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Abstract

Background: Investigators in the biological sciences continue to exploit laboratory automation
methods and have dramatically increased the rates at which they can generate data. In many
environments, the methods themselves also evolve in a rapid and fluid manner. These observations
point to the importance of robust information management systems in the modern laboratory.
Designing and implementing such systems is non-trivial and it appears that in many cases a database
project ultimately proves unserviceable.

Results: We describe a general modeling framework for laboratory data and its implementation
as an information management system. The model utilizes several abstraction techniques, focusing
especially on the concepts of inheritance and meta-data. Traditional approaches commingle event-
oriented data with regular entity data in ad hoc ways. Instead, we define distinct regular entity and
event schemas, but fully integrate these via a standardized interface. The design allows
straightforward definition of a "processing pipeline" as a sequence of events, obviating the need for
separate workflow management systems. A layer above the event-oriented schema integrates
events into a workflow by defining "processing directives", which act as automated project
managers of items in the system. Directives can be added or modified in an almost trivial fashion,
i.e., without the need for schema modification or re-certification of applications. Association
between regular entities and events is managed via simple "many-to-many" relationships. We
describe the programming interface, as well as techniques for handling input/output, process
control, and state transitions.

Conclusion: The implementation described here has served as the Washington University
Genome Sequencing Center's primary information system for several years. It handles all
transactions underlying a throughput rate of about 9 million sequencing reactions of various kinds
per month and has handily weathered a number of major pipeline reconfigurations. The basic data
model can be readily adapted to other high-volume processing environments.
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Background

Over the past several decades, many of the biomedical sci-
ences have been transformed into what might be called
"high-throughput" areas of study, e.g., DNA mapping and
sequencing, gene expression, and proteomics. In a
number of cases, the rate at which data can now be gener-
ated has increased by several orders of magnitude. This
scale-up has contributed to the rise of "big biology"
projects of the type that could not have been realistically
undertaken only a generation ago, e.g., the Human
Genome Project [1]. Such dramatic expansions in
throughput have largely been enabled by engineering
innovation, e.g., hardware advancements and automa-
tion. In particular, laboratory tasks that were once per-
formed manually are now carried out by robotic fixtures.
Biologists have steadily been adopting the automated and
flexible manufacturing paradigms already established in
industry to increase production, as well as to reduce costs
and errors.

The growing trend toward automation continues to drive
the urgent need for proper software support. Here, we use
the word "software" to mean those computational tools
that (1) process and analyze data, (2) organize and store
data and provide structured data handling capability, and
(3) support the reporting, editing, arrangement, and visu-
alization of data. This context reflects the biologist's "data
— information — knowledge" paradigm [2,3]. Table 1
lists these three classes and gives an example from each
that is relevant to our own specific area of interest: DNA
sequencing. Each class is critical to the success of any
large-scale project. The categories do not imply any proce-
dural ordering; data that move through a processing pipe-
line are likely to be handled repeatedly by all three classes
at various points. Moreover, certain tools may integrate
parts of more than one of the classes. (This is true of some
of the examples in Table 1.)

In the typical scenario, a research community devotes
much of its attention to developing software belonging to
the first group mentioned above; these applications are
non-trivial in the sense that they usually involve signifi-
cant algorithmic complexity. In fact, they often evolve
into separate, long-term research projects in their own
right. For example, although some of the earliest work in
DNA sequencing software focused on the problem of frag-
ment assembly, this area is still active [4]. Much effort is

Table I: Classes of Software

Class  Purpose Example from this Class

| process and analyze data DNA assembler [4]

2 store, organize, and fetch data DNA database [21]

3 arrange, edit, and view data DNA sequence editor [5]
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also spent on software belonging to the third group
because the resulting applications directly serve end-user
scientists as their primary "windows" to the data [5]. Like
their counterparts in the first group, these tools normally
require significant effort to build, although their research
aspect is rather more limited. Developers are aided by
high-level graphics languages and interfaces and designs
are tailored more to end-user needs and tastes rather than
specific algorithmic considerations. One can usually
expect software from both groups 1 and 3 to be sophisti-
cated and highly-refined.

In comparison, the second group is often something of a
neglected middle for biological projects. This area is
sometimes regarded as one of the more pedestrian hinter-
lands of bioniformatics, yet the underlying design issues
are formidable, as we shall see below. The nucleus of
group 2 is the "database", which in the present context
goes by a number of colloquial names: laboratory infor-
mation management system (LIMS), workflow manage-
ment system, or laboratory notebook system. (Here, we
will use the widely-recognized acronym "LIMS" to denote
all such systems.) The basic intent is to store the entire set
of laboratory processing data in a structured fashion, such
that any desired subset of the data can readily be extracted
or manipulated. Of course, biological LIMS are not new
and there is an extensive literature covering the subject
(see below).

In this paper, we report an expedient technique for mod-
eling laboratory data and its subsequent implementation
as a LIMS. This system has been developed over the last
several years at our lab to support large-scale DNA map-
ping and sequencing, although it is not restricted to these
specific uses. The model is based on a novel combination
of well-known abstraction techniques and has a number
of desirable features with respect to flexibility, maintaina-
bility, and process control that we describe below.

