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Abstract
Background: With DNA microarray data, selecting a compact subset of discriminative genes from
thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease
diagnosis. Several widely used gene selection methods often select top-ranked genes according to
their individual discriminative power in classifying samples into distinct categories, without
considering correlations among genes. A limitation of these gene selection methods is that they
may result in gene sets with some redundancy and yield an unnecessary large number of candidate
genes for classification analyses. Some latest studies show that incorporating gene to gene
correlations into gene selection can remove redundant genes and improve classification accuracy.

Results: In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant
genes and remove redundant genes in classification analyses of microarray data. The effectiveness
and accuracy of this method is demonstrated through analyses of five publicly available microarray
datasets. The results show that our gene selection method is capable of achieving better accuracies
than previous studies, while being able to effectively select relevant genes, remove redundant genes
and obtain efficient and small gene sets for sample classification purposes.

Conclusion: The proposed method can effectively identify a compact set of genes with high
classification accuracy. This study also indicates that application of the Bayes error is a feasible and
effective wayfor removing redundant genes in gene selection.

Background
One of the major applications of DNA microarray tech-
nology is to perform sample classification analyses
between different disease phenotypes, for diagnostic and
prognostic purposes [1-3]. The classification analyses
involve a wide range of algorithms such as differential
gene expression analyses, clustering analyses and super-
vised machine learning [4-6], etc. In classification analy-

ses of microarray data, gene selection is one of the critical
aspects [5,7-12]. Efficient gene selection can drastically
ease computational burden of the subsequent classifica-
tion task, and can yield a much smaller and more compact
gene set without the loss of classification accuracy [13-
17]. In addition, a smaller number of selected genes can
be more conveniently and economically used for diagnos-
tic purposes in clinical settings [18].
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In the presence of thousands of genes in microarray exper-
iments, it is common that a large number of genes are not
informative for classification because they are either irrel-
evant or redundant [19]. Based on a review of the defini-
tions of relevance [20,21], the genes can be classified into
three disjoint categories, namely, strongly relevant,
weakly relevant, and irrelevant genes [21]. Strong rele-
vance indicates that the gene is always necessary for an
optimal subset and cannot be removed without affecting
the classification accuracy. Weak relevance indicates that
the gene is not always necessary but may become neces-
sary for an optimal subset at certain conditions. Irrele-
vance indicates that the gene is not necessary at all for
classification accuracy. Hence, an optimal gene subset
should include all strongly relevant genes, none of irrele-
vant genes, and a subset of weakly relevant genes. Based
on the relevance definitions of genes, in classification
analyses, a redundant gene is the one (which may be use-
ful for classification analyses in isolation) does not pro-
vide much additional information if another informative
gene is already present in the chosen gene subset.

Various approaches have been developed for gene selec-
tion to extract relevant genes from thousands of genes in
microarray experiments, such as clustering methods [22]
and pair-wise correlation analyses [2,6,23]. While multi-
ple methods are available, it is well accepted in the field
that a good gene selection method should be able to: 1)
simplify the classifier by retaining only the relevant genes
[23,24]; 2) improve or not significantly reduce the accu-
racy of the classifier; and 3) reduce the dimensionality of
the dataset [9,25-27].

Traditionally, the methods for gene selection are broadly
divided into three categories: filter, wrapper and embed-
ded methods [21]. A filter method relies on general char-
acteristics of the training data to select genes without
involving any classifier for evaluation [10,28]. Many filter
methods are usually mentioned as individual gene-rank-
ing methods [1,10,26,29,30]. They evaluate a gene based
on its discriminative power for the target classes without
considering its correlations with other genes. Although
such gene ranking criteria are simple to use, they ignore
correlation among genes, which may result in inclusion of
redundant genes in selected gene set used for classification
[31]. Redundant genes will increase the dimensionality of
the selected gene set, and in turn affect the classification
performance, especially on small samples [26]. In order to
minimize redundant genes, correlation analyses have
been incorporated in gene selection to remove redundant
genes and improve classification accuracy [23,24,26,32].
The wrapper methods utilize the classifiers as evaluation
functions and search for the optimal gene set for classifi-
cation [14]. But the wrapper methods may suffer from
excessive computational complexity. In contrast to the fil-

ter and wrapper approaches, the embedded methods per-
form the selection of genes during the training procedure
and are specific to the particular learning algorithms
[14,21,24,33]. For the wrapper and embedded methods,
the search schemes are always involved to identify the
optimal gene set for the sample classification. Searching
the whole gene subset space may discover the optimal
gene subset with respect to an evaluation criterion. How-
ever, an exhaustive search is usually computationally pro-
hibitive. Thereby some partial search schemes are
proposed, such as sequential forward selection, sequential
floating forward selection, sequential backward elimina-
tion, sequential floating backward elimination and ran-
dom search [34]. These partial search schemes are
practically more feasible but provide no guarantee for
identifying the optimal gene set [33].

