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Abstract

Background: Answers to several fundamental questions in statistical genetics would ideally
require knowledge of the ancestral pedigree and of the gene flow therein. A few examples of such
questions are haplotype estimation, relatedness and relationship estimation, gene mapping by
combining pedigree and linkage disequilibrium information, and estimation of population structure.

Results: We present a probabilistic method for genealogy reconstruction. Starting with a group
of genotyped individuals from some population isolate, we explore the state space of their possible
ancestral histories under our Bayesian model by using Markov chain Monte Carlo (MCMC)
sampling techniques. The main contribution of our work is the development of sampling algorithms
in the resulting vast state space with highly dependent variables. The main drawback is the
computational complexity that limits the time horizon within which explicit reconstructions can be
carried out in practice.

Conclusion: The estimates for IBD (identity-by-descent) and haplotype distributions are tested in
several settings using simulated data. The results appear to be promising for a further development
of the method.

Background

There are several fundamental questions in statistical
genetics for which the answer would ideally require
knowledge of the ancestral pedigree and of the gene flow
therein. In practice, however, one will usually have avail-
able only partial information from the pedigree, and
hardly any information on the accompanying ancestral
allelic histories. Examples of intrinsic questions of this
kind are: haplotype estimation from pedigree data [1] or
from general population samples [2], pairwise estimation
of the degree of relatedness between individuals in natural
populations [3] or for forensic purposes [4], study of
allele-sharing among affected individuals [5], generation

of simulated data in a way which is compatible with
observed marker genotypes (genotypic elimination; see
[6,7]), estimation of population structure using multilo-
cus genotype data [8-10], estimation of the number of
founder chromosomes for given loci [11], gene mapping
by combining pedigree and linkage disequilibrium infor-
mation [12,13], and tracing genotyping errors in pedi-
grees [14].

Due to the shared generating process of inheritance pat-
tern on the pedigree, it is not surprising that the current
methods for addressing the above questions also have
some similarities. One of the similarities is that several
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methods first attempt to generate an identity-by-descent
(IBD) distribution between the individuals in the study
sample, although the particular solutions for carrying this
out then differ significantly from each other. There are
also papers focusing only on the estimation of the IBD-
distribution based on known pedigree information [1,15-
17], known haplotypes [13] or known population history
[18]. For population based data, there are some
approaches that approximate and model the genealogical
history of a sample of chromosomes from a population by
using ideas from the coalescent theory [19] and its exten-
sion incorporating recombinations, expressed in terms of
an ancestral recombination graph [20,21]. Applications of
these ideas include haplotyping [22] gene mapping [23-
25], estimating population parameters [26], and recombi-
nation rates [27]. However, in spite of the progress (see
also [28,29]), the development of effective MCMC sam-
pling methods for ancestral recombination graphs in gen-
eral has been relatively slow.

This paper extends the genealogy estimation method of
Gasbarra et al. [10] to the case of linked markers. Our
starting point is a sample of individuals from a natural
population, each being genotyped at certain marker loci,
but without any direct information on their pedigree or
interrelations. Our target is to provide an explicit recon-
struction, in terms of a probability model, of the recent
history of the genealogy connecting the sampled individ-
uals, conditionally on the observed genotype data and
available information on the demography of the popula-
tion. The model is specified by the following parameters:
(1) time in generations since the founding of the popula-
tion, (2) the marker allele frequencies in the founder pop-
ulation, (3) two mating parameters o, to the case of linked
markers. Our starting point is a sample of individuals
from a natural population, each being genotyped at cer-
tain marker loci, but without any direct information on
their pedigree or interrelations. Our target is to provide an
explicit reconstruction, in terms of a probability model, of
the recent history of the genealogy connecting the sam-
pled individuals, conditionally on the observed genotype
data and available information on the demography of the
population. The model is specified by the following
parameters: (1) time in generations since the founding of
the population, (2) the marker allele frequencies in the
founder population, (3) two mating parameters a and
controlling the mating behaviour [30], (4) the number of
males and females in each generation, and (5) the genetic
distances on the marker map. Combined with an algo-
rithm for drawing Monte Carlo samples from the condi-
tional distribution of genealogies, this modelling
framework can be applied to address, within limits of
computation, all the "intrinsic questions" mentioned
above.

