown by BLAST. Compared
with previous linear encoding methods, SARST suppresses
the problems caused by structural incompleteness by uti-
lizing "X" codes and major differences in SSEs between
homologous structures by using suitable gap penalties: it
also achieves higher search speed and precision.

The fact that most linear encoding methods could not
match conventional structure alignment methods in accu-
racy indicates that linear encoding might not be the best
solution to protein structural comparisons; however,
SARST demonstrates that it still has the potential to
develop efficient structural similarity search tools. Protein
structural data is increasing exponentially; thus, we
hypothesize that efficient, easily accessible and highly

portable similarity search methods like SARST will be the
basic tool for post-genomic era researches.

Methods
The operating system was linux (Fedora Core 4) and, PHP
(v.5.0.4) and Java 2 (v.1.4.2) were used to develop pro-
grams. The blast method described by Altschul et al.
[36,37] was used as the SARST search engine. All struc-
tures presented in the figures were drawn using PyMol
[52].

Optimization of the search engine parameters
Because blastall (v.2.2.13) was recruited as the search
engine, its parameter settings would affect the perform-
ance of SARST. Based on our early experience, the query
sequence filter must be disabled (parameter setting: -F F)
to achieve better search results. In addition, three other
parameters were optimized: word size (W), gap-opening
penalty (G), and gap-extension penalty (E).

There were two W values (2 and 3) allowed by blastall. We
had used the small database developed by Aung [30] to
determine their effects. It was found that the word size
had limited effects on the precision of SARST, but the
speed of SARST running under W = 3 was 3.4 times as
rapid as that under W = 2. To meet speed requirements,
size 3 was adopted.

At setting W = 3, the effects of all allowed combinations of
G and E values were analyzed after the retrieval of 500
proteins. As shown in the additional material [see Addi-
tional file 4], SARST yielded the highest IR quality when G
= 9 and E = 2, and it ran fastest when G = 25 and E = 2.
Therefore, these are the recommended settings for SARST.

Practical parameter settings for SARST
Generally speaking, a well-developed search tool, such as
NCBI's BLAST [53], would offer many parameters freely
adjustable by the user to satisfy individual research prefer-
ences; however, a set of default values should also be pro-
vided to meet the common needs of users and to ensure
high performance. To determine the practical parameter
settings of SARST, Aung's large database [30] was used to
compare the precision and speed of SARST under various
v (number of database sequences to show one-line
descriptions) and e (expectation value, or E-value) thresh-
olds. When the v threshold was 250, the average recall was
over 80%; thus, higher values seemed unnecessary. When
the E-value threshold was above 10-7, the average preci-
sion fell below 80%; thus, higher thresholds appeared
impractical. As such, we suggest that the combination of v
= 250 and e = 10-7 would satisfy common needs. Running
under these settings, the average recall of SARST was
76.0% and the average precision was 84.1%.
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Assessment of speed and precision
Among the tools assessed in this report, the stand-alone
version of CE and FAST could only perform pairwise com-
parisons; hence, the database searches were achieved
using numerous pairwise comparisons with script pro-
grams. However, to make fair assessments only the actual
running times were considered. The calculation times for
parsing and sorting the results were omitted. The time
consumed in parsing the outcomes of BLAST, ProtDex2,
YAKUSA, 3D-BLAST and SARST was also omitted.

CE was good at local alignment, and therefore its output
might contain many pairwise alignments of polypeptide
fragments [5]. In such cases, the alignment with the great-
est length was selected as the final result.

FAST was designed to align two single polypeptide chains
[6]. Because many SCOP domains were composed of mul-
tiple fragments from different chains, they would cause
FAST to function improperly. Thus, before any PDB file of
SCOP domains was entered, it had to be "unified" first –
all the chain IDs were changed to "A" regardless of the
original labels, and all the residues were re-numbered
consecutively.
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