In the earlier literatures, some excellent studies have high-
lighted the advantages of controlling classification error in
yielding an optimal gene set, such as the study in the ref-
erence [35]. In this article we develop a novel gene selec-
tion method based on the Bayes error. Although the Bayes
error has been used for feature selection in classification
analyses, its use for gene selection in microarray data is
very rare. It is well known that the Bayes error can provide
the lowest achievable error rate bound for a given classifi-
cation problem [36]. Theoretically, the Bayes error is the
best criterion to evaluate effectiveness of gene set for clas-
sification [37], and the Bayes error depends only on the
gene space, not the classifier itself [38]. From this point of
view, by controlling the Bayes error it is feasible to find the
optimal or sub-optimal gene set for a given classification
problem without designing the classifiers. However, it is
usually difficult to estimate directly the Bayes error rate
analytically. An alternative is to estimate an upper bound
of the Bayes error, which could be obtained by an error
estimation equation based on the Bhattacharyya distance
[37,39]. With this method, we can indirectly use the Bayes
error for gene selection by controlling the upper bound of
the Bayes error. This strategy is more promising than those
requiring gene selection and classifier design simultane-
ously, as in the wrapper methods. Considering the prom-
ising aspects of the Bayes error, we propose in this study
an approach, BBF (Based Bayes error Filter), for gene selec-
tion. Our selection algorithm is implemented in two
steps: 1) first the relevant candidate genes are selected by
a criterion function; and 2) the criterion controlling the
upper bound of the Bayes error is applied to the relevant
candidate genes in order to remove the redundant genes.

Application
To evaluate the performance of our proposed method in
practice, we analyzed five publicly available microarray
datasets: 1) Colon cancer dataset; 2) DLBCL dataset; 3)
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Leukemia dataset; 4) Prostate dataset; 5) Lympho ma
dataset (see Table 1).

Colon cancer dataset
This dataset consists of expression levels of 62 samples of
which 40 samples are colon cancer samples and the
remaining are normal samples [13,40]. Although origi-
nally expression levels for 6,000 genes are measured,
4,000 genes out of all the 6,000 genes were removed con-
sidering the reliability of measured values in the measured
expression levels. The measured expression values of
2,000 genes are publicly available at [41].

DLBCL dataset
This dataset contains 77 samples in two classes, diffuse
large B-cell lymphomas (DLBCL) and follicular lym-
phoma (FL), which have 58 and 19 samples, respectively
[42]. The original dataset contains 7,129 genes. After the
quality control, the dataset contains 77 samples and 6,285
genes. The measured expression values of genes are avail-
able at [30].

Leukemia dataset
This dataset, provided by Golub et al. [43], contains the
expression levels of 7,129 genes for 27 patients of acute
lymphoblastic leukemia (ALL) and 11 patients of acute
myeloid leukemia (AML). After data preprocessing, 3,051
genes remain. The source of the 3,051 gene expression
measurements is publicly available at [44].

Prostate dataset
This data set provides the expression levels of 12,600
genes for 50 normal tissues and 52 prostate cancer tissues
[45]. The experiments were run on Affymetrix human
95Av2 arrays. The data preprocessing step leaves us with
6,033 genes. The data source is available at [46].

Lymphoma dataset
This dataset presented by Alizadeh et al. [47] comprises
the expression levels of 4,026 genes. It contains 47 sam-
ples and two classes: germinal center B cell-like DLCL (dif-
fuse large cell lymphoma) and active B cell-like DLCL.
Among the 47 samples, 24 samples are germinal center B-
like DLCL and 23 samples are active B cell-like DLCL. The
dataset is available at [48].

Results
In the gene preselection step, we select the genes with
FWER ≤ 0.05 (Family-Wise-Error rate). In our experi-
ments, KNN and SVM classifiers are employed to demon-
strate the proposed method and its classification
performance. We choose the Euclidean distance in our
KNN classifier with K = 5 and predict the class label by a
majority vote. For the SVM classifier, we choose a linear
kernel for decision plane computation.