http://www.biomedcentral.com/1471-2105/8/411

Methods

Prior distribution on the configuration space

The configuration space of possible ancestral histories ()
has three components: the ancestral graph (or pedigree)
specifying the relationships between individuals, the
paths of alleles of these individuals at the marker loci, and
the types of the founder alleles introduced into the ances-
tral graph via the founder individuals. The probability
model on the configuration space is similar to the one
described by Gasbarra et al. [10] except that in this study
the linkage between marker loci is allowed. Due to the
similarities we give here only a brief summary of the
model.

Ancestral graph

For pedigrees we use the probability model introduced by
Gasbarra et al. [30]. The model considers an isolated pop-
ulation with non-overlapping generations indexed back-
wards in time by t = 0, 1, ..., T with t = 0 referring to the
present and ¢ = T to the founder generation. The popula-
tion is characterized by four sets of parameters: N;, Ny,
a,and B, fort = 1, ..., T. The parameters N, and Ny
describe respectively the number of males and females
belonging to generation t of the population. Parameter ¢,
controls the differences of reproductive success between
males in generation ¢: large values of ¢, imply nearly equal
numbers of children for each male whereas with small val-
ues of ¢, there will be a few dominant males who are
mainly responsible for the reproduction. Parameter £,
tunes the degree of monogamy (of males) in generation t:
large values of S, lead to random mating and small values
of 3, introduce more permanent family structures into the

pedigree. Naturally the roles of males and females can be
changed in the model. We denote this probability meas-

ure on pedigree graphs by Pg ().

Flow of alleles through the ancestral graph

We assume a fixed marker map with L loci, and denote the
recombination fractions between loci by p = (p(I, I') : 1 <
I<I'<L). Note that several chromosomes can be modelled
simultaneously using the recombination fraction p(l, I') =

% to indicate that markers [ and I' lie in different linkage
groups.

By definition, the genome of each individual in the ances-
tral graph consists of a pair of paternal and maternal hap-
lotypes. The flow of alleles through the pedigree is
determined by the grandparental origins which for haplo-
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type i are denoted by v; = (y(1), ..., (L)) € {0, 1}L. The
convention used here is that y;(I) = 0 if the allele at locus
I of haplotype i is of grandmaternal origin, and y;(I) = 1 in
the case of grandpaternal origin.

If an allele carried by an individual in generation ¢ > 0 is
transmitted to some individual in the present generation,
we say that the allele is ancestral, and otherwise that it is
censored. Since we are actually interested only in the paths
of the ancestral alleles we set (1) = & if the allele at locus
I of haplotype i is censored.

The probability of a set ¥ = (y;);cp of grandparental

origins of nonfounder haplotypes on the pedigree is given
by

R, (%) = TT TT [ pCitws DO = p(itws )40 )

ieNleA;

where A; = {1 : y(I) # D}, j(w, 1) denotes the last uncen-
sored locus of haplotype i before I, with the convention
that j(y;, 1) = -0, if I is the first uncensored locus of the

. 1 .
haplotype i, p(=e, 1) = — and A1) = |wi() - ¥ii(v; )|

with the convention that y;(-0) = 0.

Types of founder alleles

Denote by g, = (g,(I) : 1 =1, ..., L) the unordered genotype
of individual k and let A = (g,: k € 7 ) be the vector of
founders' genotypes. Assuming linkage equilibrium at the
founder generation, the probability of the founder alleles
is given by

L
Pa(A) = [T T fts D),
ke F 1=1
where the population genotype frequencies fr( -; I) at each
marker locus I are assumed given. (If Hardy-Weinberg
equilibrium is assumed, we can use the population allele
frequencies instead.) The genotype frequencies are
extended to partially or totally censored genotypes in the
obvious way. Note that the ordered founder alleles
together with the grandparental origins of the nonfounder
haplotypes determine the flow of alleles in the pedigree.

