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Abstract
Background: This paper presents a unified framework for finding differentially expressed genes (DEGs) from the
microarray data. The proposed framework has three interrelated modules: (i) gene ranking, ii) significance analysis of
genes and (iii) validation. The first module uses two gene selection algorithms, namely, a) two-way clustering and b)
combined adaptive ranking to rank the genes. The second module converts the gene ranks into p-values using an R-test
and fuses the two sets of p-values using the Fisher's omnibus criterion. The DEGs are selected using the FDR analysis.
The third module performs three fold validations of the obtained DEGs. The robustness of the proposed unified
framework in gene selection is first illustrated using false discovery rate analysis. In addition, the clustering-based
validation of the DEGs is performed by employing an adaptive subspace-based clustering algorithm on the training and
the test datasets. Finally, a projection-based visualization is performed to validate the DEGs obtained using the unified
framework.

Results: The performance of the unified framework is compared with well-known ranking algorithms such as t-statistics,
Significance Analysis of Microarrays (SAM), Adaptive Ranking, Combined Adaptive Ranking and Two-way Clustering. The
performance curves obtained using 50 simulated microarray datasets each following two different distributions indicate
the superiority of the unified framework over the other reported algorithms. Further analyses on 3 real cancer datasets
and 3 Parkinson's datasets show the similar improvement in performance. First, a 3 fold validation process is provided
for the two-sample cancer datasets. In addition, the analysis on 3 sets of Parkinson's data is performed to demonstrate
the scalability of the proposed method to multi-sample microarray datasets.

Conclusion: This paper presents a unified framework for the robust selection of genes from the two-sample as well as
multi-sample microarray experiments. Two different ranking methods used in module 1 bring diversity in the selection
of genes. The conversion of ranks to p-values, the fusion of p-values and FDR analysis aid in the identification of significant
genes which cannot be judged based on gene ranking alone. The 3 fold validation, namely, robustness in selection of genes
using FDR analysis, clustering, and visualization demonstrate the relevance of the DEGs. Empirical analyses on 50 artificial
datasets and 6 real microarray datasets illustrate the efficacy of the proposed approach. The analyses on 3 cancer datasets
demonstrate the utility of the proposed approach on microarray datasets with two classes of samples. The scalability of
the proposed unified approach to multi-sample (more than two sample classes) microarray datasets is addressed using
three sets of Parkinson's Data. Empirical analyses show that the unified framework outperformed other gene selection
methods in selecting differentially expressed genes from microarray data.
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Background
The high throughput experiments such as DNA microar-
rays have become one of the most popular biotechnolo-
gies to monitor the expression levels of thousands of
genes simultaneously. Microarray experiments produce
expression profiles measured under some experimental
conditions and are normally labeled on the basis of exter-
nal information such as, clinical identification of samples
or expression of genes with respect to time [1]. By analyz-
ing microarray expression profiles one can deduce infor-
mation that can provide significant understanding of the
mechanism of the disease under study. Sophisticated sta-
tistical techniques are required to extract relevant genes
given enormous amount of microarray data. The gene
selection can be a challenging issue as the microarray data
is skewed with a large number of genes in one dimension
and a few samples in the other dimension. There is a large
volume of biological and technical noise that must be
normalized to generate a more uniform measure.

The gene selection is performed typically using one of the
following criteria, i) finding differential expression of
genes individually (statistics based gene selection) or ii)
co-expressed genes offering high discrimination between
two classes of samples (clustering based gene selection).
Both of these criteria lead to different computational pro-
cedures in the selection of differentially expressed genes
(DEGs). A plethora of mathematical techniques have
been developed for finding DEGs in microarray data, for
example, [1-4]. The performances of these methods are
hard to quantify and compare as they yield significantly
different results on the same dataset. This problem can be
attributed to the assumptions behind the methods
employed for ranking as well as to the unique characteris-
tics of the microarray data. It is widely acknowledged that
no single method is adequate to produce the desired
result. The fusion of the algorithms that are diverse in
nature may lead to the desired result [5]. This paper pro-
poses a gene selection method which is a blend of cluster-
ing and statistics based ranking. The gene selection is
performed first by employing the two-way clustering and
statistics based ranking. These ranks are converted into p-
values using R-test and fused using the Fisher's omnibus
criterion. The significance of the genes is analyzed next by
performing false discovery rate (FDR) analysis.

The clustering-based ranking is performed using two-way
clustering. The two-way clustering framework involves
clustering the genes into relevant groups and then cluster-
ing the samples using the gene groups. Many different
frameworks have been proposed for two-way clustering of
microarray data. For example, Getz et al. [2] proposed a
procedure called coupled two-way clustering by iteratively
applying one way clustering within the subgroups of gene
and tissue clusters from the previous iteration. Tang et al.

[6] reported an inter-related clustering framework based
on an iterative process that uses heuristics to define the
number of clusters. McLachlan et al. [7] assume a model
of distribution to cluster the genes. Theunique character-
istics of microarray data limit the utility of some of these
methods.

The performance of a two-way clustering framework also
depends on the underlying clustering algorithm. A pleth-
ora of clustering methods have been proposed for mining
microarray data [8-10]. They include but are not limited
to hierarchical methods [8], self organizing maps [9], k-
means clustering [10] and their variations. This paper
employs an adaptive subspace iteration (ASI) based algo-
rithm for clustering microarray data (see methods). This
algorithm is well suited to handle a large number of data
points. The centroids of the clusters are available as one of
the outputs hence new data points may be assigned to rel-
evant clusters with ease (dynamic data clustering). This
faster computational algorithm as the results suggest com-
plements the two-way clustering framework employed in
this paper.

The performance of the statistics based algorithms on the
other hand depends on the number of available samples.
If the samples are less, which is true for microarray data, it
is difficult to assume a distribution for the data. The rank-
ing functions based on mean and sample variance yield
inaccurate results due to the high level of noise. The statis-
tical methods followed for finding DEGs were initially
based on 2 sample t-test [11] obtained by pooling the var-
iances from two cases [12]. The estimates used here are
based on the assumption that there are a large number of
samples for statistical analysis. Tusher et al. [13] pointed
out that small sample variance estimates (not much vari-
ation among the samples) yield false alarms for DEGs.
They introduced an additive constant to the sample vari-
ance to reduce the false detection rate. This parameter esti-
mation was later proposed by Jeffery et al. [14] as the 90th

percentile of the sum of gene specific global standard
errors. Mukherjee et al. [3] proposed the notion of repro-
ducibility to minimize expected loss in determination of
test statistics. The mean often is not a good representative
of all the samples and may be corrupted by the outliers.
Therefore, Shaik et al. incorporate Hausdorff distance into
the combined adaptive ranking function to cope with the
unique characteristics of the data sets and to improve the
robustness of the ranking algorithm [4]. Most of these
methods provide the user with only the ranks for the
genes and the significance of the genes is unknown based
only on the ranks.