We assess the performance of our method using the
"Leave-One-Out Cross Validation" (LOOCV). LOOCV
provides realistic assessment of classifiers which general-
ize well to new data [27]. The LOOCV method proceeds
as follows: hold out one sample for testing while the
remaining samples are used to make the gene selection
and train the classifier. Note that to avoid selection bias
[49], gene selection is performed using the training set.
The genes are selected by our method using the training
samples and then are used to classify the testing sample.
The overall test error rate is calculated based on the incor-
rectness of the classification of each testing sample. Table
2 summarizes classification errors of five datasets with
KNN and SVM classifiers by our method.

For the Colon dataset, as shown in Table 2, using the BBF
method, 6 out of 62 samples are incorrectly classified by
KNN and 8 by SVM, resulting in an overall error rate of
9.68% and 12.90%, respectively. According to the results
of Ben-Dor et al. [13], without gene selection the classifi-
cation error was 19.35% for KNN, and 22.58% for SVM,
respectively. This is a significant improvement compared
to the accuracy obtained by all available genes. This
implies that there are irrelevant or redundant genes which
deteriorate the performance of the classifiers, and the
appropriate gene selection could effectively improve clas-
sification accuracy. The colon dataset has been used by
many studies. For example, Liu et al. [23], used "normal-
ized mutual information" with greedy selection and sim-
ulated annealing algorithm for gene selection. They
reported that using KNN classifier the classification error
is 9.68% with 29 selected genes for greedy selection and
12.90% with 26 selected genes for simulated annealing
algorithm. Ding and Peng [26] proposed a "Minimum
Redundancy – Maximum Relevancy" (MRMR) method.

Table 1: Summary for five datasets used in our experiments

Dataset Source No. of genes No. of samples Classes

Colon Alon et al. (1999) 2000 62 Normal/Tumor
DLBCL Shipp et al. (2002) 6285 77 DLBCL/FL

Leukemia Golub et al. (1999) 3051 38 ALL/AML
Prostate Singh et al. (2002) 6033 102 Normal/Tumor

Lymphoma Alizadeh et al. (2000) 4026 47 Germinal/Activated
Page 3 of 9
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:370 http://www.biomedcentral.com/1471-2105/8/370
Their best result by SVM was 8.06% with 20 genes, which
means 5 out of 62 samples are incorrectly classified. Com-
pared with our results, Liu's method [23] used more genes
for similar classification errors. Using the SVM classifier,
Ding and Peng [26] also selected 20 genes for best classi-
fication accuracy and the accuracy is slightly higher than
ours. Some studies demonstrate that accurate diagnoses
could be achieved using the expression levels of 15–20
genes from colon dataset [50]. To sum up the above
results, the necessary number of genes could be less than
20 for the Colon dataset.

For the DLBCL dataset, in the original article, Shipp et al.
[42] picked 30 genes by using their own weighted combi-
nation of informative genes. They correctly classified 71
out of 77 patients for a diagnostic error of 7.79%. Using
our method 6 out of 77 samples are incorrectly classified
by KNN and 7 by SVM, resulting in an overall error rate of
7.79% and 9.09%, respectively. However, only 5–6 genes
are involved in classification and obtain similar classifica-
tion error. Yang, et al [30] proposed GS1 and GS2 meth-
ods based on the ratio of inter-class and intra-class
variation as a criterion function for gene selection. Using
KNN they obtained classification error rate of 7.79% with
85 genes by GS1 and 6.49% with 70 genes by GS2; using
SVM they achieved classification error rate of 3.90% for
GS1 with 81 genes and GS2 with 55 genes. In contrast, we
note that our results with KNN method are almost as good
as theirs, yet only 6 genes are involved in the classification
procedure and our classification error with SVM method
is slightly higher than their results, but we use only 5
genes to reach similar level of performance.

For the Leukemia dataset, using the BBF method, all sam-
ples are correctly classified by KNN and SVM, with 3 and
2 genes for the two classifiers, respectively. Compared
with other gene selection methods, our method appears
to yield higher classification accuracy. For example, Det-
tling and Buhlmann [51] adopted four classifiers (Logit-
Boost, AdaBoost, KNN and Classification tree) to classify
Leukemia dataset, and classification error was calculated
based on LOOCV method. Their best classification error
result was 1.39% with 25 genes by KNN. Some studies
also come up with similar results to ours. Weston et, al

[52] reported 0% classification error for a linear SVM
using 20 genes by LOOCV method, but they used more
genes.