We will begin with a review of LIMS as they have been
applied to biological projects thus far. This will furnish
both a useful survey of and primer for LIMS design meth-
odologies, as well as a basis of comparison for what we
propose here. It is emphasized that the classifications dis-
cussed below are not strictly formal, but are meant instead
to illustrate some of the possible data modeling and
abstraction techniques. We then outline what we consider
to be the important modeling requirements and features
of a well-designed LIMS. The subsequent Results and Dis-
cussion sections introduce our model and describe its
LIMS implementation and use in a high-throughput envi-
ronment. Finally, project specifications are summarized
in the Methods section.
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Biological LIMS: Historical summary and primer
Presumably, the LIMS concept has existed in the form of
hand-written records since the earliest days of biological
inquiry. The limitations of printed information in this
context are obvious: systematic search and retrieval capa-
bilities are almost completely lacking, as is the ability to
cope with a large amount of data. A slightly more sophis-
ticated approach is to use spreadsheets and text files on a
filesystem. These implement what is sometimes called the
flat model of data. Such resources continue to be employed
as ad hoc LIMS by many small labs, where the amount and
complexity of data are manageable and simple text-
searching suffices. However, it is clear that the flat model
remains entirely inadequate for high-throughput environ-
ments. Flat architectures are not scalable for large num-
bers of records, nor do they have sophisticated search
capability or sufficient resolution for data tracking. More-
over, there is no ability to manage complex relationships
among the data types and little flexibility to evolve as
processes change. Finally, there is no straightforward
method of providing transactional consistency, which is
critical in preventing data corruption.

http://www.biomedcentral.com/1471-2105/8/362

It quickly became apparent to researchers that high-
throughput operations called for dedicated LIMS. Some
early efforts [6] used embedded tools to organize data,
e.g., the Berkeley Database Library [7], but these still did
not offer a general solution. The more usual approach has
been to implement a data model via a relational database
management system (RDBMS). The design described by
Dedhia and McCombie [8] is fairly representative. Basi-
cally, lab processes are identified, as are the materials,
instruments, people, etc. that play roles in the processing
pipeline. Each of these articles is then cast in a logical
model as an entity type. Each type has an appropriate set
of attributes and relationships between types are inferred
directly from their physical manifestations. In data mode-
ling terminology, the resulting structural description of
entity types and their corresponding relationships is
referred to as a schema.

A simplified portion of what such a schema might look
like is shown in Fig. 1(a). Here, we focus on laboratory
instruments called thermocyclers and these beget an
entity type of the same name. There is a primary key (PK)

manufacturer manufacturer thermocycler
ZN | instrument_id (PK / FK)
thermocycler instrument temperature_precision

instrument_id (PK)
temperature_precision
manufacturer_id

instrument_id (PK)
instrument_type
manufacturer_id

centrifuge
instrument_id (PK / FK)

<+
<
<h

rotation_rate

(a)

instrument_type

mixer

(b)

instrument_type (PK) | L| instrument_id (PK / FK)

volumetric_capacity

manufacturer

instrument_feature

instrument value

instrument_id (FK)
| feature_type_id (FK)

feature_type

instrument_id (PK)
instrument_type

instrument_type

feature_type_id (PK) ()
instrument_type

manufacturer_id

instrument_type (PK)

feature_type_name

Figure |

Prototypical schemas for laboratory machines: (a) direct model for an instrument, (b) using inheritance to sub-class instrument
types, (c) using meta-data. Diagrams show entity type relationships and primary and foreign keys (marked 'PK' and 'FK'. respec-
tively). The "bird's foot" symbols are a standard notation indicating that single instances from one type associate with multiple
instances in the other. The "arrow" notation indicates inheritance.
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called 'instrument_id' that uniquely identifies individual
thermocycling instruments. Other relationships provide
foreign-key (referential) constraints for additional
attributes that characterize thermocyclers. For example,
each one has a manufacturer, specified by
'manufacturer_id', that derives from the 'manufacturer'
type. There also may be non-referentially constrained fea-
tures, such as a temperature precision, e.g., + 0.1°C. If
more attributes are later deemed important, such as a
serial number or purchase date, they can be appended to
the entity type.

An entire laboratory database can readily be constructed
along these lines. Once again, the main characteristic of
this kind of model is that processes and entities lead
directly to corresponding types and relationships. We
shall refer to this class of model as the direct model because
of the direct analogy between the physical and database
realms. Direct modeling figures prominently in many of
the biological LIMS reported in the literature [3][8-13].
Biological database systems routinely use direct mode-
ling, as well [14,15].

The "direct" concept is clearly a very concrete one and this
leads to certain liabilities, discussed further below. In gen-
eral, a database can be improved to the degree that its
design can be abstracted and several abstraction tech-
niques are available. For example, if entity types have
common subsets of attributes, the notion of inheritance
can be applied. Common attributes are collected in a
generic type, which are then referenced by keys in other,
more specific types. The latter usually implement addi-
tional attributes. Fig. 1(b) shows how the basic direct
model could be revised to take better advantage of inher-
itance. A new type called 'instrument' contains the pri-
mary key, along with attributes common to all
instruments, e.g., the manufacturer. An attribute called
'instrument_type' refers to specific entity types, e.g., 'ther-
mocycler', 'centrifuge’, or 'mixer', each of which prescribes
additional, instrument-specific attributes. (Here, we show
the attribute 'instrument-type' as being referentially con-
strained by a type of the same name.) Any number of dif-
ferent kinds of instruments could be appended in this
way. A number of LIMS designs have made conspicuous
use of inheritance [16-19].

Another way to improve modeling abstraction is the use
of meta-data. These "data that describe data" can be used
to separate the structure of laboratory data from its sche-
matic implementation. Fig. 1(c) shows the basic direct
model re-cast into a form that uses meta-data. Two entity
types cooperatively manage instruments in a generic fash-
ion, for example a 'thermocycler' would now be an instan-
tiation of an 'instrument_type' entity, while an actual
thermocycler would be an instantiation of an 'instrument’
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type. The foreign key 'instrument_type' identifies a spe-
cific instrument as a thermocycler. Essentially, this
approach recognizes that there are data that properly asso-
ciate with 'instrument_type', implying that the 'thermocy-
cler' type is superfluous at the data level. The latter is
abstracted away from the schema altogether. New types of
instruments would be treated by adding their meta-data
descriptions to 'instrument_type'.

