
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Computational RNA secondary structure design: empirical 
complexity and improved methods
Rosalía Aguirre-Hernández1, Holger H Hoos*2 and Anne Condon2

Address: 1Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada and 2Department of Computer 
Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Email: Rosalía Aguirre-Hernández - rosalia@cs.ubc.ca; Holger H Hoos* - hoos@cs.ubc.ca; Anne Condon - condon@cs.ubc.ca

* Corresponding author    

Abstract
Background: We investigate the empirical complexity of the RNA secondary structure design
problem, that is, the scaling of the typical difficulty of the design task for various classes of RNA
structures as the size of the target structure is increased. The purpose of this work is to understand
better the factors that make RNA structures hard to design for existing, high-performance
algorithms. Such understanding provides the basis for improving the performance of one of the best
algorithms for this problem, RNA-SSD, and for characterising its limitations.

Results: To gain insights into the practical complexity of the problem, we present a scaling analysis
on random and biologically motivated structures using an improved version of the RNA-SSD
algorithm, and also the RNAinverse algorithm from the Vienna package. Since primary structure
constraints are relevant for designing RNA structures, we also investigate the correlation between
the number and the location of the primary structure constraints when designing structures and
the performance of the RNA-SSD algorithm. The scaling analysis on random and biologically
motivated structures supports the hypothesis that the running time of both algorithms scales
polynomially with the size of the structure. We also found that the algorithms are in general faster
when constraints are placed only on paired bases in the structure. Furthermore, we prove that,
according to the standard thermodynamic model, for some structures that the RNA-SSD algorithm
was unable to design, there exists no sequence whose minimum free energy structure is the target
structure.

Conclusion: Our analysis helps to better understand the strengths and limitations of both the
RNA-SSD and RNAinverse algorithms, and suggests ways in which the performance of these
algorithms can be further improved.

1 Background
Ribonucleic acids (RNA) are macromolecules that play
fundamental roles in many biological processes, and in
many cases their structure is essential for their biological
function. A secondary structure for an RNA strand is sim-
ply a set of pairing interactions between bases in the

strand. Each base can be paired with at most one other
base. Most base-pairings occur between Watson-Crick
complementary bases C and G or A and U, respectively
(canonical pairs). Other pairings, such as G•U, can be
found occasionally. Secondary structure determines many
important aspects of RNA tertiary structure; it can, for
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example, be used in part to explain translational controls
in mRNA [1,2] and replication controls in single-stranded
RNA viruses [3].

Almost all widely used computational approaches for pre-
diction of RNA secondary structures from single
sequences are based on thermodynamic models that asso-
ciate a free energy value with each possible secondary
structure of a strand. The secondary structure with the
lowest possible free energy value, the minimum free
energy (MFE) structure, is predicted to be the most stable
secondary structure for the strand. There are widely used
dynamic programming algorithms that, given an RNA
strand of length n, find in Θ(n3) time the secondary struc-
ture with the lowest free energy, from the class of pseudo-
knot-free secondary structures. Throughout this paper, all
references to secondary structures refer to pseudoknot-free
secondary structures.

1.1 The RNA Secondary Structure Design Problem
This work focuses on the design of RNA strands that are
predicted to fold to a given MFE secondary structure,
according to a standard thermodynamic model such as
that of Mathews et al. [4]. This RNA secondary structure
design problem, which can be seen as the inverse of the RNA
secondary structure prediction problem, is relevant
because the ability to solve it will facilitate the characteri-
zation of biological RNAs by their function and the design
of new ribozymes that can be used as therapeutic agents
[5]. There are also applications in nanobiotechnology in
the context of building self-assembling structures from
RNA molecules [6].

Dirks et al. [7] described two paradigms for designing a
structure. A positive design optimizes sequence affinity for
the target structure, while a negative design optimizes
sequence specificity to the target structure. Sequences with
high affinity have energetically favourable conformations
similar to the target structure. For sequences with high
specificity, structures other than the target structure are
energetically less favourable. Dirks et al. [7] defined sev-
eral criteria to evaluate the specificity and the affinity of a
structure and found that it is desirable to achieve both,
high affinity and high specificity. Another solution to the
RNA secondary structure design problem is the stochastic
local search algorithm provided by Hofacker et al. [8],
RNAinverse, the implementation of which is included in
the Vienna RNA Secondary Structure Package. A more
recent stochastic local search algorithm, the RNA Second-
ary Structure Designer (RNA-SSD) of Andronescu et al. [9]
has been shown to achieve substantially better perform-
ance on artificially designed and biological RNA struc-
tures.

The purpose of this work is to understand better the fac-
tors that render RNA structures hard to design. Such
understanding provides the basis for improving the per-
formance of RNA-SSD and for characterising its limita-
tions. To our knowledge, it has not been determined
whether there is a polynomial-time algorithm for RNA
secondary structure design. Schuster et al. [10] performed
experiments with the RNAinverse algorithm on few small
random sequences and a simple tRNA to support the
hypothesis that there is no need to search huge portions
of the sequence space to find a particular structure by
mutation and selection. Based on these experiments, they
argue that sequences sharing the same structure are dis-
tributed randomly over sequence space and that common
structures, that is, structures that have many sequences
that fold into them, can be accessed from an arbitrary
sequence compatible with the target structure by a
number of mutations much smaller than the sequence
length. These results are based on small sequences and
therefore they do not give insight into the computational
complexity of the design problem. On the other hand,
Andronescu et al. [9] found evidence that some ribosomal
RNA structures are difficult to design and that the correla-
tion between the size and hardness is not very strong. For
example, from a set of four ribosomal RNA structures of
length between 260 and 299, RNA-SSD solves two struc-
tures in less than five CPU seconds on a high-performance
PC, compared to three CPU minutes expected run time for
the third structure and 40 CPU minutes for the fourth one.
(These expected run times are determined based on 50
runs using Formula 1, which takes into account the effect
of unsuccessful runs.)

Therefore, to gain insights into the practical complexity of
the RNA secondary structure design problem, we present
an empirical analysis of an improved version of the RNA-
SSD algorithm of Andronescu et al. [9] that has been
developed in the context of this work (this variant is
described in Section 1.2). We also include the Vienna
RNAinverse algorithm [8] in our analysis. Our analysis
uses randomly generated structures, obtained by folding a
randomly generated sequence with the RNAfold function
from the Vienna Package, as well as structures that were
generated according to a statistical model derived from
biological RNA structures; we refer to the latter as biologi-
cally motivated structures. Our scaling analysis supports the
hypothesis that the running time of the algorithms is pol-
ynomial in the size of the input structure. In addition, we
identify structures that cannot be designed by the RNA-
SSD algorithm, and in some cases show that these struc-
tures are provably undesignable, in the sense that there
exist no RNA sequences with these MFE structures under
the thermodynamic model by Turner et al.
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Secondly, we introduce and analyse a version of RNA-SSD
that additionally allows the specification of primary struc-
ture constraints. Such constraints are important, for exam-
ple, when designing RNAs such as ribozymes or tRNAs,
where certain base positions must be fixed in order to per-
mit interaction with other molecules. We show that
depending on their number and location, such con-
straints can have a significant impact (positive or nega-
tive) on the running time of the design algorithm. Our
results indicate that when the primary structure con-
straints are restricted to stems, our new version of RNA-
SSD is faster than when the constraints are distributed
randomly, and in both cases the algorithm's median
expected running time scales polynomially with the size
of the structure to be designed.