For the Prostate dataset, in our results, 6 out of 102 sam-
ples are incorrectly classified by KNN and 4 by SVM,
resulting in an overall error rate of 5.88% and 3.92%,
respectively. Dettling and Buhlmann [22] proposed an
algorithm for selecting supervised clusters of genes to find
the gene groups for classification. They used KNN and
aggregated trees methods, achieving the best results of
classification error being 4.9% with 3 gene clusters by
KNN. Our results are comparable to theirs, but used fewer
genes. Gentile [53] used on a incremental large margin
algorithm for gene selection and yielded 6.5% classifica-
tion error estimated with 100 genes by LOOCV method.
In contrast, we only used 11–13 genes and achieved better
accuracy.

For the Lymphoma dataset, using our method, the classi-
fication error rates of KNN and SVM are 2.13% (this
means only one sample is incorrectly classified) and 0%,
respectively. Wang et, al. [54] also analyzed this dataset
using several different gene selection methods and classi-
fiers by the LOOCV method. In their study, they com-
bined the locally linear embedding method and SVM
classifier and yielded the classification error of 8.5% with
50 selected genes. When combining Signal-to-Noise
method with KNN classifier, the classification error was
23.4%. The best error rate result they reported was 4.35%
with 20 genes which is obtained by adopting the Informa-
tion Gain method and a Neuro-Fuzzy Ensemble model.
Diaz-Uriarte and Alvarez de Andres [55] reported the sim-
ilar results to ours with the random forest method for
gene selection, though they used a different estimation
method for classification error rate. But they used more
genes than our method. The results of our BBF method are
comparable or outperform the above other results.

Discussion
As an important statistical index for classification analyses
[56,57], the Bayes error has rarely been used in classifica-
tion analyses of microarray data. In this study, we propose
a novel gene selection approach for microarray classifica-

Table 2: The LOOCV errors for two-class datasets using KNN and SVM

Dataset KNN(K = 5) SVM(Linear)
Number of genes Lowest Error (%) Number of genes Lowest Error (%)

Colon 12 9.68 20 12.90
DLBCL 6 7.79 5 9.09

Leukemia 3 0.00 2 0.00
Prostate 11 5.88 13 3.92

Lymphoma 8 2.13 3 0.00
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tion analyses. We introduce the Bayes error into the gene
selection procedure, which turned out to be beneficial for
classification analyses. The experimental results show that
our proposed method can 1) reduce the dimension of
microarray data by selecting relevant genes and excluding
the redundant genes; and 2) improve or be comparable to
the classification accuracy compared with other earlier
studies.

In classification analyses, the classification error is an
important criterion for selection of an optimal gene set.
Some gene selection methods have been proposed to
achieve the minimum classification error. Among these
methods, a typical one is the method proposed by Peng et
al. [35] which incorporates the classification error estima-
tion with the gene selection method to determine an opti-
mal gene set. The method first selects the genes with the
highest relevance to the target classes, and minimizes the
redundancy among the selected genes, and then deter-
mines an optimal gene set which has the minimum clas-
sification error estimated by cross-validation methods. In
addition, the researchers presented the theoretical analy-
sis [35]and comprehensive experimental studies [26] to
prove that the criterion of "Maximum Relevance and min-
imum Redundancy" can benefit selection of optimal fea-
tures for classification. Similar to the method of Peng et al.
[35], our method uses the Bhattacharyya distance to select
the genes with the highest joint relevance to the target
classes, while minimizing the redundancy among the
selected genes. Meanwhile, we can indirectly control the
classification error due to the relationship between the
Bhattacharyya distance and the Bayes error, and thus we
can effectively avoid the computation of cross-validation
error.

From the Bayesian decision theory, it is known that 1) the
probability of error of any classifier is lower bounded by
the Bayes error, 2) the Bayes error only depends on the
gene space, not the classifier itself, and 3) there is always
at least one classifier that achieves this lower bound
[36,57,58]. Hence, from a theoretical point of view, it is
possible to find out an optimal gene set for a given classi-
fication problem, rendering the minimum classification
error. When selecting a set of relevant genes G with a min-
imum Bayes error in all gene space, according to the theo-
ries of the Bayes error, it can be guaranteed that at least
one classifier may achieve this classification error. How-
ever, it should be noted that this optimal relevant gene set
is classifier-specific. As pointed out [21,23], there are no
relevancy definitions independent of the classifiers. That
means not all classifiers can achieve the minimum Bayes
error with the gene set G. This is because different classifi-
ers have different biases and a gene which may be favora-
ble for one classifier but may not for another. This
phenomenon is also observed in our results. For example,