The p-values are an indication of significance of the genes
based on differential expression. This is important for fea-
ture selection studies because the p-values indicate the
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probability that a gene is deemed significant not by
chance (FDR – false discovery rate). There are several sig-
nificant studies that focus on this important issue [15-18].
However, most of the gene selection methods provide the
user with only the ranking of the genes [3,7,13,14,19].
The ranks may be used to sort the genes based on differen-
tial expression from highest to lowest. The rankings do
not indicate the significance of the genes. The non-availa-
bility of the p-values therefore poses problems in gene
selection. The availability of p-values enables controlling
the false discovery rate, which is to accept a minimum
number of false positives relative to the number of
rejected hypotheses. An R-test is performed in this paper
to convert ranks to p-values [20].

The validation of DEGs is a challenging research issue.
This paper uses 3 different methods, namely FDR analysis,
clustering and visualization based methods to validate the
DEGs. The ASI-based clustering algorithm [21] is
employed for the clustering based validation. The steps
involved in clustering-based validation can be summa-
rized as follows:

• Find the differentially expressed genes between sample
classes using the training set.

• Apply ASI algorithm to cluster the training samples
using DEGs as features and verify if the clusters are con-
sistent with different classes.

• Apply ASI algorithm to cluster the test samples with
DEGs as features.

• Compare the obtained clusters with the class label infor-
mation of the test classes.

• Repeat the process using all the ranking functions such
as t-statistics [11], SAM, Adaptive [3], combined adaptive
[4], two-way clustering [21] and the proposed unified
ranking.

The application of projection based techniques by Shaik
et al. [22,23] for the visualization of microarray data is
found to be well suited for the multi-class microarray
datasets. In this paper the 3D star coordinate projection
(3DSCP) algorithm originally proposed in [22] is used for
the visual validation of the DEGs. The key idea behind the
application of visualization algorithms for the validation
of DEGs is that if the DEGs are used as features to project
the samples, the samples of different classes should be
projected to distinct locations in the projected space else a
random projection pattern is observed [24]. The 3DSCP
algorithm is provided in additional File 1.

Unified Framework to find DEGs from Microarray DataFigure 1
Unified Framework to find DEGs from Microarray Data.
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Methods
This section discusses the basic formulation of the indi-
vidual modules of unified framework. The overview of the
unified framework is presented first.

Unified framework
The proposed unified framework as shown in Fig. 1 con-
sists of three modules viz. i) Gene ranking, ii) Significance
analysis of ranking and iii)Validation. The genes are first
scored by employing two-way clustering framework and
combined adaptive ranking. The gene with highest score
is given rank 1; gene with next highest score is given rank
2 and so on for both the methods. The ranks are converted
into p-values (P1 and P2) using the R-test which is dis-
cussed later. The p-values P1 and P2 are combined using
Fisher's omnibus procedure to obtain the unified p-value
(U).

Here, 'N' is the number of p-value sets (2 in this case) and
'Pk' is the set of p-values obtained using ranking procedure
'k'. The resultant score 'U' follows χ2 distribution with 2N
degrees of freedom. The scores are hence compared with
χ2 distribution to obtain their significance at appropriate
significance level α. The appropriate significance level α is
decided based on false discovery rate (FDR) analysis such
that there are minimum expected percentage of false pos-
itives. The selected genes are further validated using sev-
eral validation measures.

The proposed framework for selecting and validating
DEGs can be succinctly summarized as follows:

• Rank the genes using the two-way clustering framework.

• Rank the genes using statistics based ranking method.

• Convert the ranks to p-values using R-test [20].

• Combine the p-values of both gene selection methods
using Fisher's omnibus criterion to obtain unified score as
shown in the Eq. 1.

• Select the DEGs based on FDR analysis.

• Validate the selected DEGs.

Module 1: Gene ranking
The marker genes are generally ranked based on two crite-
ria, i) finding differential expression of genes individually
or ii) co-expressed genes offering high discrimination
between two classes of tissues. Both of these criteria lead

to different computational procedures in selecting DEGs
as shown below:

Two-way clustering
This paper employs a progressive framework as shown in
Fig. 2 for clustering the genes. Unlike the traditional two-
way methods which cluster the genes into specified
number of clusters, the progressive framework clusters the
genes into all possible resolutions. A resolution is a meas-
ure of compactness of clusters. The Higher the resolution,
the compact are the clusters and vice versa. If the discrim-
inative ability of clusters is to be studied, it must be per-
formed at various levels of granularities. A progressive
clustering algorithm provides a flexible way to achieve
this goal. For example, as shown in Fig. 2, resolution 2 has
more granularity than resolution 1 and so on. The cluster-
ing of the data progresses into various levels of granularity
ranging from macro to micro clusters. The resolution level
at which the progressive framework terminates is deter-
mined using Davies-Bouldin indices [25]. The two-way
clustering framework employs the gene clusters at each
resolution to cluster the samples as shown in the Fig. 3.

The sample cluster groups are compared with the sample
class label information. The score for each gene cluster
'CSCk' as shown in the Eq. 2 is determined by finding the
number of correctly identified samples.

U Pk
k

N
= −

=
∑2

1

log . (1)

Progressive Clustering Framework to Cluster the GenesFigure 2
Progressive Clustering Framework to Cluster the Genes.
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Here, 'M' is the total number of gene clusters, 'L' is the
number of different labels according to the ground truth,
Ci are the samples that are part of cluster 'i', Gj is the group
of samples having label 'j' according to the ground truth
and (Ci ∩ Gj) is the maximum consistency between any of
the sample clusters Ci and the samples 'G' with labels 'j'
according to the ground truth.

Adaptive subspace iteration algorithm
The adaptive subspace iteration (ASI) is a subspace based
method to cluster the data. It involves an optimization
process that iteratively identifies the subspace structure.
The following notations are used in the algorithm:

• Dnxm is the data matrix that contains the microarray data
with 'n' genes and 'm' samples. Also, assume that each
macro cluster is divided into 'k' number of micro clusters
at each resolution level (cf. Fig. 2).