Although entity-specific characteristics are managed quite
naturally when using inheritance, they are less obvious
with meta-data. One possibility for handling attributes is
shown in Fig. 1(c). A 'feature_type' type can hold instru-
ment-specific attributes, like the temperature precision of
a thermocycler. Actual feature data then reside in a bridge,
in this case called 'instrument_feature', which links fea-
tures to the instruments they describe. The meta-data con-
cept is well-known, but is not often used to a degree that
permits comprehensive definitions of sub-types. The
emergence of dynamically typed languages for application
development blends nicely with a good meta-data infra-
structure, though this has apparently not been employed
extensively for biological LIMS [20]. We will further dis-
cuss the uses of inheritance and meta-data below.

LIMS requirements and schema design

At the conceptual level, good LIMS designs share several
characteristics: robustness, adequate capacity to represent
the complexity of the data, flexibility to evolve as materi-
als and processes change, provision for some level of proc-
ess control, and facilities to enforce, or at least support
various levels of data integrity-checking. How do the
approaches discussed above measure-up to these require-
ments?

In the first category, we count issues such as the ability to
handle the required volume of data and user transactions,
standardization of the interface, reasonable transaction
and search times, fault-tolerance and minimal down-
times, etc. Consequently, "robustness", as we use the term
here, is essentially independent of schema design. Rather,
it is primarily a function of the system used to implement
a given data model. The relational approach has undoubt-
edly been the most successful in this regard, although
older storage schemes such as the hierarchical architecture
can still occasionally be found [21]. Relational systems
have been widely developed and applied for decades and
are quite mature. Commercial RDBMS, for example, have
the scalability to handle enormous data sets, manage a
large volume of transactions, have atomic transaction
integrity, and perform with minimal down-time. Moreo-
ver, sophisticated administration tools are routinely avail-
able for backups, performance tuning, etc. Because high-
throughput environments place a premium on such fea-
tures, most biological LIMS have been implemented using
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either a commercial or a high-end, open-source RDBMS
[3][8-20].

Consequently, the substantive design considerations
revolve more around complexity, flexibility, process con-
trol, and data integrity. In a broad sense, these issues sug-
gest maximal abstraction of how the data are modeled. As
an illustration, let us pick a common laboratory scenario,
accommodating a new type of instrument, and compare
the basic direct model to one that uses meta-data. Under
the simple direct model, one would create a new entity
type, along with all its attributes and relevant relation-
ships. The resulting tables and relationships would appear
in the physical database and a review would be conducted
to determine what user applications would need patching
to maintain compatibility with the new tables. Some
amount of testing and recertification of patched applica-
tions would also be expected. This is quite a labor-inten-
sive process. In fact, Goodman et al. [19] have pointed out
that if a schema changes very quickly, applications will
always lag and could even be obsolete before modifica-
tions are finished. Conversely, meta-data can be strongly
leveraged in this case. The new instrument type is simply
an additional datum that is appended to
'instrument_type' in Fig. 1(c). The schema and physical
database do not change. Moreover, the existing code infra-
structure will typically handle the addition without any
required changes. Consequently, code review and testing
would not strictly be necessary.

These observations suggest the use of an RDBMS layed out
according to design principles that provide a proper level
of abstraction. The best designs will be able to resolve the
data complexity, while assuring both data integrity and a
high degree of flexibility to evolve as entities change. We
propose a design methodology and LIMS implementation
in the next section that has been formulated with these
principles in mind.

Results

A few main themes have guided much of our design work.
Procedures often change much more quickly than the
types of physical articles in a biological laboratory, e.g.,
molecules, reagents, instruments, and personnel. In fact,
the latter are essentially constant in many cases. The evo-
lution over the last 3 decades of how genomic DNA is
sequenced adequately illustrates this point. Conversely,
physical articles are predominantly associated with richer
sets of attributes and relationships. Again, DNA in its var-
ious manifestations is a good example.

Following these observations, we have based our data
model on several fundamental, somewhat hierarchical
principles. First, the concepts of inheritance and meta-
data are heavily exploited, often in combination with each
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other. Second, event tracking is separated from the track-
ing of physical articles, so that each can employ the most
appropriate combination of abstraction techniques.
Finally, the concept of an event is generalized to accom-
modate context-dependency. With respect to implemen-
tation, we have emphasized the object-oriented approach
for the code base and a closely-coupled mapping between
object classes and their counterparts in the physical data-
base, i.e., object-relational mapping. These aspects are all
described in greater detail as follows.

Modeling of physical articles

Many of the tracking needs in a lab revolve around "phys-
ical articles". We use this term in a broad sense to mean
both tangible objects and data that represent such objects,
e.g. a file of DNA sequence. In general, we make conspic-
uous use of the notion of inheritance to model these reg-
ular entities in the lab. Physical articles can often be
thought of as belonging to abstract types. For example, we
discussed 'instrument' above as a type that encompasses
thermocyclers, centrifuges, etc. Straightforward imple-
mentation of the model introduced in Fig. 1(b) suffices
for many such cases. Additional constraints might exist,
but these can sometimes be managed by trivial extension
to the model. For example, one common scenario finds
instances related recursively, e.g., '‘person A reports to per-
son B', which can be resolved by adding reflexive relation-
ships.

Tangibles having richer sets of relationships can usually
be captured using some combination of the abstraction
techniques shown in Fig. 1. Consider that types are often
related hierarchically in biological laboratories, as exem-
plified by DNA. Specifically, the abstract notion of 'DNA'
gives rise to many concrete sub-types, e.g. raw DNA frag-
ments, DNA ligations, subclones, sequenced DNA prod-
ucts, etc. Here, entities of one sub-type beget entities of
another and a single instance of a DNA must fall into
exactly one of these mutually-exclusive sub-types. In mod-
eling terminology, we may say that DNA encompasses
both "is-a" and "has-a" relationships. The former denotes
inheritance (e.g., a subclone "is-a" DNA), while the latter
represents a source-product relationship (e.g., a subclone
"has-a" progenitor DNA ligation).