in the colon dataset, for SVM classifier the best classifica-
tion error was 12.90% with 20 genes, while for KNN clas-
sifier we could achieve the best classification error with 12
genes. When more genes are involved, the error rate for
KNN classifier will increase. Since no single subset is opti-
mal for all classifiers, it would be sensible to adopt a strat-
egy to incorporate a classifier into gene selection for
classification like a wrapper method. As the two-stage
algorithm proposed in the early study [35], the first stage
is to select relevant genes and eliminate redundant genes;
the second stage is to search a more compact gene set for
a specific classifier. This algorithm may not only yield an
optimal or sub-optimal gene set for a specific classifier
and increase the classification accuracy, but also decrease
computation complexity when compared to a wrapper
method. Our method can be extended to adopt this algo-
rithm.

In classification analyses, genes obtained from observa-
tions may not be all informative for target classes. It is nec-
essary to pick out the relevant candidate genes even
though some of them are redundant. For our gene selec-
tion system, a gene preselection step is used to select the
relevant candidate genes based on their individual rele-
vance to the target classes. But the gene preselection step
alone cannot yield the optimal gene set for a classification
problem because it cannot eliminate the redundant genes
due to the correlations between genes [4,5,36]. Efforts
have been made to minimize the redundancy by measur-
ing pair-wise gene correlations within the selected gene set
[26,32,35,59], performing clustering analyses [23,26] and
Markov blanket filtering [60]. Our proposed BBF method
identifies the redundant genes by using Bhattacharyya dis-
tance measure to minimize the Bayes error. It is clear from
Equation 2 that if a gene is highly correlated with another
gene, combination of these two genes may not contribute
more to the Bhattacharyya distance measure between two
classes than any one of them. For an extreme example, i.e.,
the correlation of two genes is 1, it is impossible to calcu-
late inverse matrix of covariance matrix for Bhattacharyya
distance measure between two classes, and thus the
redundant gene can be eliminated.

In addition, upper bound of the Bayes error (denoted by
ε*B) is a critical parameter in this gene selection scheme.
In the BBF method, we select genes according to their con-
tribution to Bhattacharyya distance, dB. It has been proved
that ε*B monotonically increases as dB increases, but at a
decelerating manner since the rate of increase of ε*B
decreases with the increasing of dB [36]. When dB increases
to a certain level, e.g., 4.0, increasing dB may not efficiently
improve classification accuracy. Under this condition,
with more genes selected, their contributions to classifica-
tion accuracy turn out to be increasingly negligible. In the
case of high ε*B, it may lead to a loss of some relevant
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genes; in the case of smaller ε*B, it may involve some
genes of negligible effects for classification. With this in
mind, we set a criterion, ε*B being 1.0E-4, for picking rel-
evant genes.

Conclusion
In summary, the BBF method can effectively perform gene
selection with reasonably low classification error rates and
a small number of selected genes. Our method may not
only obtain a small subset of informative genes for classi-
fication analyses, but also provide a balance between
selected gene set size and classification accuracy. This is
confirmed by testing our method on the 5 real datasets.

Methods
In microarray classification analyses, the main objective
of gene selection is to search for the genes which keep the
maximum amount of information about the class and
minimize the classification error. According to the Bayes
theorem, the Bayes error can provide the lowest achieva-
ble error rate bound for a given classification problem (see
details in [61,62]). The problem of gene selection is equiv-
alent to determining the subset of genes which can mini-
mize the Bayes error.

Let us consider the situation where a given gene expres-
sion measurement vector x needs to be classified into one
of L classes. P(ci) denotes the a priori class probability of
class i, 1 ≤ i ≤ L, and p(x|ci) denotes the class likelihood,
i.e., the conditional probability density of x given that it
belongs to class i. The probability of x belonging to a spe-
cific class i, i.e., the posteriori probability p(ci|x), is given
by the Bayes theorem:

where p(x) is the probability density function of x and is
given by:

When assigning a vector x to the class with the highest
posterior probability, the error associated with this classi-
fication is called the Bayes error, which can be expressed
as:

where Ci is the region where class i has the highest poste-
rior. The probability of classification error of any classifier
is lower bounded by the Bayes error [63,64]. However, the
computation of the Bayes error is quite complicated. This

is due to the fact that the Bayes error is obtained by inte-
grating high-dimensional density functions in complex
regions. Therefore, attention has focused on approxima-
tions and bounds for the Bayes error. One of these bound
estimations for the Bayes error is provided by the Bhatta-
charyya distance.