• The matrix Mnxk is the membership matrix. Each gene
has 'k' memberships corresponding to the 'k' clusters. The
cluster to which the gene belongs has membership of 1
and rest of the memberships are 0. This enables hard clus-
tering of the genes.

• Let Smxk be the subspace structure associated with each
gene cluster. This subspace has adequate information
about the most informative genes in the cluster. The col-
umns of S determine the relevance of each sample in the
formation of a cluster. Hence, (DS)nxk represents the pro-
jection of the data onto the subspaces.

• Let 'C' be the projection of centroid of each gene cluster
onto the subspaces given by Smxk. This enables calculating
the distances between the genes in the subspace and to
each of the centroids in the subspace to determine the rel-
evance of each gene with each of the clusters. The relation-
ship between the 'C', 'S' and 'M' is given by,

C = (MT M)-1 MT DS. (3)

Here, (MT M) provides the size of the clusters (number of
genes in a cluster). The diagonal elements provide the size
of each cluster and off diagonal elements are zero. Hence
'C' matrix calculates the mean of each gene cluster to esti-
mate the centroids. These centroids are projected to sub-
space as shown in Eq. 3.

The objective function 'O' is given by,

Here, ||.||F is called the Frobenius norm defined as ||A||F =
tr(AAT) where, 'tr' is the trace of a matrix. The objective
function optimizes by rendering the distance between the
gene cluster centroid and each of the genes in that cluster
as small as possible thereby making the clusters compact.
Therefore,

= tr(DSST DT) - tr(DT ST MC) (7)
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Two-Way Clustering Framework to Find DEGs from Micro-array DataFigure 3
Two-Way Clustering Framework to Find DEGs from Micro-
array Data.
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Here, the first component (DSST DT) = (DS)(DS)T gives
the total deviance of the data in the subspace. The second
component (DT ST MC) = (((DT ST)M)C) first projects the
data onto the subspace as given by (DT ST). Further, the
sum of distance between the centroids is estimated using
(((DT ST)M)C). The objective function shown in Eq. 7 is
minimized by maximizing distances between the centro-
ids of individual clusters.

The objective function in (7) is minimized by considering
first 'k' Eigen vectors of (DT(M(MT M)-1 MT - I)D)1:k [26].
Therefore, 'S 'is updated using Eq. 8

S = (DT(M(MT M)-1 MT - I)D)k. (8)

Please note that this feature provides dimensionality
reduction and further computations are all performed in
the reduced sub space. The output of the algorithm is 'M'
and 'S'. Here, 'M' offers the cluster memberships and
'S'offers the weights of the samples forming the clusters
defined by the matrix 'M'. Based on the membership, the
relevance of the gene with a cluster may be estimated. If
the membership is 0, there is no relevance and member-
ship 1 indicates the gene belongs to that cluster.

ASI algorithm
Begin clustering

Step 1: Begin Initialization

Initialize 'M' with zeros and randomly place 1 in each row.

Initialize 'S' with Random values such that each column adds
up to 1;

End Initialization

Step 2: Project the centroids of each cluster onto the sub-
spaces using Eq. (3);

Step 3: Compute the initial optimization value 'O0' using
the objective function of Eq. (7);

Step 4: Perform optimization by iteratively updating D, F,
S;

Begin Optimization

While (O1 <O0) //Continue as long as the cluster com-
pactness increases

Step 4-1: Update 'M' given by the formula in equation (5)

Begin Loop //Iterate over all the features

//update the memberships by finding the relevance of a
gene with each of the updated cluster centroids as shown
in Eq. 9

M(i, j) = ((DS)i,j - C:,j); j = 1...k

Min(M(i, j)) = 1; j = 1...k (9)

End loop

Step 4-3: Update 'S 'given by the formula in equation (8);

Step 4-4: Compute Step 2;

Step 4-5: Compute 'O1' using equation (7);

Step 4-6: If (O1 <O0); //Check for the terminating condi-
tion//.

O0 = O1;

End optimization

End Clustering

Davies-Bouldin index
Davies-Bouldin index is a measure of cluster validation
metric[25]. It measures the homogeneity of the clusters by
finding the ratio of the sum of intra-cluster scatter to inter-
cluster scatter. The intra cluster scatter is a measure of
spread of a cluster. The inter cluster scatter on the other
hand is a measure of distinctiveness of the clusters. There-
fore, lower the ratio of intra cluster scatter to inter cluster
scatter, the better.

The intra-cluster scatter is given by

and the inter-cluster scatter is given by,

Where, vi is the centroid of ith cluster, q,t ≥ 1, q,t can be
selected independently of each other. For example, when
t = 2, dij,t is the Euclidean distance between 'vsi' and 'vsj'.
The |Ai| is the number of elements in the cluster Aj and 'x's
are the elements of cluster Aj.
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Here, 'R' is a measure of compactness and distinctiveness
of the clusters formulated as the ratio of intra cluster scat-
ter and inter cluster scatter.

Here, 'c' is the number of clusters and 'DB' is the measure
of homogeneity of the clusters. Lower the 'DB', more
homogenous are the clusters.

Combined adaptive ranking
The adaptive ranking based method adopts a modifica-
tion of the classical t-statistic based ranking function [24].
Let 'Dn,(m+k)' be the data matrix with 'n' genes and 'm' sam-
ples under one condition (say tumor class) and 'k' sam-
ples under the other condition (say non-tumor class). The
bootstrapping procedure is employed on the original
dataset Dn,(m+k) and j <min(m,k) samples are randomly
selected from both cases and pooled to form the data
'D1n,2j' ('j' samples from each condition). The process is
repeated to construct another dataset 'D2n,2j'. The readers
are encouraged to read [24] for further information on
bootstrapping procedure. The ranking function of the Eq.
14 is applied independently on these two datasets to
obtain the scores of the marker genes describing their dif-
ferential expression. These scores are ranked and sorted
from highest to lowest resulting in R1 and R2 in the Eq. 15.
Since these two datasets are the subset of the original data-
set 'Dn,(m+k)', they must produce similar ranking. The opti-
mized set of parameters θs which provide high
consistency (Eq. 16) between the rankings are obtained
using Monte Carlo simulation [24]. Since it is adequate to
test the consistency using a few high ranked genes 'h', h =
100 is employed in this paper. The first 'h' high ranked
genes are obtained from these two rankings resulting in
two sets given by Eq. 15,

Here,'d' is the difference of means for 'mean method' and
Hausdorff distance between different samples for the

'Hausdorff distance method'. The  is the square root of
the sample variance.