Prior distribution
Given the pedigree parameters (N;, N7, B, a, T), the
population genotype frequencies and the recombination

fractions between the marker loci, a configuration @ con-
sisting of a pedigree G and a geneflow with founder alleles

http://www.biomedcentral.com/1471-2105/8/411

A and grandparental origins ¥, is assigned (prior) proba-
bility

m(w) = Pg(G)x Px(A)X B, (V).

Data and posterior distribution

Suppose that we observe the genotype data D = (g,(I) : I <
L, k £n(0)) of n(0) individuals in the current generation.
The posterior probability of configuration  is simply

_ YweC)n(w)
w(o|D)= =2, M

where C < Q is the set of configurations that are compat-
ible with the observed genotype data.

As it seems impossible to sample independent realiza-
tions from the posterior (see Appendix A.1) we shall use a
Markov chain Monte Carlo method to perform the com-
putations.

Markov chain Monte Carlo algorithm

The general idea of MCMC methods and the details of our
algorithm are given in the appendices, whence here we
only sketch the main ideas of devising an efficient pro-
posal distribution for a Metropolis-Hastings algorithm.

In a typical proposal move of our algorithm, a group of
children in the ancestral graph try to change one or both
of their parents to other possible parents of the popula-
tion. This is done either by selecting the children uni-
formly at random from the ancestral graph, or by
considering all children of a randomly chosen parent. It is
necessary that the proposed new paths for the ancestral
alleles carried by the children are compatible with the
genes carried by the new ancestors. In order to obtain such
a compatible configuration with a reasonable probability,
our proposal distribution given in (8) for choosing the
new parents takes into account sequentially the children's
genotypes and the transmission probabilities of the alleles
of prospective candidate parents at all marker loci. After
choosing the new parents, we use the transmission prob-
abilities of the new ancestors to resample the paths of the
alleles carried by the children (10). Finally the new config-
uration is accepted or rejected according to the Metropo-
lis-Hastings rule.

In the simplified setting of our earlier work [10] the trans-
mission probabilities were calculated by assuming free
recombinations between marker loci. When the markers
are linked, the situation becomes much more difficult.
Although the proposal based on independent transmis-
sion probabilities produces configurations compatible
with the genetic data with high probability, a drawback is
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that typically these configurations contain unrealistically
many recombinations. In the case of several tightly linked
markers this leads to low recombination likelihood
scores, and consequently low acceptance rates and poor
mixing of the Markov chain. In order to avoid that, we
have to include at least partially the recombination likeli-
hood into the proposal distribution for the allelic paths.
This is computationally demanding but possible through
the Viterbi-Baum algorithm for hidden Markov models.
In Appendix B we describe how to sample the allelic
phases of an individual, jointly at all marker loci, by tak-
ing into account his/her genotypes, his/her parents' trans-
mission probabilities, and the likelihood of the
recombination pattern on the haplotypes of his/her chil-
dren. This step is used sequentially to generate the new
allelic paths.

Using the algorithm of Kruglyak and Lander [31], we also
construct a joint sampling distribution for the allelic
phases of a group of siblings and of their parents at all
marker loci, combining the parental transmission proba-
bilities with the recombination likelihood on the haplo-
types of the children (see Appendix A.7.2).

The computational complexity of these sampling steps
grows linearly in the number of markers, suggesting that
it is not an unrealistic task to handle hundreds of linked
markers.

Results

The performance of the method was tested on two simu-
lated data sets. The first data set was designed specifically
to give information on the method's performance in the
problems of haplotyping and relatedness estimation. For
the former, comparisons were done with corresponding
results obtained with PHASE [32] and for the latter with
three existing moment estimators [33-36]. The second
data set was generated using concepts from gene mapping.
The purpose was to evaluate the potential advantages of
using the IBD-information produced by our method over
simple IBS-sharing statistics.