1.2 The RNA-SSD algorithm
The RNA secondary structure design problem can be for-
malised as a discrete constraint satisfaction problem,
where the constraint variables are the positions in the
desired RNA strand, the values assigned to these variables
correspond to the bases at the respective positions, and
the constraints capture the base-pairings that define the
given secondary structure. For this problem, evaluating
the quality of candidate solutions is computationally
expensive, since it uses an implementation of the algo-
rithm of Zuker and Stiegler [11] for prediction of the MFE
(minimum free energy) secondary structure of a given
RNA sequence. Zuker's algorithm has time complexity
Θ(n3), where n is the length of the given sequence. Unfor-
tunately, a single local reassignment of a base in the
sequence can result in a completely different MFE second-
ary structure. It is not known whether provably efficient
(that is, polynomial-time algorithms) for the RNA sec-
ondary structure design problem exist, and previous work
on solving this problem is based on heuristic approaches.
Because of its relevance for this work, in the following we
give a brief overview of the RNA-SSD algorithm, which is
described in detail by Andronescu et al. [9].

RNA-SSD is a stochastic local search (SLS) algorithm that
iteratively modifies single unpaired bases or base-pairs of
a candidate strand in order to obtain a sequence that is
predicted to have the target MFE structure. The RNAfold
function from Vienna Package is used to evaluate the
quality of candidate solutions, as it is the most efficient
publically available implementation of Zuker's algorithm
of which we are aware. Since evaluating the quality of can-
didate solutions is computationally expensive, RNA-SSD
hierarchically decomposes the input secondary structure
into small substructures. The SLS algorithm is only
applied to the smallest substructures, and the correspond-
ing partial solutions are combined into candidate solu-
tions for larger subproblems guided by a decomposition
tree. Since the smaller subproblems are not independent,

this does not always result in valid designs for the corre-
sponding larger substructure. Consequently, multiple
attempts (involving additional calls to the core SLS proce-
dure) are often required before partial solutions can be
combined successfully. There are other components in the
algorithm that are also important for its performance. For
instance, a biased probabilistic method is used for gener-
ating a good initial design for the RNA strand that
increases the chances of correct folding. This initialisation
assigns bases probabilistically to the strand, using differ-
ent probabilistic models for base positions that are paired
and unpaired in the target structure. The algorithm also
ensures that complementary stretches of bases are avoided
across the design, except where desired along two sides of
a stem.

2 Results
The main contributions of our work fall into four catego-
ries: Improvements to the RNA-SSD algorithm, including
support for primary structure constraints; results on the
scaling of run time for our new RNA-SSD algorithm and
RNAinverse on design problems without primary structure
constraints; results regarding the undesignability of cer-
tain structures; and results on the impact of primary struc-
ture constraints on the relative difficulty and scaling of
run time for our new RNA-SSD algorithm. In the follow-
ing, we describe each of these results in detail.

2.1 Improvement of the RNA-SSD algorithm
In preliminary experiments, we found that some struc-
tures are very difficult to design by using the hierarchical
decomposition of Andronescu et al. [9]. This is the case,
for example, for structures that have two loops separated
by a very short stem (see Figure 1a). Recall that after split-
ting a structure (which is always done at a multiloop [9]),
it is necessary to connect the two free ends created by the
split such that both resulting substructures have exactly
two free ends. To create structural boundary conditions at
the split points that are similar to those of the original
structure, this connection is achieved by merging the free
ends of one fragment with those of a static cap structure,
which is a small hairpin loop of size four (consisting of
four unpaired bases and five paired bases, see Figure 1b);
furthermore, two unpaired bases are added to the free
ends of the other fragment if it contains a bulge directly
after the first base pair. (Note that the example structure in
Figure 1a does not contain bulges; therefore, no unpaired
bases are added after splitting, resulting in the fragment
shown in Figure 1c).

This mechanism can be improved by introducing a
dynamic cap structure and dynamic dangling ends in
order to create structural boundary conditions that are
exactly identical to the original structure in terms of the
number of paired and unpaired bases adjacent to the split
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point. In our new mechanism, the number of paired bases
in the cap structure added to one fragment depends on the
number of paired bases at the beginning of the other sub-
structure (Figure 1d). Furthermore, we add one unpaired
base to the 5' (3') end of a substructure if, and only if, its
adjacent base in the original structure is a free base (Figure
1e). It is sufficient to add one unpaired base to the end of
the structure since dangling ends of more than one base
do not contribute to the free energy of the structure [4].
The use of dynamic instead of static cap structures and free
ends often results in improved performance for structures
that are hard to design. For instance, the expected time to
design the structure Rand-75-n62 from Figure 1a is
reduced from 88446.79 CPU seconds to 26.99 CPU sec-
onds when using the new dynamic mechanism. (All run
times were measured on a reference machine using an
Intel Xeon 2.4 GHz CPU, which is specified in more detail

in Section 5.) More extensive testing on sets of random
(RND-75), biologically motivated (BIOM-200) and bio-
logical structures (see Section 5) have shown that the aver-
age run time of the new version of RNA-SSD is very close
to that of the old version on our set of biological struc-
tures, but about 5 times lower for the random structures
and 16 times lower for the biologically motivated struc-
tures. More detailed analysis shows that the use of the new
dynamic mechanism leads to run time reductions of up to
four orders of magnitude on about half of the structures.
However, in many other cases run time is somewhat
increased, and sometimes, more severe performance deg-
radation is observed.

We also extended RNA-SSD to support primary structure
constraints, that is, constraints on the bases that occur in
certain sequence positions. The additional sequence con-
straints limit certain sequence positions to specific bases
or sets of bases. For this purpose, the standard IUPAC
symbols [12] listed in Table 1 are supported. Primary
structure constraints facilitate the design of more realistic
structures. For instance, when a ribozyme is re-engineered
to make it more stable, certain bases of the molecule can
be modified while others are constrained because they
define the cleavage site [13]. Sequence constraints are also
needed in the design of nanostructure components with
"sticky ends" [14,15].

Our extended version of RNA-SSD supports primary struc-
ture constraints as follows. Given a sequence specification
using the IUPAC symbols listed in Table 1, first, all pairs
of constrained bases are checked for feasibility, that is, for
whether there are Watson-Crick-complementary bases or
wobble pairs that satisfy the given primary structure con-
straints. Then, base constraints are propagated across all
paired positions, that is, the set of allowed bases for each
paired sequence position is adjusted to take into account

Table 1: IUPAC nomenclature for nucleic acids.