S1 = R1(1: h) and S2 = R2(1: h). (15)

A consistency measure is obtained by comparing these
two sets

Co = S1 ∩ S2. (16)

The ranking 'R' which produces highest consistency 'Co' is
considered as the best ranking. The distance measure in
this ranking function was initially based on absolute dif-
ference of means [3]. Mean is not a good representative of
the sample expressions and may be driven by outliers. A
robust distance measure called Kth Hausdorff distance is
supplemented with the mean method by Shaik et al. [4].
The rankings RM and RH are obtained for mean method
and Hausdorff distance method respectively using Eq. 14
and combined to develop a fused ranking method [4] as
shown in Eq. 17,

Here, W1 and W2 represent the confidence in the rankings
RM and RH obtained using the consistency 'Co' obtained
from the Eq. 16.

Module 2: Significance analysis of ranking
The ranking algorithms of the module 1 provide the user
with only the relative ranks. These ranks do not indicate
the significance of the rankings. Therefore, these ranks
must be converted to p-values to find the significance.

Convert the scores to p-values
The R-test followed in [20] is followed in this paper to
convert scores to p-values. This is formulated as a hypoth-
esis testing problem. Let 'I' be the informative genes and
'UI' be the non-informative genes. The null hypothesis is
that the gene is not informative and the alternate hypoth-
esis is that the gene is informative. The distribution of sta-
tistics under null hypothesis is obtained as follows (Please
see [20] for more details):

• Obtain the ranks of the genes using the scores for 'I' iter-
ations using bootstrapping. The value I = 25 is often ade-
quate as indicated in [20].

• Construct the distribution of statistics under null
hypothesis from consistently high ranked (insignificant)
genes.

• The median rank (r) of each gene is obtained (in [20]
mean rank was computed).

• The p-value of each gene is obtained by finding p(ri/g ∈
UI) i.e. the probability of the ranking of gene 'ri' given the
gene belongs to null-hypothesis. The null hypothesis is

Define R
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that gene is uninformative therefore lower the probability
under null hypothesis, more significant is the gene.

False discovery rate (FDR) analysis
The FDR analysis is the process of selecting the DEGs such
that there are minimum possible expected false positives.
Let 'Sg' be the number of selected DEGs at significance
level α and let V be the number of false positives among
the selected DEGs. The FDR as proposed by Storey and
Tibshirani [17] is given by,

The FDR provides the expected proportion of false posi-
tives among the selected DEGs where the number of
selected genes is greater than 0. In this paper α is selected
such that FDR is minimized. If the ground truth informa-
tion about the DEGs is available, the performance of rank-
ing algorithms may be compared using the performance
analysis curves.

Performance analysis curves
The performance analysis curves are employed to study
the performance of different ranking algorithms. The
problem at hand is a binary classifier where the gene is
either differentially expressed or not differentially
expressed. There are four possible alternatives that may be
obtained from the classifier viz. true positives (TPs), false
positives (FPs), true negatives (TNs) and false negatives
(FNs). The TPs are the number of true DEGs among the
selected DEGs Sg. The FPs are the number of true non-
DEGs among Sg. Alternatively, TNs are the total number of
true non-DEGs among the genes deemed insignificant by
the algorithm where as the FNs are the total number of
true DEGs among the genes deemed insignificant. If the
labels for the genes (differentially expressed/ non-differ-
entially expressed) are available, which is true for artificial
microarray datasets employed in this study, it is possible
to accurately find TPs, FPs, TNs and FNs. The plot of TPF
vs FPF hence, enables the comparison of performance of
various classifiers employed in the study. Each of the 50
artificial datasets employed in this paper is used as an
instance for building the performance curves. The TP, FP,

TN and FN are added at each instance for 50 artificial data-
sets. The true positive fraction (TPF) is obtained by using
the formula TPF = TP/(TP+FN) and false positive fraction
(FPF) by using the formula FPF = FP/(FP+TN). These TPFs
and FPFs are plotted to build the performance analysis
curves.

Artificial microarray datasets
Two different models are employed to generate artificial
microarray datasets viz. i) Lognormal model [27] and ii)
Asymmetric Laplace distribution [28]. Each artificial data-
set is created to have 2050 genes with 10 samples under
each of the two conditions. The first 50 genes are rendered
differentially expressed and the rest 2000 are rendered
non-DEGs. This process enables class labels for genes
(DEGs or non-DEGs) for each generated artificially gener-
ated microarray dataset which can be used as ground truth
to quantitatively assess the performance of different algo-
rithms used in this study.

Lognormal model
A lognormal distribution-based model is used to generate
artificial microarray datasets as proposed in [27]. The arti-
ficial microarray datasets are generated based on a multi-
variate lognormal model. The means under both
conditions for the DEGs, are set to a fixed value and for
the non-DEGs, means under one condition are set to zero
and for other condition are drawn from N (3, 1). Unequal
variances following a Gamma distribution are used for
DEGs as reported in the literature [3,27]. The parameters
used for generating the artificial microarray datasets are
shown in table 1.

Asymmetric laplace distribution model
The artificial microarray datasets are created using the
same procedure employed for lognormal distribution but
by using an Asymmetric Laplace distribution as reported
in [28]. The mean and variance of the DEGs and Non-
DEGs are approximated using the parameters in table 1.
The sample size was set to 12.

Results
The performance of the proposed unified framework for
finding DEGs from microarray datasets is evaluated using
two models of simulated microarray datasets (50 artifi-
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Table 1: Parameters for Generating Artificial Microarray Datasets

Tissue Type Normal tissues (condition1) Abnormal tissues (condition 2)

Non- DEGs mean 0 0
variance Gamma distribution with mean 2, variance 2

DEGs mean 0 Normal distribution mean 3, variance 1
variance Gamma distribution with mean 3, variance 2 Gamma distribution with mean 2, variance 2

DEGs, Differentially Expressed Genes; Non-DEGs, Non-Differentially Expressed Genes.
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cially generated microarray datasets each [3,4,27]) as well
as six real cancer and Parkinson's microarray datasets [29-
31]. Artificial datasets with ground truth information are
used for the comparison of performance of unified frame-
work with other gene selection methods. The performance
of various gene selection algorithms [3,11,13] is further
compared with the proposed method using real microar-
ray datasets in the selection of DEGs.