One design that resolves this situation is a straightforward
extension of the inheritance concept that applies meta-
data to describe the hierarchy (see Fig. 2). The abstract
'dna’ type inherits a foreign key 'dna_type', which identi-
fies  appropriate  concrete DNA  types. The
'dna_type_relationship' type specifies the sub-type hierar-
chies, i.e., the "has-a" relationships between the different
DNA types, in the form of meta-data, while
'dna_relationship' holds the instances of these relation-
ships for actual DNA. Fig. 2 shows just two of the many

Page 5 of 15

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:362

dna_type
dna_type (PK) dna genomic_sample
description ‘< dna_id (PK) dna_id (PK)

; dna_type sample_name
dna_type_relationship per_product
dtr_id (PK) ' | [dna_id (PK)
dna_type I primer_1
source_dna_type ~7r | primer_2

1N
PALANN
1

dna_relationship
dna_id (PK)
source_dna_id (PK)
dtr_id (PK)

Figure 2

DNA as an abstract type ('dna') having hierarchical sub-types.
Relationships are modeled on the basic inheritance concept
with meta-data describing the hierarchy. Two sub-types are
shown, 'genomic_sample' and 'pcr_product'. Each prescribes
additional sub-type-specific attributes.

possible concrete sub-types: 'genomic_sample' and
'‘pcr_product'. Additional sub-types would attach to the
abstract 'dna' type as well, e.g., ligated products, frac-
tioned products, and sequenced products.

One of the desirable characteristics of this design is that
meta-data explicitly prescribe how the sub-types are
ranked. This enables applications to infer ordering infor-
mation from a query rather than resorting to internal,
hard-coded logic, the significance being that it again
reduces maintenance at the application level dramatically.
Strictly speaking, the design enables, but does not actually
enforce the hierarchical integrity of the data. That is, one
could purposely connect a given DNA instance to a parent
DNA instance of the wrong type. It is not practical for the
RDBMS to manage this sort of constraint, but there are a
number of ways to address this problem. At the most rudi-
mentary level, one could use additional procedural code
at the database level, e.g., triggers, to perform the needed
validation. The more elegant solution which we prefer
occurs at the Application Programming Interface (API)
level, i.e., class methods (see below) validate objects
before allowing data to be committed to the physical data-
base.

The above hierarchical structure arose from the trans-
formative nature of DNA into different types. However,
other situations lead to similar hierarchical relationships
that can be managed in a fashion much like that shown in
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Fig. 2. For example, we would expect almost all laborato-
ries to utilize an abstract "container" type, with sub-types
for trays, boxes, racks, etc. Here, the hierarchy revolves
around what types of containers can reside in other types
of containers, e.g., a tray resides in a box resides in a rack.
This nesting specification would be encoded in the data,
but enforcement would again require specific handling in
the API.

Modeling of changes and events

Recording changes and events and exactly how they occur
is critical for any LIMS. We can frame this issue of "change
management” with a simple analogy from human lan-
guage. Consider the common characterization of database
entities as nouns. Specifically, there is a table for each
generic noun, with rows in each table representing proper
noun instances of the generic noun and columns supply-
ing adjectives that modify these nouns. In this context, a
row is a simple atomic statement of fact, with implicit
linking verbs associating the subject (the primary key)
with a series of applicable adjectives. Consequently, a
database can be viewed in a broader sense as a well-organ-
ized collection of facts that specifies the state of a system
at any point in time.

Perhaps the most casual technique for event management,
especially common in small-scale LIMS, is to link event
data directly to the logical entities involved in the event.
An additional "adjective" is often used as a descriptor. For
example, 'instrument’ in Fig. 1 might have a date field to
log when a maintenance task last occurred. This feature
does not track action directly. Rather, it defines another
variable that represents the state of the entity at the time
the entity is examined. This approach is a special case of
the direct-modeling practice of creating complimentary
database tables dedicated to tracking specific kinds of
events [8,9,11].

When more detail is required, a new entity type can be
defined for events occurring upon the original "noun"
entity. Referring to our 'instrument' example, an event
instance would be created every time maintenance is per-
formed on a instrument. According to the language anal-
ogy, we are expanding action verbs into nouns and
adjectives. For instance, the event whereby Alice repairs
instrument 1000 is stored as 'instrument repair event
number 1234 is done on instrument 1000 and is done by
Alice'. This method has the advantage of being able to ask
more complicated questions of the data. Instead of defin-
ing a set of arbitrary states and explicitly recording transi-
tion into those states, a logical function can determine if
an entity is in a given state by examining the event history.
This is especially useful when states are not mutually
exclusive. Moreover, it allows for states to be defined a pos-
teriori and re-organized as a system is re-factored.
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Our design combines this basic idea with the aforemen-
tioned inheritance and meta-data strategies. We define a
completely generic event type, with a distinct sub-type for
each kind of event which might occur. Each sub-type is
implemented as a sub-class in the API (see below), where
the logic for the event is actually implemented. The base
class defines the infrastructure that allows any event to
associate with the required physical entities and provides
an interface onto which general workflow management
software can be built. Most event sub-types are almost
entirely defined by their meta-data. In particular, none of
the sub-types requires its own subclass-oriented table in
the RDBMS and only about 20% of the sub-types actually
have any code in their API subclass. More details are given
in the example below.

Process control directives

A critical consideration in the design of any data-tracking
system is how specific to make event type definitions.
There are two extremes, neither of which is entirely suita-
ble. On one hand, one could allow completely generic
definitions, but the significant numbers of project-specific
caveats, exceptions, and re-directions would make many
definitions unmanageable. Conversely, highly specific
definitions would provide flexibility, but the resulting
multiplication of the number of definitions raises similar
management difficulties. Instead, we designed the event
tracking layer to allow the attachment of "directives" to an
event. Directives are instructions or parameters that gov-
ern subsequent events. They might prescribe certain
parameters for a given down-stream event, veto the execu-
tion of an event entirely, or automatically prompt other
events upon completion, e.g., project-specific computa-
tional analysis. A single directive can affect multiple
down-stream events, and can influence a given event at
multiple points in its execution. In other words, directives
can function in a non-linear fashion.