Symbol Meaning Origin of designation

G G Guanine
A A Adenine
T T Thymine
C C Cytosine
R G or A puRine
Y T or C pYrimidine
M A or C aMino
K G or T Ketone
S G or C Strong interaction (3 H bonds)

W A or T Weak interaction (2 H bonds)
H A or C or T not-G, H follows G in the alphabet
B G or T or C not- A, B follows A
V G or C or A not-T (not-U), V follows U
D G or A or T not-C, D follows C
N G or A or T or C aNy

(a) Randomly generated structure of length 75 (RND-75-n62) with loops separated by short stemsFigure 1
(a) Randomly generated structure of length 75 (RND-75-
n62) with loops separated by short stems. The line repre-
sents the location where the structure is split into two sub-
structures. Parts (b) and (c) show the corresponding 
substructures with a static cap structure and dangling ends, 
respectively. Parts (d) and (e) show the same substructures 
with a dynamic cap structure and dynamic dangling ends, 
respectively.
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constraints on the other base involved in the pairing. This
improves the efficiency of the subsequent search process
by restricting the number of bases that have to be poten-
tially considered for the respective sequence positions.
When initialising the search process, we ensure that all
bases are consistent with the given primary structure con-
straints (after propagation). Furthermore, whenever we
modify a base assigned to a sequence position during the
search, we ensure that the respective primary structure
constraints (if any) remain satisfied; in other words, we
ensure that at all times during the search process, all pri-
mary structure constraints are satisfied.

2.2 Analysis of RNA-SSD and RNAinverse on secondary 
structures without constraints
We now report results from our analysis of the empirical
complexity of solving RNA secondary structure design
problems with the improved version of RNA-SSD and
with the RNAinverse algorithm. We performed experi-
ments on random and biologically motivated structures
of different lengths. (Details of our experimental protocol
are given in the Section 5.)

We study the behaviour of the algorithm on biological
structures since it will have an impact in biological appli-
cations such as ribozyme design. Because of the limited
availability of true biological structures, we generated
structures with biological characteristics based on the set
of real structures listed in Table 2. The statistics reported
in Table 3 summarise salient structural properties of these
naturally occurring RNAs. We used a probabilistic model
based on this data to generate new sets of RNA structures
with similar properties. This allows us to evaluate RNA-
SSD (and RNAinverse) on a large number of structures
and helps us to reduce the chance of drawing erroneous
conclusions from a small set of atypical results. Using this
approach, we can also control salient properties of the
generated structures, such as the size of a given structure,
the relative prevalence of bulges or the average branching

of multiloops, and study their impact on the performance
of RNA design algorithms.

Figure 2a shows the median expected run time for differ-
ent structure lengths (where the median is over the struc-
tures in a set and the expectation is over multiple runs of
the algorithm on a given structure), as well as the expected
run time for the structure at the 10% and the 90% quan-
tile for the biologically motivated structures. We also
show the expected run times for the set of real biological
structures summarised in Table 2. Notice that the empiri-
cal complexity for designing these real structures fits well
within the range of complexity observed for our biologi-
cally motivated sets of structures, which provides some
evidence that the probabilistic model underlying these
sets is reasonably plausible for the purposes of this study.
Furthermore, the data in Figure 2a indicate that the
expected run time of RNA-SSD scales polynomially with
structure size for median difficulty as well as for the 10%
and 90% quantiles of these structure distributions, where
the degree of the polynomial is higher for higher quan-
tiles.

As can be seen from Figure 2b, we obtained similar results
for random structures as well as when using RNAinverse.
Notice that overall, RNA-SSD performs substantially bet-
ter than RNAinverse, and that random structures tend to
be somewhat more difficult to design than biologically
motivated structures. Distributions of expected run time
for RNA-SSD over our sets of random and biologically
motivated structures of various sizes are shown in Figures
3 and 4. Note that there is a large variation in difficulty
between structures from the same set. Also, there are some
structures that RNA-SSD is unable to design (the same
holds for RNAinverse, as will be explained later).

The random structures are designable by construction
since they were obtained by folding a set of random
sequences with the RNAfold function from the Vienna

Table 2: Biological RNA structures.

No. Description Size (bases)

1 Minimal catalytic domains of the hairpin ribozyme satellite RNA of the Tobacco ringspot virus 65
2 U3 snoRNA 5' domain from Chlamydomonas reinhardtii, in vivo probing 79
3 H. marismortui 5 S rRNA 122
4 VS ribozyme from Neurospora mitochondria 167
5 R180 ribozyme 178
6* XS1 ribozyme, Bacillus subtilus P RNA based ribozyme 314
7* Homo Sapiens RiboNuclease P RNA 342
8 S20 mRNA from E. coli 372
9 Halobacterium cutirubrum RNAse P RNA 375
10 Group II intron ribozyme D135 from Saccharomyces cerevisiae mitochondria 583

Biological structures obtained from the literature and used by Andronescu et al. [9]. The structures marked with an asterisk (*) were obtained from 
original, pseudoknotted structures by eliminating 8 base pairs in each case to remove the pseudoknot.
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package (see Section 5). RNA-SSD was able to design all of
these structures except one of length 450 (Figure 3a). This
structure has several short stems separated by loops (Fig-
ure 5a). In particular, it has two internal loops next to each
other; one of these is slightly asymmetric with seven
unpaired bases, while the other is symmetric with four
unpaired bases. Although allowed by the thermodynamic
model, this motif is hard to design. (This will be discussed
in more detail in the later section on undesignable struc-
tures.) RNAinverse failed to design 1.16% (i.e., 28/2400)
of the random structures of length 200 or less and was not
evaluated on larger structures because of excessive run
time requirements.

As can be seen from Figure 3b, there are biologically moti-
vated structures of every length that RNA-SSD was unable
to design; none of these structures could be designed by
RNAinverse, which also did not succeed to design a
number of other structures. Overall, 6.83% and 2.21%
(i.e., 164/2400 and 53/2400) of the biologically moti-
vated structures could not be designed by RNAinverse and
RNA-SSD, respectively; this indicates that biologically
motivated structures are more difficult to design with
these algorithms than randomly generated structures.

To further explore RNA-SSD's ability to design larger
structures, we evaluated its performance on two addi-

Scaling analysis of RNA-SSD and RNAinverseFigure 2
Scaling analysis of RNA-SSD and RNAinverse. Scaling analysis of the expected run time (y-axis) of structures of lengths 
50, 75, 100, 125, 150, 200 and 450 (x-axis). A logarithmic scale is used on both axes. The lines correspond to best fits of the 
data, for structures with lengths 50 to 150, using a polynomial that is specified in each case. The expected run time for struc-
tures longer than 150 appear close to the corresponding fit line. (a) Expected run time of RNA-SSD to design biological struc-
tures and median (Q50), 0.1-quantile (Q10) and 0.9-quantile (Q90) of expected run time for RNA-SSD applied to biologically 
motivated structures. (b) Median of expected run time of random and biologically motivated structures using RNA-SSD and 
RNAinverse. The structures of length 200 are the largest structures from the respective data sets that we designed with 
RNAinverse.
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Table 3: Statistics of biological structures from Table 2.