Artificial microarray datasets
A lognormal distribution and asymmetric Laplace distri-
bution model are used to generate artificial microarray
datasets as proposed in [27,28]. The steps involved in the
analysis of artificial microarray datasets can be succinctly
summarized as follows:

1. Generate artificial microarray dataset such that the first
50 genes are rendered differentially expressed and next
2000 are non-differentially expressed (see methods).

2. Find the ranks using module 1 of the unified framework
and convert them to p-values using the R-test.

3. Merge the p-values and obtain the unified p-value using
Fisher's omnibus criteria.

4. Perform FDR Analysis.

5. Compare the DEGs with the ground truth to obtain TPF
and FPF (see methods).

6. Repeat the steps 1–5 for all 50 artificial microarray data-
sets to obtain performance curves as shown in Fig. 4.

The unified framework, its individual modules and other
well known techniques such as the t-statistics [24,32], sig-
nificance analysis of microarrays [13], adaptive ranking
[3], combined Adaptive ranking [4] and two-way cluster-
ing using ASI [21] are employed to find DEGs of 50 artifi-
cially generated microarray datasets. The R-test [20] is
employed to convert ranks to p-values for the gene selec-
tion methods that do not offer p-values. The Fig. 4 shows
the performance curves (see methods) of various well
known methods and the proposed unified approach
using lognormal model and asymmetric Laplace model.
Analyzing the values in the performance plots, it can be
inferred that the proposed unified approach outperforms
the other gene selection methods in finding the DEGs
from the artificial microarray data.

Leukemia microarray dataset
Gene expressions of approximately 6817 genes are used to
classify two types of acute Leukemia viz. Acute Lymphoid
Leukemia (ALL) and Acute Myeloid Leukemia (AML). The
data consists of 47 (38 B-cell and 9 T-cell) cases of ALL

and 25 cases of AML samples. The data is divided into a
training class containing 38 samples (27 ALL and 11
AML) and a test class containing 34 samples of tissues (20
ALL and 14 AML). The class labels for the training and test
samples are available from Golub et al. [30]. The pre-
processing steps proposed by Golub et al. resulted in 3571
genes, the rest of the genes are considered noise and there-
fore eliminated.

Gene selection and statistical validation
The various well known gene selection methods are
applied on the training set and the p-values of the genes
are obtained. For the gene selection methods which offer
only ranking, the R-test is employed to obtain the p-val-
ues. The Table 2 shows the FDR analysis for the leukemia
training dataset. As shown in Table 2, the unified frame-
work recorded less percentage of false positives at various
levels of α (6.8%–16.92%). This indicates the improved
performance of the unified framework over other gene
selection methods. The top 300 low ranked genes
obtained using the unified framework is provided as a
supplementary document (See additional file 2). The first
52 genes are selected at significance level 0.001 as shown
in the Table 2 because it offered minimum expected per-
centage of false positives (6.8%).

Comparison of the obtained DEGs with DEGs obtained by Golub et 
al. [30]
The 52 significantly expressed genes obtained using the
unified framework are compared to the DEGs obtained by
Golub et al. [30] (see additional file 3). There are 24 genes
common to the genes found by Golub et al. This shows
that the genes obtained by the unified framework are not
significantly different from those obtained by Golub et al.
It also shows that there are many genes selected by the
unified framework that were not considered significant by
Golub et al. It has already been statistically validated that
unified framework offered less percentage of expected
false positives and hence the genes selected using unified
framework are considered to be relevant.

Clustering-based validation
The ASI-based clustering algorithm [21] and the steps out-
lined in the background section are employed for valida-
tion using clustering. The training samples are clustered
using the DEGs obtained for individual methods. The
obtained sample clusters are compared with the class
labels of the samples. The Table 3, row 2 shows the
number of correctly identified samples. As shown in the
Table 3, the DEGs obtained by the unified framework
offered 100% accuracy in the identification of training
sample classes. The two-way framework also offered
100% accuracy in identification of the labels of training
samples. Additional validations are performed to assess
the performance of the individual methods.
Page 9 of 21
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The Performance curves for various Gene Selection Methods using Artificial Microarray DatasetsFigure 4
The Performance curves for various Gene Selection Methods using Artificial Microarray Datasets.

Table 2: FDR Analysis of Leukemia Dataset

AlphaValue t-statistics SAM Adaptive Combined Adaptive Two-Way Unified

GS %FP GS %FP GS %FP GS %FP GS %FP GS %FP

0.01 154 23.19 171 20.88 183 19.51 189 18.89 191 18.7 211 16.92
0.005 94 18.99 103 17.33 119 15 121 14.76 117 15.26 147 12.15
0.001 29 12.31 34 10.5 41 8.71 41 8.71 43 8.3 52 6.8

GS, Genes Selected; FP, Percentage of False Positives.
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The ASI algorithm is further applied to cluster the test
samples using the DEGs obtained through respective
methods. It is evident from the row 3 of Table 3 that the
DEGs obtained using the unified framework classified the
AML and ALL samples better (97.06%) than the DEGs
obtained using the other methods. This also shows the
improved performance of unified framework over the
other methods as shown in Table 3.

Visualization-based validation
The idea behind visualization-based cross validation is
that if the genes obtained using a gene selection method
are differentially expressed, they should separate the sam-
ple cases of different classes in the projected space [24].
The Fig. 5 shows the visualization of samples using DEGs
as features using a 3D star coordinate projection algo-
rithm (3DSCP). Comparing the Figs. 5(a) to 5(f) it may be
seen that the unified framework offered clear differentia-
tion between different sample cases. Although the two-
way clustering and unified approach identified all the
samples correctly as shown in the Table 3 for training
samples, comparing the Figs. 5(e) and 5(f), it may be seen
that the unified framework offered much clear separation
between the samples of different cases. This evidence sug-
gests that better gene selection is achieved using the uni-
fied framework.

Gastric cancer microarray dataset
The objective of this study is to identify genes distinguish-
ing primary gastric cancers and metastatic gastric cancers
from neoplastic gastric cancers which are otherwise mor-
phologically indistinguishable. Approximately 30300
genes are used to study expression patterns of 90 primary
gastric cancers and 22 neoplastic gastric cancers. The pre-
processing steps indicated by Chen et al. [29] are
employed resulting in 5200 genes for further study.