Haplotyping and relatedness estimation

Simulated data

We considered a simulated pedigree that extended for 10
generations and contained 439 individuals (Figure 1).
This pedigree was also used by Gasbarra et al. [10], as their
Example III, and the details of the simulation procedure
are given there.

The gene flow on the pedigree was simulated at 20 linked
marker loci. All markers were polymorphic with 10
equally frequent alleles at the population level and the
neighbouring loci were separated by the recombination
fraction of 0.05. The simulation of genetic data was

http://www.biomedcentral.com/1471-2105/8/411

accomplished by sampling the founder alleles from the
population allele frequencies and dropping them down
through the pedigree in accordance with the recombina-
tion model.

Reconstruction

Our task was to provide possible reconstructions of the
simulated pedigree and corresponding gene flow using
only the unordered genotype data on the youngest gener-
ation but having no information on the underlying pedi-
gree structure. The marker map, the population allele
frequencies and the size of the population were assumed
known in the reconstruction i.e. they were given the same
values as in the data simulation. The mating parameters
and f can be estimated by a maximum-likelihood estima-
tor [30] from observed family structures if the size of the
base population is known. We used this approach to esti-
mate S on the basis of the family structures between gen-
erations 1 and 2 in the simulated pedigree (here O refers
to the youngest generation), resulting in the value =4 x
104. For o we used generation dependent values ¢, =

AN/, where N/ was the number of females belonging to

generation ¢ = 1, ..., 9. We ran five independent sample
chains, each with a different seed for the random number
generator. One of the chains was extended to 1, 000, 000
iterations whereas the other four were stopped after 500,
000 iterations. The longer run took about 10 days on a
Pentium-4 2.8 GHz processor. The results for haplotyping
and IBD-analyses were saved from every tenth iteration.
The monitored statistics behaved very similarly across the
different runs suggesting that with these data the method
performs consistently regardless of the initial state. To
compare the performance of the present model with our
earlier model that assumed unlinked markers [10] the cor-
responding runs were also conducted with the simpler
model.

Haplotyping

If there are h > 1 heterozygous loci in the multilocus gen-
otype, then there are 2! different ways to do the haplo-
type assignment. Note that here we do not distinguish
between the parental (paternal/maternal) origins of the
haplotypes, which would further increase the number of
different assignments to 2. There is only a single correct
haplotype configuration, and to measure how much our
estimates deviate from it we use the concept of switch dis-
tance [2]. We say that two adjacent heterozygous loci are
correctly (incorrectly) phased if the corresponding two
locus haplotypes are correct (incorrect). The switch dis-
tance of the haplotype assignment is defined as the
number of incorrectly phased adjacent heterozygous loci.
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Pedigree of the first example. 439 individuals and 10 generations of which the youngest one consisted of the children of 13

nuclear families. Squares denote males, circles denote females. Reprinted from [10].

Figure |
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The maximum switch distance of a haplotype configura-
tion is one less than the number of heterozygous loci, and
it is zero only for the correct configuration. For example,
if the true haplotypes are (111111, 222222) then the
switch distance of pair (112222, 221111) is 1 and that of
pair (121212, 212121) is 5.

In Figure 2 a path of the sum of switch distances of haplo-
types belonging to the current generation is shown. If alle-
les (at heterozygous loci) were assigned to the two
haplotypes randomly, then the switch distance of the hap-
lotype pair of individual i would be distributed according

1
to Binomial(h; - 1, 3 ), where h; > 0 is the number of i's
heterozygous marker loci. The sum of switch distances

would then be distributed as Binomial(h - n, 1 ), where

http://www.biomedcentral.com/1471-2105/8/411

h= 2?:1 h; and n is the number of individuals in the

sample. In our simulated data, n = 39 and h = 675; thus,
under the null model of random haplotype assignment,
the expected sum of switch distances would be 318 and
the corresponding standard deviation 12.6. In our five test
runs the average initial value of the sum of switch dis-
tances was 295 from where it decreased during the itera-
tions to an average value (calculated over the iterations
250,000, ..., 500,000 of the five runs) of 82.8. The corre-
sponding average value over the iterations 500,000, ...,
1,000,000 of the longer run was 61.9. It can also be seen
from Figure 2 that our recombination model significantly
enhances the results from the ones attained by assuming
free recombinations.