Hairpins Stems 2-Branch loops Multiloops Bulges

Size [4,8] [3,12] [4, 11] [6,17] [1,3]
Number - - [1,8] [0,5] [0,0.17]*
Branches - - - [3,4] -

Properties of the structures from Table 2; the intervals specify the minimal and maximal values observed for the respective features. These 
parameters were used to generate structures with biological properties. * This value denotes the ratio of bulges to base pairs in the stems.
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Search cost distribution of RNAinverseFigure 4
Search cost distribution of RNAinverse. Distribution of expected run time of RNAinverse on (a) random structures and 
(b) biologically motivated structures. We report the expected run time for structures that RNAinverse is unable to design as 
106 CPU seconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01  0.1  1  10  100  1000  10000

fr
ac

tio
n 

of
 s

tr
uc

tu
re

s

RNAinverse expected run-time [CPU sec]

RND-50
RND-100
RND-200

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-04  0.001  0.01  0.1  1  10  100  1000  10000

fr
ac

tio
n 

of
 s

tr
uc

tu
re

s

RNAinverse expected run-time [CPU sec]

BIOM-50
BIOM-100
BIOM-200

(b)

Search cost distribution of RNA-SSDFigure 3
Search cost distribution of RNA-SSD. Distribution of expected run time of RNA-SSD on (a) random structures and (b) 
biologically motivated structures. For each point, the x-value indicates an expected run time and the y-value corresponds to 
the fraction of structures whose run time is at most the x-value. We arbitrarily (but unambiguously) report the expected run 
time for structures that RNA-SSD is unable to design as 106 CPU seconds.
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tional sets, containing random structures of length 450
and biologically motivated structures of length 500,
respectively. In these experiments, we found that RNA-
SSD designed 99.78% of the randomly generated struc-
tures and 94.4% of the biologically motivated ones within
a cutoff time of 30 CPU minutes.

2.3 Undesignable structures
When examining the structures that appeared to be undes-
ignable by the RNA-SSD algorithm, we found that they
typically have short stems separated by loops, as shown in
Figure 5. Further analysis revealed two kinds of motifs that
are impossible to design for any algorithm based on the
current thermodynamic model. One of these consists of
two bulges next to each other, separated only by one base
pair (see Figure 6a); the other one is formed by two inter-
nal loops, separated also by a single base pair (Figure 6b).
For internal loops of size bigger than four and for asym-
metric internal loops of size four, these motifs are pre-
dicted to be unstable by the current thermodynamic
model, and are hence undesignable (a formal proof is
given in the appendix). However, it is possible to design
two internal loops separated by one base pair if at least
one of them is symmetric and has four unpaired bases.

Unstable motifs were found in several biologically moti-
vated structures, and they also seem to appear in nature.
For example, according to the Comparative RNA Web
(CRW) Site, which provides RNA secondary structures
based on comparative sequence analysis [16,17], the

small subunit ribosomal RNA of Acanthamoeba castellanii
[16,17] has three adjacent bulges of size two, one and
three, respectively (these bulges are located in positions
1578–1583 and 1841–1848). Similarly, the CRW struc-
ture for the small subunit ribosomal RNA of Escherichia
coli [16-18] has two adjacent internal loops of size seven
and nine, respectively (this motif is found in positions
1963–1972 and 1994–2005).

2.4 Analysis of RNA-SSD on secondary structures with 
constraints
From the previous experiments we learned that the empir-
ical time-complexity of the RNA design problem is poly-
nomial for random and biologically motivated structures.
Next, we will investigate the hardness of the problem
when primary structure constraints are imposed on the
design of the biologically motivated structures that we
used for the unconstrained case.

The hardness of an instance of this constrained secondary
structure design problem not only depends on the given
secondary structure, but also on the set of primary struc-
ture constraints. To capture the impact of the primary
structure constraints on the performance of RNA-SSD, we
used every secondary structure with a number of different
sets of primary structure constraints; furthermore, because
of the stochastic nature of RNA-SSD, we performed multi-
ple runs of our algorithm for each such problem instance.
The expected CPU time required to design a structure with
a given set of primary structure constraints was estimated
from these runs. Most of our analysis is based on the
median expected run time of RNA-SSD over all sets of
constraints for a given structure. Because of the computa-
tional burden incurred by the large number of runs per

Undesignable motifsFigure 6
Undesignable motifs. Two structure motifs of our data 
set that are not compatible with the thermodynamic model. 
Bold lines represent base pairs. (a) Motif B: bulges separated 
by one base pair. (b) Motif 2I: internal loops separated by one 
base pair.
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Examples of structures not designed by RNA-SSDFigure 5
Examples of structures not designed by RNA-SSD. 
Structures not designed by RNA-SSD have short stems sepa-
rated by loops, indicated by arrows in the Figure. (a) Random 
structure of length 450 (RND-450-n84). This is the only ran-
dom structure in our data set that RNA-SSD did not design. 
Note that it has two internal loops separated only by one 
base pair. (b) Biologically motivated structure of length 74 
(BIOM-50-n262).

(a) (b)
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secondary structure required by this protocol, we per-
formed these experiments on smaller sets of biologically
motivated structures; these sets were obtained by uniform
random sampling (without replacement) from the respec-
tive sets used for our empirical analysis of the uncon-
strained case. Two different methods were used to create
sets of primary structure constraints. One of these essen-
tially selects the base positions to be fixed within the given
structure at random, while the other fixes the base assign-
ments of entire stems. In both cases, the bases in the
selected positions are fixed according to a sequence that
folds stably into the given structure. (Details are described
in Section 5.)

As can be seen in Figure 7, the hardness of a constrained
design problem varies significantly depending on the
given set of constrained bases. In particular, constraining
entire stems rather than randomly selected bases tends to
result in slightly easier problems.

Figure 8 illustrates the scaling of search cost for solving
our sets of biologically motivated RNA secondary struc-
ture design problems with different types of primary struc-
ture constraints compared to the unconstrained case. Our
empirical results indicate that the median expected run

time scales polynomially with the size of the structures for
the unconstrained case and for constraints located in ran-
dom positions or in stems; in all three cases the median
run time is approximated by a polynomial of degree close
to three. There is some indication that in the case of con-
strained stems (which play a major role in stabilising RNA
secondary structure) better scaling behaviour is observed
than for base constraints in randomly chosen positions or
no base constraints at all.