In this study, we will use the Bhattacharyya distance to
control the Bayes error for gene selection. For simplicity,
we consider a binary classification study with m sample
subjects and n measured genes. Assume there are two
classes. Let xij be the expression measurement of the jth
gene for the ith sample, where j = 1, 2,..., n, i = 1, 2,..., m.
Here we assume x1,..., xm are the m samples, where xi = [xi1,
xi2,..., xin]. Let Y = [y1,..., ym]T denote the class labels of m
samples, where yi = k indicates the sample i belonging to
class k (k = 1, 2 stands for two different kinds of pheno-
types, e.g., disease and control).

In general, gene selection is to select relevant genes and
remove redundant genes. Hence our method is divided
into two steps. The first step, Gene preselection, is to select
relevant candidate genes. The second step, Redundancy fil-
ter, is to apply the criterion of controlling the upper
bound of the Bayes error to the remaining genes obtained
from the first step for eliminating the redundant genes.

Gene preselection
An intrinsic problem with microarray data is that sample
size m is much smaller than the dimensionality of the
genes. Our gene preselection is based on its strength for
phenotype discrimination of each individual gene j, with
j ∈ {1, 2,..., n}. We use a univariate criterion function (e.g.
Wilcoxon test or F-test) to evaluate discriminative power
for each gene:

Score(j) = S(j) j ∈ {1,..., n} (1)

where S(·) is the criterion function. We then select those
relevant candidate genes according to FWER.

Redundancy filter
We use Bhattacharyya distance to estimate the upper
bound of the Bayes error, which will be used as a criterion
to filter out redundant genes from remaining genes
derived from Gene preselection step. Before discussing this
step, let us introduce the Bhattacharyya distance and the
relationship between the Bhattacharyya distance and the
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Bayes error. The Bhattacharyya distance, dB, can be a sepa-
rability measure between two classes and also can give
lower and upper bounds of the Bayes error [36]. The Bhat-
tacharyya distance is given as:

Mk is the mean vector of class k (k = 1 or 2); ∑k is the cov-
ariance matrix of class k (k = 1 or 2). The first term of
Equation (2) gives the class separability due to the differ-
ence between class means, and the second term gives the
class separability due to the difference between class cov-
ariance matrices. The Bayes error of classification between
the two classes is bounded by the following expression:

where Pk is prior probability of class k (k = 1 or 2). We can
derive the upper bound of the Bayes error evaluated from
the Inequality (3) with P1 = P2 = 0.5. That is,

 = 0.5 exp(-dB) (4)

We will use ε*B to control the Bayes error in classification
analyses in order to filters out redundant genes. After the
gene preselection procedure, the remaining genes form
the candidate gene subset, B, which is regarded as an
informative gene set. Then we construct an empty set, A,
for selected relevant genes. We select the gene ranked first
in the list of B as the initial gene in A. The gene ranked first
is much more informative than any other genes to dis-
criminate the two classes, thus we set it as the indispensa-
ble gene in A. We then use Sequential Forward Selection
algorithm to select the genes with great contribution to
the Bhattacharyya distance between two classes [34].
When the estimated upper bound of Bayes error reach pre-
defined criterion, the search procedure stops and return
the selected gene set, A.

In summary, our algorithm for gene selection proceeds as
follows:

Step 1: Use a criterion function (we adopt Wilcoxon test
in this study) to evaluate the discriminative power for
each gene and select candidate genes according to FWER
level.

Step 2: 1) Initialize A as an empty set (A is the set of
selected relevant genes)

2) Initialize B as the candidate genes set, pick one gene
ranked first in the list of criterion function values from B
and put it into A as an initial gene.

3) For i = 2: t (t is the number of genes to be selected)

• for j = 1:q (q is the number of genes in B)

---Take gene j from B, put it into A, and calculate dB(j) with
all genes in A.

• end

• Select the gene from B with the maximal dB value and
calculate corresponding ε*B

• if ε*B is greater than or equal to pre-defined criterion
(here this criterion is set as 1.0E-4, which will be discussed
later in Discussion section)

----Put this gene into set A; remove this gene from B

• else

----Stop the cycle and return the gene set A

4) End

Implementation of BBF method is available per request
from zhangjig@umkc.edu with source code in R.
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