Reconstructed haplotypes
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Figure 2

Haplotyping. The development of the sum of switch distances of the haplotype pairs of the youngest generation over
1,000,000 iterations, both with and without using the recombination model. The line at 318 is the expected value under ran-
dom haplotype assignment and the line at 77 is the value obtained with PHASE (v.2.1).
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There are two kinds of haplotyping software currently
available, namely pedigree-based and population-based
methods. In actual fact, our data contain some close rela-
tives, but since no relationship information is assumed to
be available we are working with a general population
sample. For a comparison we analysed the data with the
software PHASE (v.2.1) [32]. Usually PHASE and other
population-based haplotyping methods are applied to
much denser marker maps where recombinations (per
meiosis) are rare and the haplotypes are very likely to be
inherited as single units through tens of generations. This
is not the case here, but since the current version of PHASE
is widely used and takes into account also recombina-
tions, we chose it as the reference method among the
existing algorithms.

We considered three different chain lengths for PHASE
(100 (default), 500, and 1000 iterations) and then ran ten
independent test runs for each with different choices of
the seed of the random number generator. The burn-in
part and the level of thinning were kept at their default
values of 100 and 1 iterations, respectively.

PHASE can be requested to give the posterior probability
distribution of all possible haplotypes for each individual.
We measured the accuracy of these estimates by calculat-
ing the expected switch distance for each individual with
respect to his/her posterior distribution of the haplotype
configurations. The sums of the switch distances over all
39 individuals, averaged over ten independent runs, were
80.1, 76.6 and 76.7 for the chains of length 100, 500 and
1000 iterations, respectively. Since increasing the number
of iterations from 500 to 1000 did not seem to enhance
the results, we did not try to run PHASE longer. The best
value PHASE gave (76.6) is shown with a dotted line in
Figure 2. It seems that, at least on these data, PHASE and
our algorithm have quite comparable accuracy in estimat-
ing the haplotype configurations, even though the under-
lying models are very different.

A clear advantage of PHASE over our method is in its
speed: a single run takes only a couple of minutes whereas
our algorithm was run for several days. One of the reasons
is that we are modelling explicitly the whole genealogy,
not just the haplotypes, and are thus able to address some
other questions with the same effort. In the future we
could also try using PHASE to give an initial haplotype
configuration for our method.

Relatedness estimation

Here we consider relatedness estimation in a similar way
as Gasbarra et al. [10]. Two alleles are said to be identical-
by-descent (IBD) if they descend from the same ancestral
allele within the pedigree. Note that two alleles may be
identical-by-state (IBS), i.e. represent the same allelic

http://www.biomedcentral.com/1471-2105/8/411

form, without being IBD if two or more founder alleles
happen to be of the same type. The concept of IBD thus
indicates whether two contemporary alleles descended
from a common ancestor that had existed since the
founder generation, but it does not estimate their possible
coalescent times more accurately. However, if needed, we
could also capture the exact time (in generations) of these
coalescing events.

In order to quantify the relatedness we denote by r;(1) the

probability that a randomly chosen allele from locus I of
individual i has an IBD-copy in individual j. For individu-
als i and j we define the locus-specific relatedness coeffi-

cients Ry(l) = %(rij(l) + 1;1(1)) and the genome-level

1
relatedness coefficient R;; = szzl R;;(1) . Note that in

the presence of inbreeding we can have r;(1) # r;;(1). How-
ever, always R;(I) = R;(I) and R;; = R;;.

As our input data contain no pedigree information, it
seems that other methods available for IBD-estimation
from such data are based on different formulas that com-
bine the IBS-status of the markers and the known popula-
tion allele frequencies to an estimate of the IBD-
probability (usually R;;). We have compared the estimates
given by our algorithm with three such moment estima-
tors described by Lynch [33] and Li et al. [34] (LL), Lynch
and Ritland [35] (LR) and Wang [36] (W).