2.5 Performance of RNA-SSD with different number and 
locations of primary base constraints
In a second series of experiments, we studied the correla-
tion between the number of bases constrained and the
performance of the RNA-SSD algorithm. The experiments
were conducted using some biological structures from
Table 2 as well as biologically motivated structures. Table
4 shows some features of these structures. The two biolog-
ical structures chosen for this experiment are the VS
ribozyme from Neurospora mitochondria and the group II
intron ribozyme D135 from Saccharomyces mitochondria. The
biologically motivated structures were chosen according
to various criteria. Bio-150-nl4 has the same size and
number of multiloops as the VS ribozyme; for Bio-150-
n38, the run time required by RNA-SSD (without primary
structure constraints) to design the structure is very similar

Scaling analysis on biologically motivated structures with dif-ferent primary structure constraints using RNA-SSDFigure 8
Scaling analysis on biologically motivated structures 
with different primary structure constraints using 
RNA-SSD. Scaling analysis for the median expected run 
time of biologically motivated structures with no primary 
base constraints and with bases constrained in fifty percent 
of random positions and fifty percent of stems. The lines rep-
resent the polynomial that best fits the data for structures 
with lengths 50, 75 and 100. The experiment with primary 
structure constraints is computationally expensive, and for 
this reason, fewer structures of each length were used. Note 
that the run times for constrained structures longer than 100 
appear below the corresponding fit line.
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Search cost distribution for the design of structures with pri-mary structure constraints using RNA-SSDFigure 7
Search cost distribution for the design of structures 
with primary structure constraints using RNA-SSD. 
Distribution of expected run time of RNA-SSD on three 
structures of approximately 150 bases: RND-150-n85, 
BIOM-150-n89 and VS ribozyme from Neurospora mito-
chondria. The structures were designed with two sets of pri-
mary base constraints: one where the bases are fixed at 
random positions and another where the bases are fixed on 
stems for each structure. Both sets have the same range [a, 
b] of constrained bases after propagation, where a and b are 
smallest and largest number of bases constrained if 50% of 
stems are fixed in a given structure. We fixed 50% plus one 
stem when a structure had an odd number of stems.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  10  100  1000

fra
ct

io
n 

of
 s

tru
ct

ur
es

expected run-time [CPU sec]

VS Ribozyme, stems
VS Ribozyme, random positions

RND-150-n85, stems
RND-150-n85, random positions

BIOM-150-n89, stems
BIOM-150-n89, random positions
Page 9 of 16
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:34 http://www.biomedcentral.com/1471-2105/8/34
to that required by VS ribozyme; Bio-200-nl9 is a longer
structure that has several multiloops, like the group II
intron ribozyme; and Bio-150-nl2 is particularly easy to
design. In every case, the primary structure constraints are
based on sequences that are computationally predicted to
fold into the target structure (see Section 5 for more
details); therefore, the respective design problems are
solvable by construction.

Figure 9 shows how the hardness of the design problem
depends on the fraction of constrained bases for ran-
domly located base constraints and for constrained stems.
As can be seen from these results, there are some cases in
which base constraints of either type render a secondary
design problem easier, while in other cases, we observe a
substantial increase in hardness as a critical number of
bases is constrained.

3 Discussion
In earlier work by Andronescu et al. [9], no clear correla-
tion has been detected between the size of a given RNA
structure and the performance of RNA secondary structure
design algorithms such as RNA-SSD. Here, we used a big-
ger set of structures to investigate the empirical complexity
of RNA design and found a clear correlation between the
size of the structure and the performance of the two algo-
rithms we studied, RNA-SSD and RNAinverse. In particu-
lar, the results of our empirical scaling analysis for the
unconstrained RNA secondary structure design problem
indicates that the expected run time of RNA-SSD and
RNAinverse increases polynomially with the size of the
structure to be designed. However, RNA-SSD shows sub-
stantially better scaling behaviour than RNAinverse, as
indicated by a significant difference in the degree of the
polynomial obtained when approximating the scaling
with expected run time with structure size (in bases).

Both, RNAinverse and RNA-SSD, failed to design some
structures, but there was no case in which RNA-SSD was
unable to design a structure solved by RNAinverse. Some
of the structures that could not be designed by RNA-SSD

contain motifs that are provably not allowed by the ther-
modynamic model of RNA secondary structure and are
hence inherently undesignable using that model. Such
motifs contain short stems that are not stable enough to
compensate for the penalty associated with the adjacent
loops; we have observed similar motifs in all structures
that RNA-SSD failed to design, and suspect that most (if
not all) of these structures may be inherently undesigna-
ble. On the other hand, we also found inherently undes-
ignable structural motifs in trusted structures of biological
RNAs. This could be due to inaccuracies of the thermody-
namic model commonly used for RNA secondary struc-
ture, tertiary structure effects or interaction of the RNA
with other molecules, which prevent it from folding into
its "true" MFE conformation.

We also found that artificially generated structures with
statistical features derived from trusted biological struc-
tures (here called "biologically motivated structures") are
easier to design than structures of random sequences,
probably because they contain more structural motifs that
are easy to design. Also, for the undesigned trusted biolog-
ical structures, it is not clear a priori whether they can be
designed using the standard thermodynamic model. The
fact that the empirical hardness of designing trusted bio-
logical structures is very similar to that of designing our
biologically motivated structures provides evidence that
the latter capture important structural features of real
RNAs and thus provide a good test-bed for studying RNA
secondary structure design.

One of the improvements over the first version of our
RNA-SSD algorithm (as described by Andronescu et al.
[9]) introduced in this work is our use of dynamic cap
structures and dangling ends to better approximate the
boundary conditions encountered at the split points used
during hierarchical decomposition of a given RNA sec-
ondary structure into substructures. This modification can
lead to a significantly increased chance to obtain a
sequence that folds into the desired structure when merg-
ing the subsequences designed for the respective substruc-

Table 4: Structures for the study of the performance of RNA-SSD as a function of primary structure constraints.

No. Description (source) Size (bases) expected run time [CPU sec] number of multiloops number of of stems

1 VS ribozyme from Neurospora mitochondria 167 0.64 2 11
2 Bio-150-n38 172 0.53 1 9
3 Bio-150-nl4 167 12.94 2 10
4 Group II intron ribozyme D135 from 

Saccharomyces cerevisiae mitochondria
584 11.54 5 32

5 Bio-200-nl9 208 7.62 3 12
6 Bio-150-nl2 150 0.16 6

Set of structures used to study the correlation between the primary structure constraints and the performance of RNA-SSD. Structures with 
similar characteristics (such as size, number of multiloops, etc.) appear in the same group. The structure Bio-150-nl2 was included in this set 
because it is relatively easy to design.
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tures; this is particularly advantageous in the design of
difficult structures like the one in Figure 1a. We did not
find evidence that this new version of RNA-SSD can
design structures that the previous version cannot handle,
given sufficiently long running times.