The concept of the directive elegantly handles the prob-
lem of context-dependency, which routinely arises in
large-scale environments. Consider the example of ampli-
fication by PCR, a process performed both in the pre-fin-
ishing stage of de novo genomic sequencing [1] and in the
medical resequencing of patient samples [22]. While both
PCRs occur in a physically identical fashion on the same
instrument, each has its own specific constraints and
reporting requirements. Several problems clearly loom
here, including how technicians should handle an anony-
mously barcoded plate and how context-free logic is sep-
arated from context-specific logic.

In the API (discussed below), the directive class is abstract,
requiring concrete subclasses to handle various notifica-
tions during an event's life. For example, the "project'
directive has separate sub-classes for de novo and medical
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sequencing projects. Each encapsulates the appropriate
constraints, extra logic, and flow control. All directives
respect encapsulation, meaning that they cannot interfere
with the core execution logic, except through the same
parameter interface that the application uses. This feature
forms a clear boundary between an event's essential parts
and its peripheral ones and ensures that independent
directives do not need customized integration logic.

Overview of implementation

We have followed the standard approach for LIMS imple-
mentation, i.e, as a multi-tiered system consisting of
external applications, the API, and the physical database
[8]. In particular, the object-relational API translates all of
the database tables into Perl software classes (packages)
[23], and integrates those classes with other non-persist-
ent and abstract classes to form the core logic layer on
which the lab operates. Nearly all lab logic is in these soft-
ware classes.

Although the 3-tiered layout is typical, our specific imple-
mentation of the API is appreciably different from other
systems due to the explicit separation in the data model
between event entities and physical articles (regular enti-
ties). Essentially, the API is divided into two parts that
reflect this separation: one for the change-oriented event
object layer, and the other for the regular state-oriented
object layer. These layers have equal precedence from a
data access perspective. However, when change occurs,
the event layer is hierarchically positioned between the
application and the state-object layer. Consequently, it is
more accurate to speak of our system in the context of four
tiers.

1. Applications represent interaction with users, robots,
or other external agents.

2. API Events are used by applications to manage all
change. Each action in the lab corresponds to a logged
event having explicit parameters and a known software
procedure responsible for the change.

3. Regular API Entities, usually representing physical arti-
cles, make up the state-oriented remainder of the object
layer. This level is readable by applications, mutable by
the event layer, and defines the state of the LIMS at any
given point.

4. The RDBMS implements persistence.

From a programming standpoint, there are a number of
interesting features native to this system. The API exploits
dynamic class-loading to minimize memory usage and it
maintains class meta-data to facilitate chores like dynamic
generation of graphical user interfaces (GUIs). Multitable
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inheritance is also supported. Access to the three physical
databases (see below), including distributed, multi-data-
base transactions, is handled transparently by the soft-
ware. The API also provides data type validation, field
compression, and logical-to-physical field translation
transparently. Software tests ensure that resolved bugs do
not recur and the test battery is run automatically every
hour to verify the functionality of all production code. The
system also integrates the processing algorithms we use
for sequence data [24]. Several other aspects of the imple-
mentation provide particular utility for high-throughput
processing.

Bar-coding

A barcode system [25] supports detailed sample tracking.
We barcode essentially everything, including small tubes
and plates, agar plates, and all lab instruments, freezers,
and reagent containers. Lab personnel have barcoded
badges to log their ownership of events. Barcode-related
information is embedded in the relational schema using a
combination of the meta-data and inheritance techniques
introduced in Fig. 1. We also have support for mapping
external barcodes to unique identifiers in the LIMS,
including two-dimensional barcodes having embedded
vendor information.

Container management and transfer patterns

The LIMS supports event tracking down to the level of an
individual well in a 96-well or 384-well plate. This pro-
vides the means to direct the specific events that should
occur for single samples, as well as the ability to fully
reconstruct the history of any sample. We have also
defined the concept of a transfer pattern, as an instruction
set that prescribes how contents are to be moved between
containers. For example, a pattern might specify how
components in a given sector of a 384-well plate are to be
re-arrayed to a 96-well plate. Transfer patterns are mainly
used to direct robotic fixtures for re-arraying and allow a
simple identifier to map out complex movements of sam-
ple and reagent materials. Like barcodes, transfer patterns
are embedded in the relational schema using the abstrac-
tion techniques introduced in Fig. 1.

Robotics integration

To the extent possible, computer systems associated with
robotic fixtures in the laboratory are connected directly to
the LIMS. Many of these fixtures include hardware for
direct scanning of sample barcodes. For those units with-
out this capability, technicians manually scan sample bar-
codes and the LIMS then utilizes the appropriate sample
processing parameters to drive the robot as required. In
either case, the LIMS extracts data from the robot to be
integrated back into the database. One particularly nota-
ble example is our sequence machine loading application,
which communicates directly with the ABI 3730xl
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sequencing platform (see example below). Sequence
traces are extracted and automatically submitted to the
GenBank Trace Archive [26] within several hours after
loading.

The life of an event: State transitions

Events themselves can be thought of as state transition
machines that respond to external cues and commands
[27]. Fig. 3 shows a map of the state transitions that we
have found useful for our particular circumstances. The
novelty here is that states fall into two categories: those
that are not actually recorded in the physical database
(‘is_initiated') and those that are recorded (all the rest).
This separation provides an extra opportunity for validat-
ing information and directives at the initiation phase of a
process. Specifically, at the application level, a step is cre-
ated in the 'is_initiated' state, i.e., it has a reserved ID from
the database and can accept parameters and processing
directives as attachments. If the additions are valid, the
step can proceed to subsequent, recordable states, other-
wise it is aborted. The remaining states are summarized as
follows.