These three methods assume unlinked loci and then com-
bine the locus-specific results according to some weight-
ing schemes in order to obtain estimates of the genome-
level relatedness coefficients. The derivations of both LR
and W are also based on the assumption of no inbreeding,.
Since our data violate these assumptions some additional
error may be caused to the moment estimators. Moreover,
it is questionable whether these moment estimators actu-
ally answer the exact question of IBD-sharing when
restricted to the latest ten generations (see also [37]) as
their estimates are relative to the base population defined
by the allele frequencies and no exact reference point of
IBD-sharing can be specified (like the founder generation
in our example). On the other hand, polymorphic data
sets like the one used here are advantageous for the
moment estimators since in these cases IBS-sharing gives
already a fairly good approximation of the actual IBD-
sharing.

The accuracy of the relatedness estimates was measured by
squared error. Namely, we computed the true values of
the coefficients R;; for each pair of individuals from the

original genealogy and compared then the distribution of

Page 7 of 31

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:411

quantities (R;; - Rij )2 between our method and the three

above mentioned moment estimators. We also included
results obtained with our method without modelling the
linkage in order to illustrate again that the linkage model
enhances the results. The distributions of the errors are
shown with boxplots in Figure 3, where the letter G refers
to our method. The sums of squared errors over all 741
pairs of individuals were 1.89, 2.43, 3.25, 3.27 and 3.51
for G, G(unlinked), LL, LR and W, respectively. The results
for our method were calculated as the average values over
the five runs of length 500,000 iterations (burn-in parts
were 250,000 iterations).

http://www.biomedcentral.com/1471-2105/8/411

In gene mapping it is of interest to know the exact loca-
tions in the genome in which some group of individuals
share alleles IBD (see the next example). In Figure 4 we
have chosen six pairs of individuals belonging to the cur-
rent generation and illustrated both the true IBD-sharing
fractions R;(I) (dotted lines) and the estimated IBD-prob-

abilities '[é/] () (solid lines). It seems that our results do

not significantly underestimate the true IBD-profiles. As a
very large pedigree would generally result in too low IBD-
estimates we may conclude that the reconstruction algo-
rithm has not introduced many extra parents to the pedi-
gree. In those parts of the chromosomes where our
estimates exceed the true values, there is a certain amount
of additional IBS-sharing for which our algorithm has not

Distributions of squared errors in IBD-estimation
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Figure 3

Squared errors of relatedness estimates. Boxplots show squared errors of all 74| pairwise relatedness coefficients R;,
where i and j are different individuals from generation 0. The boxes indicate the quartiles (Ist, 2nd and 3rd) and the 'whiskers'
cover the errors whose distance from the box is less than |.5 times the box size. The outliers are indicated with single points.
Methods used: ours (G), ours without linkage model (G(unlinked)), Lynch and Li's (LL), Lynch and Ritland's (LR) and Wang's

(W).
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Figure 4

IBD-sharing probabilities R;(l) for six pairs of individuals from generation 0. These individuals can be found from Fig-
ure | where the indexes increase from right to left (from | to 39). The two leftmost panels illustrate the IBD-sharing profiles
of full-siblings, the upper panel in the middle is of a pair of first cousins, and the lower one describes half cousins. The two
rightmost panels show the IBD-sharing between the most distant relatives that can be found in the data. The dotted lines are

the exact values and the solid lines our estimates.

been able to completely rule out the possibility of it actu-
ally being IBD. Note that the lack of IBS-sharing already
implies that there can be no IBD-sharing.

Gene mapping

In this example we applied concepts from gene mapping
to further monitor the accuracy of our reconstruction
algorithm. We simulated a monogenic trait with a domi-
nant mode of inheritance, and then investigated whether
we can trace the position of a trait locus, relative to a set of
marker loci, by considering suitable allele or haplotype
sharing statistics. The purpose of the example is to com-
pare the estimated IBD and haplotyping results to the sim-
ulated "true" ones and to the plain IBS data, whereas a
proper extension of the model to gene mapping will be
considered elsewhere (see also Discussion).