However, we observed marked improvements in the run-
ning time and success rates in many cases. For example,
Andronescu et al. [9] found a particular ribosomal RNA
structure obtained from the Ribosomal Database Project,
Leptospira interrogans strain 94–7997013 to be particularly
hard to design even though it has only 289 bases. This
RNA contains a structural motif consisting of two internal
loops separated by one base pair, similar (but not identi-
cal) to the undesignable motif shown in Figure 6b. They
reported an expected run time of 2517.57 CPU seconds to
design this structure with a success rate of six in fifty runs
when using a cutoff time of 3600 CPU seconds. Using our
improved version of RNA-SSD, the expected time to solve
this structure is 1170.23 CPU seconds with a success rate
of forty four in fifty runs using the same machine and cut-
off time. This structure is hard to design because it con-
tains two internal loops separated by a single base pair
only; one of these is a symmetric internal loop of size four
and the other is slightly asymmetrical with size five. By
introducing an additional base pair between these inter-
nal loops, the structure becomes much easier to design,
requiring of our new version of RNA-SSD only an

expected run time of 415.89 CPU seconds with a success
rate of forty nine in fifty runs.

Our study also sheds light on the hardness of designing
structures with primary structure constraints. In particu-
lar, our detailed analysis of primary structure (that is, base
sequence) constraints on the performance of RNA-SSD
suggests that it is generally easier to design a structure
when the stems are constrained. This is intuitively plausi-
ble, given that generally, stems represent the most stable
parts of RNA secondary structures. However, there are
exceptions: structure Bio-150-nl4 (shown in Figure 10)
was found to be difficult when more than seven stems of
its ten stems were constrained. When we further analyzed
the correlation between the constrained stems and the
expected run time required for designing this structure, we
found that constraining two particular stems, labelled 7
and 8 in Figure 10, made the design problem significantly
more difficult. These short stems are separated by a bulge
of size one, and they are not stable enough to compensate
for the penalty incurred by the bulge. Figure 10 shows a
difficult problem instance where these two stems are con-
strained. The structure is easy to design if the base pairs
A•U in stems 7 and 8 are replaced by C•G, which is a
more stable interaction.

We also observed that for structures with similar charac-
teristics (same number of bases, multiloops or stems, or

Impact of constrained bases on the difficulty of secondary structure design using RNA-SSDFigure 9
Impact of constrained bases on the difficulty of secondary structure design using RNA-SSD. Correlation between 
the fraction of bases constrained in a particular structure (x-axis) and the median expected run time for designing the structure 
with RNA-SSD (y-axis). We report the fraction of constrained bases after propagation for constraints on randomly chosen 
base positions. This fraction, for both randomly chosen bases and stems, corresponds to the median fraction of bases con-
strained in a set of 50 constraints that were generated by fixing a given percentage of bases or stems. There are two curves in 
each graph, one for designing structures with base constraints located in random positions and the other for constraints 
located in stems. (a) VS ribozyme from Neurospora mitochondria; (b) Group II intron ribozyme D135 from Saccharomyces.
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same difficulty to design without constraints), the behav-
iour of RNA-SSD algorithm shows significant qualitative
variation. Structures such as that of the VS ribozyme from
Neurospora mitochondria (Figure 9a) and Bio-200-nl9 are
easier to design when the number of constrained bases
increases; the same holds for structure Bio-150-n38 when
the constrained bases are located within stems. In these
cases, the base constraints reduce the size of the search
space and additionally may help to steer the search proc-
ess towards solution sequences.

However, the problem can also get harder as the number
of constrained bases increases and then becomes easier
again, as approximately 80% or more of the bases are con-
strained or when all the stems are constrained. This is
observed for structures Bio-150-n38, Bio-nl50-nl4 and Bio-
150-nl2 when using random base constraints, as well as
for Bio-150-nl4 and the group II intron ribozyme D135 from
Saccharomyces mitochondria when the stems are con-
strained (Figure 9b). In these cases, the reduction in the
size of the search space caused by the base constraints is
counteracted up to a point by factors that make finding
solutions within these smaller spaces harder. One such
factor is solution density, which can be substantially
reduced by adding base constraints. Beyond a certain
number of primary structure constraints, the advantages
from reduction in search space size outweigh these fac-
tors, such that the problem becomes easier again. This is
not surprising, since the design problem becomes trivial
in the extreme case in which all base positions are con-
strained.

Somewhat surprisingly, as can be observed for structure
Bio-150-nl2, there are cases where constraining all stems,
leaving only unpaired base positions to be assigned by the

algorithm, renders the design problem harder than con-
straining a smaller number of stems (data not shown).
Another extreme example is the structure of the group II
intron ribozyme D135 from Saccharomyces mitochondria,
where the run time of RNA-SSD increases well beyond the
point where 80% of the base positions are constrained
(see Figure 9b). More detailed analysis indicates that this
behaviour is caused by substructures obtained in RND-
SSD's decomposition process that consist entirely of con-
strained bases, with the exception of the cap structure that
is added to ensure appropriate boundary conditions. In
some cases, these substructures are hard to design, since
the correct structure is only obtained for a particular base
assignment to the cap structure, which may differ from the
assignment of the corresponding bases on the other side
of the split point, leading to a large number of failed
attempts of preserving the designed substructures when
merging the subsequences. One obvious solution to this
problem is to prevent structural splits that give rise to fully
constrained substructures.

It should be noted that our empirical complexity results
do not rule out the possibility that the RNA secondary
structure design problem (with or without primary struc-
ture constraints) could be NP-hard, but suggest that such
worst-case asymptotic scaling is not reflected in the typical
behaviour of existing algorithms applied to distributions
of random and biologically plausible structures studied
here. However, careful examination of our scaling data
indicates that the degree of the polynomial characterising
the scaling of run time with structure size is considerably
higher for the hardest structures in our test-sets than it is
for typical or easy structures, which could be seen as an
indication of possible exponential scaling of the run time
of RNAinverse and RNA-SSD in the worst case.

4 Conclusion
We have introduced an empirical analysis for the design of
RNA secondary structures with the RNAinverse algorithm
from the Vienna RNA Package and with an improved ver-
sion of RNA-SSD that supports primary structure con-
straints. Our analysis helps us to better understand the
strengths and limitations of both algorithms. For this
study we used a big set of structures (5000 in total) of dif-
ferent lengths generated randomly and also generated
with structural and statistical properties (such as loop size,
number of multiloops, etc.) based on different classes of
biological RNAs. We investigate the hardness of the design
of these structures without primary structure constraints
and with different number and locations of base con-
straints in the structure. In every case the problem scales
polynomially with the size of the structure. Experiments
on biologically motivated structures show that in general
there is an advantage in the design if we impose primary
base constraints in stems. When we tried to determine if

Biologically motivated structure Bio-150-n14Figure 10
Biologically motivated structure Bio-150-n14. Biologi-
cally motivated structure with ten stems. When constraining 
the bases in stems 7 and 8, this structure is hard to design. 
The structure motif formed by these stems, which are short 
and separated by a bulge, is unstable.
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the structure design is easier as we increase the number of
fixed positions, we found that this is not always the case.
The design of some structures gets harder when approxi-
mately 50% of the bases are constrained. This suggests a
reduction in the effective search space size that depends
on the properties of the structure.