The 'is_scheduled' state denotes that a process is waiting
for available resources. In particular, it serves as a flag for
a scheduling system to perform job grouping, queuing,
and initiation of the actual execution of the event on a
computing cluster, if required. The 'is_running' state indi-
cates that the process instance is actually executing, for
example on a compute cluster. Processes that occur
instantaneously may skip this state. In 'is_suspended’, a
running process has been halted because of some irregu-
larity and is waiting for error handling. This state will not
appear often in highly fault-tolerant pipelines. Similarly,
'is_pending_disposition' is a flag that indicates a process
is awaiting manual redirection by lab personnel. This state
will not appear often in highly-automated pipelines. The
'is_abandoned' tag announces that a process has been per-
manently terminated before normal completion, while
'is_completed' records that a process has fulfilled all the
conditions for a normal, orderly completion. The latter
does not convey any information, as to the success or fail-
ure of the process. Finally, 'is_succeeded' is a sort of
"super-completed" state confirming that control has suc-
cessfully been transferred to a subsequent process or step.

Aspects of implementing a process pipeline

An event is the most granular unit of change in our LIMS
for which there is individual transition tracking. Broader,
more complicated occurrences must be broken into suita-
ble sequences of events, commonly referred to as "work-
flows" or "process pipelines". Accommodating a new task
involves translating a laboratory protocol into distinct
event types and defining meta-data such that these types
are appropriately linked.
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Possible state transitions for an instance of an event.

Linkage actually refers to both the input-output "hooks"
defined in event types and the instantiated linked-list his-
tory of sequences of actual events. In particular, any new
event definition is potentially connected to other, existing
definitions whose output type(s) match the new event's
input type(s). Various constraints may be layered over this
basic requirement. For instance, if containers are
involved, meta-data indicate specific container types usa-
ble in the process. The net effect is that an event is implic-
itly part of a pipeline if it can be executed without
violating any of its internal constraints.

When a new event is initialized, the prior event from
which control is being transferred is determined by find-
ing and matching values of the event parameters. The link-
ing of these two events is recorded in the database. This
might seem superfluous, given that such connections
might be inferred by queries ad hoc. However, querying is
often not sufficient to uniquely resolve a pipeline, e.g.,
when samples are used across multiple projects. The con-
sequence of such linking is that any event has access to the
entire record of upstream processing from whence it came
and can access this record through any of its input param-
eters. Furthermore, linking enables more complex con-
straints, such as requiring that certain precursor events
have all occurred successfully before an input is accepted.

Discussion
We have described the design and LIMS implementation
of a model for laboratory data that uses a novel combina-

tion of well-known abstraction principles. Here, we pro-
vide an example of its use and discuss our experiences
with it at the Genome Sequencing Center at Washington
University. The LIMS has been one of the most critical fac-
tors in our success as a large-scale sequencing facility. In
particular, we have a long-standing program of progres-
sively automating laboratory workflows, especially those
that are labor-intensive, and consequently, costly and
error-prone. The LIMS permits us to directly monitor and
control laboratory activity and to efficiently distill infor-
mation for effective high-level decision-making.

An example pipeline: Medical resequencing

The database plays a prominent role in practically every
aspect of laboratory operations. Various examples of
processing pipelines could be discussed, for example
managing and tracking reactions for de novo sequencing
projects. Instead, we would like to focus on a rather newer
type of pipeline for medical resequencing of patient DNA.
Medical resequencing is becoming increasingly important
in the effort to identify causal factors of various diseases.
Although the physical lab processes in this type of
sequencing are similar to those for traditional genomic
projects, the context is somewhat different. For example,
instead of processing random clones, targeted regions of
patient samples are sequenced. Moreover, the concept of
an assembly is that reads are aligned to reference sequence
rather than being integrated de novo. Fig. 4 shows an exam-
ple of a direct analogy schema that could be used for a
medical sequencing operation. Although the design is
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medseq_project |- reference_sequence [<] assembly |

[ tiling_path_node | | sequence_analyzer |

[ primer_pair | | thermocycler | trace |

| genomic_sample [—<{ per_product [ sequencing_reaction_product |

Figure 4
Direct modeling schema for medical sequencing projects.

quite intuitive, it harbors many of the liabilities that have
been discussed above. Specifically, it is quite rigid, gives
little flexibility for evolving protocols, does not provide
systematic event tracking, and is not readily extended to
other contexts, e.g., traditional genomic sequencing.

The procedural layout of a typical medical sequencing
operation is shown in Fig. 5. Physical articles (regular enti-
ties) and events (event entities) are represented, along
with some of the specifications and constraints (direc-
tives) specific to this type of sequencing. Interactions
among the various object types are complicated, demon-
strating that direct designs similar to that in Fig. 4 would
be inadequate. The use of directives is especially notable
in this process. For example, the project object includes a
list of reference sequences to target and details which por-
tions of those reference sequences are significant. A set of
primer pairs, called a tiling path, is defined such that the
required regions will be covered, and this information is
also part of the project. Subordinate directives are linked
to the initial step in the pipeline, as well. One governs
annotation of the reference sequence while another con-
trols the tiling path algorithm. Finally, additional direc-
tives control data verification according to project-specific
requirements.

The project class also has code that constrains and/or
extends each of the atomic LIMS steps, based on the
project object's settings. To facilitate bulk processing,
project samples are queued for replication and re-arraying
into 384-well plates using a transfer pattern matched to
the sample count and amplification regions. Primers for
the initial tiling path are ordered in parallel. Upon PCR
completion, the project confirms that the correct samples
are used with the correct primers and that redundant PCR
is not accidentally performed. It ensures that samples
which require validated primer pairs are not processed
until the PCR configurations have passed a validation step
in the parallel pipeline. The sample-amplicon mapping
used for later analysis is also updated. This information is
subsequently accessed by software on-board the ABI
3730xl sequencing analyzers to further direct how to proc-
ess the samples. This includes specification of run length,
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which can depend on amplicon size, and a trace name,
which encapsulates necessary data for use with down-
stream SNP analysis tools. Although the trace analysis
event performs standard processing on the traces, project
directives extend processing by initiating additional anal-
ysis steps. These steps recall bases with Phred [28], com-
pare reads to the reference sequence, determine success
from the perspective of the project's goals, and record sta-
tistics.