Simulated data

We considered a population that has grown exponentially
by a factor of 1.2 during the 9 most recent generations.
The founder level (assumed to be in Hardy-Weinberg and
linkage equilibrium) was taken to be the 19th generation
(backwards in time). The population was postulated to
have maintained a constant size of 200 individuals
between the 9th and the 19th generations. The method of
Gasbarra et al. [30] was used to simulate a 20-generation
pedigree from this population, with 400 individuals at the
current (Oth) generation. The parameter & was set to 10.0
in order to decrease the relatedness of the individuals
belonging to the current generation. The monogamy
parameter S was set to 0.001. As a result the pedigree con-
tained 4815 individuals of whom 120 were founders.
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A gene flow was simulated on the marker map containing
14 microsatellite markers separated by the recombination
fraction of 0.10, and 26 SNP markers located in such a
way that between any two adjacent microsatellites there
were two SNPs evenly spaced with respect to genetic dis-
tance. The allele frequencies were sampled from the
Dirichlet distribution with all parameters equal to 1. For
microsatellites there were 10 different alleles and the SNPs
were biallelic at the founder level.

Having simulated the pedigree and the gene flow we fixed
an additional trait locus half way between (SNP) markers
20 and 21 and simulated the segregation of the founder
alleles at that locus in accordance with the inheritance pat-
terns of the flanking markers and the Haldane recombina-
tion model. We chose one particular founder allele at the
trait locus and collected all of its 44 carriers from the cur-
rent generation to form our sample.

Reconstruction

The question was whether we could spot the trait locus by
comparing the values of an IBD-sharing statistic of the
sampled individuals in different marker loci. The idea is
that the carriers should share more alleles IBD near the
trait locus than elsewhere on the chromosome. For com-
putational reasons, and also in order to violate the
assumption of the founder generation being in exact
Hardy-Weinberg and linkage equilibria, the time horizon
was in the reconstruction set to 9 generations instead of
19 that was used in the simulation. Considering the his-
tory only 9 generations backwards is likely to produce
challenges for the reconstruction, since in the simulated
data there were altogether six different copies of the trait
allele at the 9th generation, all of whom had descendants
among our sample. On the other hand, when extending
the analysis for tens of generations backwards in time the
exact number of generations being considered is likely to
become less important, and also it is less likely that we
could find out the exact generation in which each coalesc-
ing event actually occurred.

The population allelic frequencies and the population size
were considered known. For f the previously estimated
value 4 x 10-4was used and again ¢,= 5 N where N/ was

the number of females belonging to generationt, t=1, ...,
9 (the current generation has index 0). The algorithm was
run for 100, 000 iterations, which took about two days on
a Pentium-4 2.8 GHz processor. The results were saved
from every tenth iteration and averaged over two inde-
pendent runs.

http://www.biomedcentral.com/1471-2105/8/411

Results
Let us denote by F the set of founders of a pedigree and

by S the set of individuals in our sample. For each

marker | and each individual i denote by

G()= {gl(l)(l),gl(z) (1)} the marker genotype of i at locus
I . Enumerate all 2| ¥ | founder haplotypes and let
E()= {fi(l)(l), fl.(z)(l)} be the founder alleles of i at locus

I, where fi(k) (1) is the label of the founder haplotype from

which the allele gl(k) (D) originates (k = 1, 2). We consider

the following allele sharing statistic. Let Min( S ; I) be the

size of a smallest set V.c {1, ..., 2| F |} of founder alleles
for which

e vorfPev, forallies.

Note that such a minimal V does not have to be unique,
but our interest lies in the unique size of these sets. Find-
ing such a minimal set V is an instance of a well-known
NP-complete problem of finding a minimum vertex cover
for a given graph. This can be seen by considering the
graph where the founder alleles are vertices and for each i

e S there is an undirected edge between fl-(l) and fi(z).