The two bootstrapped datasets are created from the origi-
nal dataset, one for training and one for testing. The train-
ing data has randomly selected 60 primary samples and
12 neoplastic samples where as the test data has randomly
selected 30 primary samples and 10 neoplastic samples.
The experimental design used for the Leukemia dataset is
followed for the analysis of the Gastric cancer dataset.

Gene selection and statistical validation
The gene selection is performed such that there is mini-
mum percentage of expected false positives. As shown in
the Table 4, the unified framework recorded less percent-
age of false positives (2.48%-11.98%) than the other gene
selection methods at various levels of α. The full list of
better ranked genes can be accessed from additional file 4.

Comparison of the DEGs to the significant genes obtained by Chen 
et al. [29]
The DEGs found using the unified framework are com-
pared against the DEGs found by Chen et al. [29]. The 204
genes out of 210 genes found by unified algorithm are
common to the DEGs found by Chen et al. [29]. The list
of common genes may be accessed through additional file
5. It may be seen that most of the genes found using the
unified framework were present in the list of 3000 genes
found significant by Chen et al. The improved perform-
ance of the unified framework may be attributed to the
rejection of most of the genes deemed significant by Chen
et al. This is one of the advantages of FDR analysis which
focuses not only on the selection of DEGs but also on the
rejection of the insignificant genes.

Clustering-based validation
The method similar to clustering based validation for
leukemia dataset is followed for gastric cancer dataset. As
shown in Table 5, row 2, the DEGs obtained by the uni-
fied framework offered 100% accuracy in the identifica-
tion of the training samples which was not achieved by
DEGs obtained by other methods. It may also be seen
from the row 3 of the Table 5, that DEGs obtained using
the unified framework identified the primary and neo-
plastic samples from the test set better than the DEGs
obtained using the other gene selection methods (97.5%).

Visualization-based validation
The training samples from the Gastric cancer dataset are
projected using DEGs as features for visual validation of
the DEGs. The Fig. 6 shows that the unified framework
offered much clear separation between the samples of dif-
ferent cases with no overlap between the elements of two
classes. This evidence suggests the better gene selection
obtained using the unified framework.

Table 3: ASI Classification of Leukemia Samples using the DEGs

Gene Selection 
Method

Samples t-statistics SAM Adaptive 
Ranking

Combined 
Adaptive 
Ranking

Two-way 
Clustering

Unified Ranking

Training 38 33 35 36 36 38 38
Testing 34 25 28 29 30 30 33

Samples, The total number of samples for training and testing; Other Columns, Number of samples classified correctly by individual methods; 
Example, number of training samples classified correctly by using t-statistics is 33 out of 38; The same procedure is followed for other columns of 
table 3 and for the tables 5, 7, 9 and 11.
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The 3DSCP Projection of ALL and AML Samples using DEGs as Features using Various Gene Selection Methods for Leukemia DatasetFigure 5
The 3DSCP Projection of ALL and AML Samples using DEGs as Features using Various Gene Selection Meth-
ods for Leukemia Dataset. a) t-statistics, b) SAM, c) Adaptive Ranking, d) Combined Adaptive Ranking, e) Two-Way Clus-
tering and f) Unified Framework



BMC Bioinformatics 2007, 8:347 http://www.biomedcentral.com/1471-2105/8/347
Colon cancer microarray dataset
The Affymetrix oligonucleotide array complementary to
more than 6500 human genes are used in this study. The
gene expression is studied using 40 tumor samples and 22
normal samples. The preprocessing of this dataset resulted
in 2000 interesting genes which have been used as input
to the gene selection algorithms.

The analysis is performed by first dividing the data into
training and test sets. The training data has 25 tumor sam-
ples and 12 normal samples selected randomly where as
the test data has 15 tumor samples and 10 normal sam-
ples selected randomly. The steps similar to experimental
design followed for Leukemia dataset is used for the anal-
ysis of this dataset.

Gene selection and statistical validation
The Table 6 shows the percentage of expected false posi-
tives for various gene selection methods for different val-
ues of α. The unified framework as shown in the Table 6
offered improved performance in the selection of DEGs.
The full list of better ranked genes can be accessed from
additional file 6. These genes are obtained for α = 0.001
which offered minimum expected percentage of false pos-
itives (3.03%).

Comparison of the DEGs with earlier works
A list of significantly differentially expressed genes is not
available from Alon et. al for comparison. However, the
comprehensive analysis on this dataset is performed by Su
et al. [33]. The procedure involves ranking the genes using
8 different measures viz. t-test, information gain, sum of
variances, twoing rule, gini index, sum minority, max
minority and ID SVM. The rankings are then fused to
obtain a list of 100 better ranked genes [33]. This list of
100 ranked genes is compared with the list of 66 genes

obtained using the unified framework. The 51 genes out
of 66 genes were among the top 100 genes obtained using
the 'rankgene' method. The rank gene method did not
employ any FDR analysis for gene selection, it merely lists
the top 100 genes.

Clustering-based validation
The Table 7, row 2 shows the number of samples identi-
fied correctly by the gene selection methods. As shown in
the Table 7, the unified framework performed relatively
better in the identification of training samples. The per-
formance of the gene selection methods is also compared
by using the test set. The Table 7, row 3 shows that DEGs
obtained using the Unified framework performed better
than DEGs obtained using other gene selection methods.

Visualization-based validation
The training samples from the colon cancer dataset are
projected using DEGs as features for visual validation of
the DEGs. The Fig. 7 shows that the unified framework
performed better in the separation of colon cancer sam-
ples using the DEGs as features. The validation using
3DSCP shows the better performance of unified frame-
work in the robust selection of DEGs.