The object layout encompasses the totality of the logic
necessary to run the pipeline (see Fig. 6). Concrete classes
inherit from five highly abstracted base classes: 'dna’,
'instrument’, 'sequence_data', 'processing_directive', and
‘event'. (Indeed, this is the general design for all of our
pipelines.) In terms of actual schema implementation, the
process described in Figs. 5 and 6 reduces to the simple
layout shown in Fig. 7. In particular, this diagram shows
the five associated abstract entity types, along with their
relationships. The 'event' type provides the essential foun-
dation from which the other types radiate via many-many
relationships.

Although not shown here explicitly, each type is expanded
in the database according to the various abstraction prin-
ciples discussed above. For instance, 'instrument' and
'dna’ are implemented according to Figs. 1(b) and 2,
respectively. The 'event' type expands in a form something
similar to that given by Fig. 1(c). In essence, the design of
"events" provides full inheritance functionality, though it
is implemented using meta-data. Again, the advantage
here is that concrete event types do not require explicit
table definitions in the database. This is important for
maintaining flexibility in the face of rapidly evolving pro-
tocols and the consequent reconfiguring of laboratory
pipelines. Notable supporting meta-data for events are
input and output definitions, which can be implemented
in a type slightly more general than 'feature_type' in Fig.
1(c). (For example, an attribute could be added to denote
whether a definition describes an input or an output.)

Comparison to other LIMS designs

Event-tracking is clearly one of the primary functions of
any LIMS. We have described our design above and can
contrast it with some of the other established systems. In
many of those cases, tracking is relegated to either defin-
ing extra, ad hoc fields in a database table or to creating
additional tables for specific kinds of tasks to hold state
information [8,9,11]. This is essentially a direct approach
to handling events, as illustrated by Fig. 1(a). A number of
systems take this a step further by exploiting the inherit-
ance concept. Here, a basic event specification serves as a
super-class for more specific event definitions [16-18].
However, this still has the disadvantage of requiring table
additions when new tasks are defined [17].

Page 10 of 15

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:362

regular entities

http://www.biomedcentral.com/1471-2105/8/362

PN

—»(calculate tiling path )<

(tiling path node ) '

event entities ' processing
l—[define project ) v directives
v | medical sequencing
. project

v 1

(order primers ) (receive DNA samples )

[ constraint: regions, depth,

:
I A

(genomic sample )} 1\ (receive primers )—l

1
1 length, and temperature
e

k constraint: pattern dictated
— by number of samples and

A 4 1 |[desired amplicon count

(thermocycler )

(PCR amplification ]4\ -
_/ * | contraint: primer pair must

(PCR product ) '

(sequencing reaction )

be on project tiling path

(thermocycler )

(physical sequence analysis }«

time is based on expected

| amplicon length

1

1

1

1 [ o . .

1 specification: instrument run
1

1

1

1

_specification: base-calling

sequencing
reaction product

| parameters

| specification: reference

sequence from tiling path

Figure 5

submission

specification: pass / fail
| threshold

_specification: submission
1 unit and format

Description of a medical sequencing pipeline. Boxes represent entity instances (objects), while arrow colors represent the fol-
lowing: event flow (black), output from an event (green), input to an event (blue), directives governing an event (red).

A somewhat more sophisticated approach is taken by the
LabBase system [19], which provides a special layer
devoted to managing materials, steps, and states.
Although our software implementations are similar, Lab-
Base appears to be significantly different from our own
system at the level of the data model. Specifically, it main-
tains a form of stateful association with materials. Good-
man et al. [19] give an example of a material-state
relationship in LabBase: a 'clone' is 'ready for sequencing'.
This suggests that their design does not make a strict dis-
tinction between the event itself, 'sequencing'’, and the
state of the event, 'ready'. In actuality, LabBase is not a
complete LIMS in the sense we have used the term here.
Rather, it is designed to work in conjunction with a work-
flow management system [19], which shoulders much of
the process management aspect.

Another issue that is being increasingly appreciated in
biological LIMS is process control. Many of the estab-
lished designs have little or no facility for using a database
to directly steer events in the lab. Such configurations fre-
quently layer a workflow management system over the
database to gain some level of control [12], but this often
comes in the form of altering the pipelines themselves
rather than exerting a more subtle influence over a given
pipeline definition.

It is well known that databases can be designed to provide
certain control features [29] and some recent work has
moved in this direction. In particular, the MAGIC-SPP sys-
tem takes an ad hoc approach, designating processes as
either "high-level" or "low-level" [13]. Organism-specific
tasks and the processing of traces are cited as examples of
these two classifications, respectively. Each division leads
to its own set of dedicated tables in the database. How-
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Figure 6

Object layout for a medical sequencing pipeline. Concrete entity types (outer-most ring) inherit from five abstract base types
(middle ring). The object is in the inner-most ring. Entity types are color-coded: manifestations of DNA (red), directives
(magenta), manifestations of sequence data (green), events (black), and lab instruments (blue).

ever, it is difficult to ascertain the extent to which this
design supports multiple roles, e.g., passive or non-linear
control. We have also found that the ability to apply glo-
bal controls over entire projects (as discussed in the med-
ical resequencing example above) is quite advantageous.
Such control would span both of the MAGIC-SPP divi-
sions, but it is not clear how straightforward it would be
to use that system in this capacity. It also does not appear
that this design is readily applicable to other, non-biolog-
ical workflows, e.g., processing new lab personnel or pur-
chase orders.

sequence_data

4
N

N/ I\

event
A4
yd

instrument

N

processing_directive

Figure 7
Core layout of the LIMS, showing main abstract entity types.

Assessment of capability and performance: Some statistics
Our LIMS has been developed over the last several years
and continues to be extended. The underlying database
currently has about 500 tables and functions as an On-
Line Transaction Processing (OLTP) system. Many of the
tables hold static data that serve as referential constraints
for the data-centric tables. User applications also continue
to be developed, as do the two layers of the API.