RNA-SSD performs substantially better than RNAinverse,
both in terms of speed as well as with respect to the struc-
tures that can be designed within a given amount of time.
We compared both algorithms on random structures
without primary structure constraints and found that the
scaling of the median expected run-time is about O(n3)
for RNA-SSD and about O(n5) for RNAinverse, where n is
the size of the structure. The structures not designed by
RNA-SSD were also not designed by RNAinverse. Further-
more, we believe that most of these structures are undes-
ignable because they contain motifs like the ones shown
in Figure 6. In the appendix we prove that some motifs
with two internal loops or two bulges that are separated
by one base pair are impossible to design using the current
thermodynamic model for RNA secondary structure.

We also identified some structural motifs that make the
RNA design task harder (data not shown). In particular,
short stems separated by loops are difficult to design.
Short stems are not stable enough to compensate for the
penalties associated with adjacent loops, and therefore,
energetically more favourable motifs are preferred. Some
of these motifs are not allowed by the thermodynamic
model [4], yet they are found in biological structures. For
other motifs, which have short stems separated by loops
that are allowed by the thermodynamic model, it was pos-
sible to improve the performance of RNA-SSD by modify-
ing the structural decomposition approach in such a way
that at the split points, the boundary conditions from the
original structure are replicated. Intuitively, this leads to
an increased probability that when merging the respective
subsequences, the correct secondary structure is obtained.

The results of this study suggest further improvements to
the RNA-SSD algorithm. For example, it is possible that
structural splitting leads to substructures that, apart from
the cap structure, are completely determined by primary
base constraints. Such substructures can cause artificial
challenges to our search algorithm and should be treated
differently. Alternatively, the structural decomposition
approach could be modified in such a way that the frac-
tion of constrained bases in each substructure is balanced.
Another improvement which has already been proposed
by Andronescu et al. [9] is to consider split points at
motifs other than multiloops; it may be noted that such a
modification could easily be extended with primary base
constraints.

Interactions between RNA molecules are of substantial
biological interest, and we are therefore planning to
extend RNA-SSD to the design of duplexes of interacting
RNAs. With this extension of the algorithm, it will be pos-
sible to design pairs of strands in biomolecular nanostruc-
tures [6] as well as ribozymes that interact with an RNA
target [13]. In order to design for interaction, it is impor-
tant to have a method to predict the secondary structure
of two interacting RNA strands. When only pseudoknot-
free duplex structures are considered, we can use the Pair-
Fold software of Andronescu et al. [19]. Pseudoknot-free
interacting structures arise, for example, in the interaction
of a ribozyme with its target [20]. For more complicated,
pseudoknotted structures, the methods of Dirks et al. [21]
or Alkan et al. [22] could be used. Another important fac-
tor in designing RNA molecules is the stability of the
desired respective structure. Typically, there are many
RNA sequences that can fold into a given structure, but in
many cases, we are interested in finding a sequence with
the most thermodynamically stable MFE target structure.
Currently, RNA-SSD does not explicitly evaluate or opti-
mise the thermodynamic stability of the desired second-
ary structure that is achieved by the designed sequence. In
future work, we will extend RNA-SSD to support the
design of stable structures based on some of the positive
and negative design criteria defined by Dirks et al. [7].

Very recently, Busch and Backofen [23] have introduced a
new SLS algorithm for the RNA secondary structure design
problem, dubbed INFO-RNA (INnverse FOlding of RNA).
Different from RNA-SSD, INFO-RNA uses dynamic pro-
gramming to determine an initial sequence that adopts
the given target structure T with the lowest possible
energy. Then, it uses an improved SLS procedure that per-
forms search steps based on a look-ahead mechanism for
determining energetically favorable sequences in combi-
nation with the structural decomposition approach of
RNAinverse in order to find a sequence with MFE struc-
ture T. In most cases, INFO-RNA performs better than the
improved version of RNA-SSD described in this paper,
and we therefore expect that its empirical median
expected run time also shows polynomial scaling with
input size (possibly with better constants than RNA-SSD).

However, compared to RNAinverse and RNA-SSD, RNA-
INFO is more biased towards sequences that form low-
energy structures and can hence be expected to find more
restricted ensembles of solutions to any given RNA sec-
ondary structure design problem. We conjecture that by
combining features of RNA-SSD and RNA-INFO, in partic-
ular RNA-SSD's less biased initialisation and balanced
hierarchical decomposition approach with RNA-INFO's
more efficient SLS procedure, further performance
improvements could be achieved. Furthermore, RNA-
INFO currently does not support primary structure con-
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straints, and it would be interesting (and not too hard) to
incorporate these into a future version.

5 Methods
To investigate the empirical complexity of designing struc-
tures without constraints we used the following data sets.
We generated random structures by folding, with the
RNAfold function from the Vienna package, a set of ran-
domly generated sequences with a uniform distribution of
nucleotides (see Table 5). Structures with biological char-
acteristics were generated with the help of an RNA struc-
ture generator [9] that allows us to directly control salient
properties of the structures being generated, including the
overall size as well as the number and size of bulge, inter-
nal, and multiloops, and the length of stems. In order to
determine these properties, we selected from the biologi-
cal literature ten structures that are consistent with exper-
imental evidence and empirical data, ranging from 60 to
600 bases in length (see Table 2). Average values of each
of the features captured in the parameters of the RNA
structure generator over our set of structures were used to
roughly summarise the structural properties of naturally
occurring RNAs (see Table 3). Using the RNA structure
generator with these parameter values, several sets of bio-
logically motivated structures were generated (see Table
6).

For the experiment in which RNA-SSD was used to design
structures with primary structure constraints, we utilised
only biologically motivated structures. This experiment
was computationally expensive because it required the
design of a given structure with several constraints. For
this reason, we chose subsets of the previously described
sets of biologically motivated structures by means of ran-
dom sampling (without replacement). These subsets con-
sist of 50 structures of the data sets BIOM-50 and BIOM-
75; 45 structures of the data set BIOM-100; and 10 struc-
tures of the data sets BIOM-125, BIOM-150, BIOM-200
and BIOM-500, respectively.

The primary base constraints were generated in the fol-
lowing way. For each structure, we used RNA-SSD to
obtain 100 sequences that are computationally predicted
to fold into it. Of these, we selected the sequence that gave
the most stable MFE structure and used it for generating
base constraints for certain positions using two different
methods. In one method, we sampled 50% of the
sequence positions uniformly at random (without
replacement). Additionally, when generating a constraint
for a paired base, we also generated a constraint for the
base to which it is paired to be fixed to the correct Watson-
Crick complementary base; consequently, more than 50%
of the bases may be fixed in the resulting design problem.
In the other method, we sampled 50% of the stems in the
given structure uniformly at random (without replace-
ment) and fixed all bases occurring in these stems.

To control for the variation in run time of the design algo-
rithms due to the choice of constrained bases, we gener-
ated all of the possible sets of constraints in cases where
this number was found to be less than 50, and random
samples of size 50 otherwise. Thus, for each structure in a
test set, we considered up to 50 possible sets of constraints
obtained by each of the two generation methods. For
structures of length 500, which are computationally
expensive to design, we used only 10 instead of 50 con-
straint sets (also obtained by random sampling without
replacement).