Parkinson's dataset
The Parkinson's dataset is employed to extend the appli-
cation of two sample gene selection methods to multi-
sample experiments. Three sets of microarray data are
available for this model from Miller et al. [31]. The first
dataset is obtained using Codelink Mouse uniSet I bioar-
rays. The other two are obtained using Affymetrix array
data analyzed using Affymetrix Microarray Suite soft-
ware(MAS 5) and Model Based Expression Index (MBEI)
using dChip software. The data consists of three treatment
groups MC (saline treated mouse control), MME (mouse

Table 5: ASI Classification of Gastric Cancer Samples using the DEGs

Gene Selection 
Method

Samples t-statistics SAM Adaptive 
Ranking

Combined Adaptive 
Ranking

Two-way 
Clustering

Unified Ranking

Training 72 64 67 67 69 69 72
Testing 40 28 34 33 35 33 39

Table 4: FDR Analysis of Gastric Cancer Dataset

AlphaValue t-statistics SAM Adaptive Combined Adaptive Two-Way Unified

GS %FP GS %FP GS %FP GS %FP GS %FP GS %FP

0.01 417 12.47 398 13.07 397 13.10 406 12.81 414 12.56 434 11.98
0.005 299 8.70 283 9.19 279 9.32 288 9.03 294 8.84 325 8
0.001 173 3.01 189 2.75 166 3.13 175 2.97 187 2.78 210 2.48

GS, Genes Selected; FP, Percentage of False Positives.
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MPTP early) and MML (mouse MPTP late). Each group
has four set of samples obtained at different times after
MPTP administration using 12588 genes. The perform-
ance of different gene selection methods is evaluated for
the comparison of MC and MME, MC and MML groups

for all the three datasets. This pattern of comparison pro-
vides DEGs at different times. This also provides informa-
tion about the DEGs at the early stage that stayed
differentially expressed at late stage.

The 3DSCP Projection of Primary and Neoplastic Samples using DEGs as Features using Unified FrameworkFigure 6
The 3DSCP Projection of Primary and Neoplastic Samples using DEGs as Features using Unified Framework.

Table 6: FDR Analysis of Colon Cancer Dataset

AlphaValue t-statistics SAM Adaptive Combined Adaptive Two-Way Unified

GS %FP GS %FP GS %FP GS %FP GS %FP GS %FP

0.01 211 9.48 233 8.58 221 9.05 218 9.17 211 9.48 236 8.47
0.005 121 8.2 119 8.4 113 8.85 117 8.55 124 8.06 134 7.46
0.001 48 4.17 54 3.7 38 5.26 42 4.76 57 3.51 66 3.03

GS, Genes Selected; FP, Percentage of False Positives.
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Codelink mouse uniSet I bioarrays
Experimental design
• Find the p-values for the genes based on differential
expression between the MC and MME groups and MC and
MML groups.

• Merge the two sets of p-values using Fisher's Omnibus
criterion [34].

• Perform FDR analysis and select the genes with signifi-
cant differential expression such that there is minimum
percentage of expected false positives.

• Apply the ASI algorithm to cross validate the DEGs.

• Repeat the process for each gene selection method.

Gene selection and statistical validation
The thresholding process by Golub et al. [30] on the code-
link mouse uniset1 bioarrays resulted in 2347 genes for
further analysis. The gene selection methods are
employed for finding the p-values for the genes based on
differential expression between MC and MME groups and
MC and MML groups. The FDR analysis is performed on
the merged p-values. The Table 8 shows the FDR analysis

The 3DSCP Projection of Normal and Tumor Samples using DEGs as Features using Unified FrameworkFigure 7
The 3DSCP Projection of Normal and Tumor Samples using DEGs as Features using Unified Framework.

Table 7: ASI Classification of Colon Cancer Samples using the DEGs

Gene Selection 
Method

Samples t-statistics SAM Adaptive 
Ranking

Combined 
Adaptive 
Ranking

Two-way 
Clustering

Unified Ranking

Training 37 31 33 31 33 32 35
Testing 25 19 22 22 21 21 24
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of different gene selection methods. Table 8 reveals that
the unified framework shows improved performance in
selecting the DEGs from the Parkinson's Dataset (13.8%
false positives). The DEGs obtained using the unified
framework at α = 0.001 are provided in the additional file
7.

Clustering-based validation of codelink data
The Table 9, row 2 shows the number of samples identi-
fied correctly by the gene selection methods. As shown in
the Table 9, the unified framework identified all the sam-
ples correctly.

Visualization-based validation
The DEGs obtained using the various gene selection meth-
ods are projected by employing the 3DSCP algorithm. The
Fig. 8 shows the projection of MC, MME and MML sam-
ples using the DEGs obtained by using different gene
selection methods as features. As shown in the Fig. 8, the
DEGs obtained from unified framework yield clear sepa-
ration between different sample cases showing the valid-
ity of the selected genes.

Affymetrix using MAS 05
Gene selection and statistical validation
The irrelevant genes are first filtered out by employing the
filtering process by Golub et al. [30] resulting in 2433
genes for further analysis. The experimental design used
for the codelink data is followed for the MAS 05 data. The
FDR analysis of different gene selection methods as
shown in the Table 10 shows improved performance in
selection of DEGs from the Parkinson's MAS 5 Dataset
(16.71% false positives). The DEGs obtained using the
unified framework at α = 0.001 are provided in the addi-
tional file 8.

Clustering-based validation of MAS 05 data
The Table 9 shows the number of samples identified cor-
rectly by the gene selection methods. As shown in the
Table 9, row 3, the unified framework performed rela-
tively better in the validation of the samples (100% accu-
racy).

Visualization-based validation
The Fig. 9 shows the projection of MC, MME and MML
samples using the DEGs obtained by using different gene
selection methods as features for the MAS05 data. The
unified framework offered clear separation between the
data points in the projected space as shown in Fig. 9 show-
ing the validity of the proposed approach.

Affymetrix using dchip
Gene selection and statistical validation
The DChip data is first filtered to remove irrelevant genes
using the method by Golub et al. [30] resulting in 2179
genes for further analysis. The experimental design
employed for codelink data is followed for the dChip
data. The Table 11 as shown in Table 11 offered improved
performance in selection of DEGs than most of the gene
selection methods (12.8% false positives). The DEGs
obtained using the unified framework at α = 0.001 are
provided in additional file 9.

Clustering-based validation of dchip data
The samples are clustered by employing the DEGs
obtained using various gene selection methods (for α =
0.001). The obtained sample clusters are compared with
the class labels of the samples (MC, MME and MML). The
Table 9 shows that all samples (100%) are correctly iden-
tified using the proposed unified framework.