Thus far, our system has been able to keep pace with the
growing throughput and complexity of our laboratory
operations. A few statistics are helpful in conveying some
idea of the demands that these activities place on the data-
base. Every month, the Genome Sequencing Center per-
forms about 9 million sequencing reactions and finishes
about 50 Mb of sequence, primarily using our in-house
bank of 130 ABI 3730xl sequencing machines. The OLTP
database is currently about 1 terabyte in size. However, we
also maintain corresponding Data Warehouse (DW) and
On-Line Analytical Processing (OLAP) databases [30].
These two implementations exist for the purposes of ded-
icated data-mining and large-scale analyses, allowing the
primary OLTP database to remain unfettered. OLTP data
are copied in real-time to the DW and OLAP databases.
The DW database holds only the processed results of DNA
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sequencing reactions: binary trace files and plain-text
summary files [31], including the actual nucleotide base-
calls [28]. Its schema is essentially a subset of the OLTP
schema. The OLAP database holds a slightly denormal-
ized text-only representation of these same data and is
optimized for fast, large-scale analyses using a standard
"star" schema [30]. In particular, reports that previously
took hours to generate now run in seconds. The DW data-
base currently contains almost 9 terabytes of data. (For
comparison, it is commonly estimated that the United
States Library of Congress holds the equivalent of about
20 terabytes in print form.)

We have configured our LIMS to manage event pipelines
for over 20 types of entities. Most, including DNA, rea-
gents, organisms, and purchase orders, are of a physical
nature. The base-class table for DNA is the largest of these
at about 1.3 billion rows. Other entities, like DNA
sequencing projects, are virtual. They do not exist in a tan-
gible sense, but nevertheless have a well-defined opera-
tional sequence. As of this writing, there are over 1800
defined processing events defined in our LIMS, of which
1300 are currently active. About 1000 of the latter are
actually distinct. Aside from scheduled maintenance,
database uptime has been greater than 95%.

In our experience, one of the most important features to
the end-user is the ability to efficiently navigate historical
information. The system we have described here supports
two complimentary avenues to do this. Simple "history
lists" can readily be generated starting from either a given
process instance or a given material instance. For example,
the predecessors of a given process can be obtained simply
by traversing pointers to previous steps. Conversely, the
event-history of a material can be obtained directly from
that material's bridge table with the main event-tracking
table. More elaborate histories can easily be constructed
by combining these two approaches. Specifically, a given
material's event history could be supplemented with a list
of all the progenitor materials that participated in those
events. Such analysis can be useful for a number of pur-
poses, e.g., in quality assessments and tracing and trouble-
shooting shipment lot numbers. If so desired, one could
extend this treatment ad infinitum, finding every progeni-
tor material and event at every level that led to the current
one.

Conclusion

The importance of a robust, flexible LIMS for laboratory
data management is only becoming more acute. Process-
ing volumes continue to grow, processes change almost
fluidly, and evolving research directions dictate increasing
degrees of heterogeneity in the data. The latter point is
well-illustrated by the trend toward maintaining both the
traditional genomic DNA sequencing pipelines as well as
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medical/patient sequencing pipelines, simultaneously.
These factors place enormous demands on a data-tracking
system and it is only a slight exaggeration to say that an
inferior LIMS can threaten a lab's very viability.

Our data model and LIMS implementation are applicable
to environments that have used, or wish to use the rela-
tional approach for data management. Implementation is
not limited to any particular RDBMS or programming lan-
guage. In particular, we were originally prompted to
choose the commercially-available Oracle RDBMS [32]
because of its well-established reputation for large data-
base projects. However, mature high-end, open-source
platforms like MySQL [33] and PostgreSQL [34] now pro-
vide suitable alternatives. A generic version of our object-
relational API has been released as free software [35] and
efforts are now focused on extending it to support addi-
tional RDBMS platforms.

We encourage investigators to compare their existing sys-
tems to what we have reported here and to adopt any
aspects that they would find to be a useful improvement.

Methods

We have built our LIMS on the Oracle RDBMS [32], cur-
rently in version 10. The programming APIs, as well as the
user applications themselves are implemented in Perl
[23], currently in version 5.8.x. Graphical applications uti-
lize the Gimp Toolkit (Gtk) library version 2.x, which is
accessible through Perl, while database access is handled
through Perl's DBI.pm package [36].

The OLTP database runs on four Sun Fire X4100 servers,
each with 4 cores, 16 GiB of RAM, and Redhat Advance
Server 4 (Nahant Update 4) as the operating system. Back-
ups are done via NetApp Snap Vault to a NetApp R200
(disk) and by Veritas NetBackup to tape. Client applica-
tions are used mostly on commodity platforms running
the Debian distribution of GNU/Linux, currently in kernel
version 2.6.X.

The LIMS is managed by 14 full-time programmers and 2
database administrators (DBAs). This group represents
the main non-hardware IT support for our >250-person
lab. The DBAs use Oracle-proprietary tools, as well as
Toad [37] and Oracletool [38] to administer the database.
(The latter is an open-source application that has been
modified somewhat to suit our specific needs.) Mainte-
nance occurs daily, especially with respect to table space
management. Index and table reorganization are per-
formed as needed to maintain performance. Database
queries are also monitored and timed, as needed. Statis-
tics are collected nightly and stored in the data dictionary
to facilitate query optimization. The programming envi-
ronment is highly collaborative, emphasizing software
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engineering best practices and strict use of version control
software (Subversion [39]) to manage code development.

Availability and Requirements

Our system is available from ftp://genome.wustl.edu/
pub/software/db/ as a compressed Unix "tar" file, which
includes schema diagrams in both PDF (Portable Docu-
ment Format) and GML (Graph Modeling Language) for-
mats, the main API framework, test cases, a
demonstration program, and documentation.

Project name: GSC LIMS Data Model and Implementa-
tion

Operating system: Platform independent
Programming language: Perl

Other requirements: none

License: General Public License (GPL)
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