All computational experiments were carried out on PCs
with dual Intel Xeon 2.40 GHz processors (only one proc-
essor was used in our experiments), 512 KB cache, and 1
GB RAM running Red Hat Linux, kernel version 2.6.5-
1.358smp. Both, RNA-SSD and RNAinverse are highly sto-
chastic algorithms: when applied to the same structure
multiple times, the time for finding a solution may vary
substantially. (Note, however, that by using the same ran-
dom seed, any run of RNA-SSD can be perfectly repro-
duced.) Therefore, it is necessary to perform sufficiently
many runs on each problem instance in order to get rea-
sonably stable statistics on run time. For the uncon-
strained experiment we performed 50 runs on a given

Table 6: Sets of biologically motivated structures.

Set name Size (bases) Number of structures

BIOM-50 [50,75) 1000
BIOM-75 [75,100) 1000
BIOM-100 [100,125) 100
BIOM-125 [125,150) 100
BIOM-150 [150,175) 100
BIOM-200 [200,225) 100
BIOM-500 [500,525) 100

Sets of structures generated with the RNA structure generator, using 
the parameters from Table 3.

Table 5: Sets of randomly generated structures.

Set name Size (bases) Number of structures

RND-50 50 1000
RND-75 75 1000
RND-100 100 100
RND-125 125 100
RND-150 150 100
RND-200 200 100
RND-450 450 100

Sets of structures generated by folding random sequences with the 
RNAfold function from the Vienna RNA package. Nucleotides in the 
sequence are assigned uniformly at random. The sets of structures of 
longer than 75 bases are smaller because of the amount of time 
required for designing these structures.
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structure and estimate the expected time required for find-
ing a solution as

where Es and Eu denote the average time for successful and
unsuccessful runs, respectively, and fs is the fraction of suc-
cessful runs [24]. Unsuccessful runs were terminated after
1800 CPU seconds for structures that are decomposed by
RNA-SSD. For structures not subject to decomposition,
the algorithm terminates in less time, determined by the
maximal number nL of base modifications performed by
the SLS procedure without finding a solution. In our
experiments, we used nL = 1000. For structures with no
successful runs, we arbitrarily reported the expected run
time to be 106 CPU seconds.

For the experiments with primary structure constraints, 50
runs were performed for each structure and set of primary
structure constraints. The expected CPU time required for
designing a structure with a given constraint was esti-
mated from these runs using the same formula as in the
unconstrained case, and the median over the 50 sets of
constraints per structure was used for all analyses.

(The data sets and the algorithm will be made available
on-line at the time of publication.)
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Appendix
Consider the structure motif B from Figure 6a, which is
formed by two bulges of size two and three, respectively,
where si ∈ {A, G, C, U} for all i. We will show that this
structure is impossible to design with the standard ther-
modynamic model, because the internal loop I of size

seven, formed by breaking the base pair si+1·sj-3 (see Figure
11a), is energetically more favourable.

Let S be a set of assignments of bases in which the base
pairs are complementary. Let ∆G(B, s) and ∆G(I, s) be the
energies of motif B and I, respectively, for s ∈ S. We will
show that

∆G(I, s) < ∆G(B, s) ∀s ∈ S

following the notation of Andronescu [25] and using the
thermodynamic parameters of Mathews et al. [4] for com-
puting ∆G(B, s) and ∆G(I, s). Table 7 shows the definition
of parameters and their possible values involved in the
calculation of the free energy of an internal loop.

∆G(I, s) = ∆G-length-I(7) + ∆G-Internal-n(si, sj, si+1, sj-1)

+ ∆ G-Internal-n(si+5, sj-4· si+4, sj-3)

+ ∆ G-Asymmetry(4, 3) ∀s ∈ S

⇒ maxs∈S{∆G(I, s)} = 2.7 + maxs∈S{∆G-Internal-n(si, sj, si+1,
sj-1)

+ ∆ G-Internal-n(si+5, sj-4·si+4, sj-3)}

E
f

Es
s

u+ −








 ( )1

1 1

Table 7: Free energy parameters for internal loops.

Parameter Explanation Values

∆G-length-I(n) Destabilizing energy of internal loop of size n (n = 4, 5, 6,...) 1.7, 1.8, 2.0,...
∆G-length-B(n) Destabilizing energy of bulge of size n (n = 1, 2, 3,...) 3.8, 2.8, 3.2,...
∆G-Internal-n (si, sj, si+1, sj-1) Terminal mismatch free energy of closing base pair (si·sj) and neighbouring free bases si+1 

and sj-1

-1.1, -0.7, -0.4, 0.0 and 0.7

∆G-Asymmetry(l1, l2) Penalty for asymmetric internal loops

min =
⋅ −





3

0 5 1 2. l l

Energetically favourable structuresFigure 11
Energetically favourable structures. (a) Motif I: internal 
loop formed by breaking the base pair si+1·sj-3 from motif B; 
(b) Motif 1I: internal loop formed by breaking the base pair 
si+6·sj-4 from motif 2I.
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= 2.7 + 2·07 = 4.1

On the other hand,

∆G(B, s) = ∆G-length-B(2) + ∆G-length-B(3)

= 2.8 + 3.2 = 6 ∀s ∈ S

Then

maxs∈S{∆G(I, s)} <mins∈S {∆G(B, s)}.

Therefore,

∆G(I, s) < ∆G(B, s) ∀s ∈ S.

Consider the motif 2I in Figure 6b, which is formed by
two internal loops both of size eight. We will show that
this structure motif is impossible to design, because the
internal loop 1I of size eighteen, formed by breaking the
base pair si+6·sj-4 (see Figure 11b), is more favourable. Let

∆G-Internal-n(si, sj, si+1, sj-1) = x1

∆G-Internal-n(sj-10, si+10, sj-9, si+9) = x2

∆G-Internal-n(sj-4, si+6, sj-3, si+5) = y1

∆G-Internal-n(si+6, si-4, si+7, sj-5) = y2

where x1, x2, y1, y2 ∈ {-1.1, -0.7, -0.4, 0, 0.7}. Then

∆G(1I, s) = ∆G-length-I(18) + x1 + x2 ∀s ∈ S

⇒ ∆G(1I, s) = 3.1 + x1 + x2 ∀s ∈ S.

On the other hand,

∆G(2I, s) = [∆G-length-I(8) + x1 + y1 + ∆G-Asymmetry(3, 5)]

+ [∆G-length-I(8) + x2 + y2 + ∆G-Asymmetry(3, 5)] ∀s ∈ S

⇒ ∆G(2I, s) = (2.3 + x1 + y1 + 1) + (2.3 + y2 + x2 + 1) ∀s ∈ S

⇒ ∆G(2I, s) = 6.6 + x1 + y1 + y2 + x2 ∀s ∈ S.

Therefore,

∆G(1I, s) < ∆G(2I, s) ∀s ∈ S.
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