Table 9: Cross Validation of Parkinson's Datasets using Training Samples

Gene Selection 
Method

Samples t-statistics SAM Adaptive 
Ranking

Combined Adaptive 
Ranking

Two-way 
Clustering

Unified Ranking

Codelink 12 10 10 9 11 10 12
MAS05 12 10 10 10 10 11 12
Dchip 12 9 9 9 10 11 12

Table 8: FDR Analysis of Parkinson's Dataset using CodeLink BioArrays

AlphaValue t-statistics SAM Adaptive Combined Adaptive Two-Way Unified

GS %FP GS %FP GS %FP GS %FP GS %FP GS %FP

0.01 51 46.07 52 45.13 57 41.18 57 41.18 51 46.07 56 41.91
0.005 25 46.9 29 40.4 28 41.8 28 41.8 29 40.4 31 37.8
0.001 14 16.76 15 15.65 14 16.76 16 14.67 15 15.65 17 13.81

GS, Genes Selected; FP, Percentage of False Positives.
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Table 10: FDR Analysis of Parkinson's Dataset using Affymetrix MAS05

AlphaValue t-statistics SAM Adaptive Combined Adaptive Two-Way Unified

GS %FP GS %FP GS %FP GS %FP GS %FP GS %FP

0.01 46 50.87 46 50.87 48 48.75 48 48.75 49 47.76 51 45.88
0.005 25 46.8 27 43.34 25 46.8 28 41.8 28 41.8 31 37.75
0.001 12 19.5 13 18 11 21.27 12 19.5 14 16.71 14 16.71

GS, Genes Selected; FP, Percentage of False Positives.

The 3DSCP Projection of MC, MME and MML Samples using DEGs as Features using Unified Framework for CodeLink Parkin-son's DatasetFigure 8
The 3DSCP Projection of MC, MME and MML Samples using DEGs as Features using Unified Framework for CodeLink Parkin-
son's Dataset.

Table 11: FDR Analysis of Parkinson's Dataset using Affymetrix dChip

AlphaValue t-statistics SAM Adaptive Combined Adaptive Two-Way Unified

GS %FP GS %FP GS %FP GS %FP GS %FP GS %FP

0.01 49 44.47 50 43.58 52 41.9 52 41.9 49 44.47 54 40.35
0.005 33 33 35 31.1 35 31.1 35 31.1 33 33 37 29.43
0.001 15 14.53 15 14.53 15 14.53 16 13.62 14 15.56 15 13.22

GS, Genes Selected; FP, Percentage of False Positives.



BMC Bioinformatics 2007, 8:347 http://www.biomedcentral.com/1471-2105/8/347

Page 18 of 21
(page number not for citation purposes)

The 3DSCP Projection of MC, MME and MML Samples using DEGs as Features using Unified Framework for MAS 05 Parkin-son's DatasetFigure 9
The 3DSCP Projection of MC, MME and MML Samples using DEGs as Features using Unified Framework for MAS 05 Parkin-
son's Dataset.

The 3DSCP Projection of MC, MME and MML Samples using DEGs as Features using Unified Framework for dChip Parkinson's DatasetFigure 10
The 3DSCP Projection of MC, MME and MML Samples using DEGs as Features using Unified Framework for dChip Parkinson's 
Dataset.
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Visualization-based validation
The Fig. 10 shows the projection of MC, MME and MML
samples using the DEGs at α = 0.001. The Analysis reveals
that the DEGs obtained using the unified framework
yielded good separation between the samples of various
classes as shown in the Fig. 10. This evidence suggests bet-
ter gene selection using the proposed method.

Discussion
This paper presents a unified framework of gene selection
and their validation. The fusion of two different gene
selection algorithms viz. two-way clustering and com-
bined adaptive ranking is performed to rank the genes.
The two-way framework finds the differential expression
of the co-expressed genes. The progressive framework
using ASI algorithm is employed to cluster the gene
dimension. This presents the gene clusters at different res-
olutions which may be analyzed for differential expres-
sion. The clusters at different resolutions may be tested for
differential expression. The number of resolutions for pro-
gressive framework is determined using the Davies-Boul-
din Index.

Most of the ranking functions employed in this study for
gene selection provide the user with only the relative rank-
ing of the genes. These ranks enable sorting the genes
based on differential expression but they do not indicate
the significance of genes. The R-test presents a means of
converting ranks into a measure of significance (p-values).
The gene rankings using module1 are converted into p-
values using R-test and fused using Fisher's omnibus crite-
rion. The FDR analysis is further applied on the fused p-
values. The FDR analysis enables judicious selection of
DEGs by providing a balance between the genes selected
and expected percentage of false positives. For example, at
α = 0.001 the percentage of false positives for gastric can-
cer dataset using the unified framework is 2.48%. This
indicates that out of 210 genes there is a possibility of only
5 genes (210*2.4% = 5) to have occurred by chance.

The real datasets are divided into two categories i) Two
sample experiments with a large number of samples and
ii) Multi sample experiments with small number of sam-
ples. For the first category, emphasis is made on the vali-
dation techniques. The data is divided into training and
testing sets. The DEGs are obtained by employing the
training set and three fold validations are performed. The
improvement in statistical power for the selection of
DEGs is first shown with the aid of FDR analysis. The clus-
tering based cross validation of the DEGs is performed
next by clustering the training and test samples and eval-
uating the performance. Finally, a visualization based
cross validation is performed to show the separability of
samples in the projected space. The aim of the second cat-
egory of the real datasets is to show the extensibility of the

proposed approach to multi-sample experiments. Due to
the non-availability of large number of samples, the vali-
dation is performed on only the training set by employing
the clustering and visualization based algorithms. The
clustering-based validation approaches clearly showed the
better performance of unified framework over the other
algorithms. Further, the visualization based validation
demonstrated that the DEGs obtained using the unified
framework offered much clear separation between the
samples of the different classes than the DEGs obtained
using the other methods.

Conclusion
A unified framework for finding DEGs from microarray
data is developed and empirically evaluated. The judi-
cious combination of the three different modules is used
to build the unified framework. The performance of the
unified framework is compared with other well known
gene selection algorithms. The performance analysis
curves using 50 artificial microarray datasets each follow-
ing two different distributions indicate the superiority of
the unified framework over the other reported algorithms.
Further analyses on 6 real cancer datasets show the similar
improvement in performance. The comprehensive valida-
tion of the DEGs is presented using the first three real
datasets. The robustness in the selection of genes is first
presented using FDR analysis for various methods used in
the study. The clustering based validation is presented
next by analyzing the clustering of training and test sam-
ples using ASI algorithm. Finally, a visualization based
validation is performed. The scalability of the proposed
unified approach to multi-sample experiments is demon-
strated using the Parkinson's datasets. Empirical analyses
on artificial and real microarray datasets illustrate the effi-
cacy of the proposed unified framework in finding the
DEGs.
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