Graph theoretic formulation of the problem made it pos-
sible to compute the exact values of Min( S; ). (A brute-
force search over 244 different sets at each locus and on
each iteration would not be feasible.) The same statistic

(with a different sign) is called TS, in [5] where it was

reported to work well for extended pedigrees and domi-
nant traits. In Figure 5 we have plotted the values of
Min( S ; 1) at each marker locus, both for the reconstruc-
tion (averaged over iterations) and for the true situation
with two choices for the founder generation (9th and 19th
generations). All three plots have their minimum at the
marker locus 20, in good agreement with the trait locus
lying half way between the loci 20 and 21.

It seems that generally the number of different founder
alleles in the reconstruction is more similar to the original
situation in the 19th generation than to that in the 9th
generation, even though the reconstruction was actually
done for 9 generations. This suggests that, as we recon-
struct more generations backwards in time, the assump-
tion of the founder generation being in Hardy-Weinberg
and linkage equilibria may become more important than
the actual number of generations considered. In other
words, the algorithm may try to squeeze the original ped-
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IBD-sharing among 44 sampled individuals at each marker locus. The statistic Min(S ; ) was calculated from the orig-
inal situation with respect to the 19th generation (original founder level) and the 9th generation and from a reconstruction

over 9 generations.

igree and gene flow to the given time horizon. On the
other hand, it is unlikely that the postulated genetic equi-
libria would hold to a very close approximation among a
set of founders of a population isolate.

No similar drop in allele numbers can be seen near the
trait locus in mere IBS-sharing statistics among the sam-
pled individuals. In Figure 6 we have plotted the IBS-
based Min( S ; I) statistics that were calculated by replac-

ing the founder labels fi(k) (1) in the definition above with

the corresponding allele types gl(k) (). Since allele fre-

quencies may have a strong effect on the expected number
of different IBS-alleles, we have chosen a control group C
of 44 individuals randomly among the 356 non-carriers

belonging to the current generation of the original pedi-
gree. The lower curve in Figure 6 illustrates the differences
Min(S; 1) - Min(C; I). Staying non-negative near locus
20, it does not seem to give a signal of the trait locus. We
also compared the entropies of the (IBS) allele distribu-
tions of carriers and controls (results not shown) but did
not find any excess allele sharing near the trait locus.

As an alternative measure of genetic similarity we can also
monitor how long haplotype segments the sampled indi-
viduals share in different parts of the genome. For a given
locus I the haplotype sharing statistic HSS(I) is computed
as the average sharing between all distinct haplotype pairs
(h and k) at that locus in the sample. We say that the shar-
ing s,,(1) is zero if the corresponding alleles at locus [ are
inherited from different founder haplotypes, otherwise
spe(D) is the length (in genetic distance) of the correspond-
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IBS-sharing among 44 sampled individuals at each marker locus. The upper curve illustrates similar statistic as
Min( S ; I) but calculated from IBS-status. The lower curve displays the difference Min(S; I) - Min(C ; I), where C is a control
group. No signal of the trait locus between the markers 20 and 2| can be found from these IBS-statistics.

ing overlapping IBD-segments. Following [30] the value
of the haplotype sharing statistic at locus I in the sampled
group of individuals was evaluated using the formula

2n

HSS(Z) = ; 2 2 Shk (Z),

n(2n—=1) ;3 peh

where n = | S| (see also the statistics in [38-40]).

In Figure 7 we show the values of the haplotype sharing
statistics for both the reconstruction and the true situa-
tion, the latter with two different choices of the founder
level (the 9th and the 19th generation). The curves calcu-
lated from the true allele paths show clearly that the sam-
pled individuals share longer haplotypes near the trait

locus than elsewhere in the chromosome, especially in the
direction of the 20th marker locus. These facts are also
present in the reconstruction, but the signal is much

weaker.

The questions that remain can now be stated as follows:
(i) How much of the complete information do the mere
genotype data on the youngest generation contain, and
(ii) how strong a signal one can expect to get from this
kind of data with any computational method? We use a
long chromosomal segment (1.45 Morgans) with a quite
sparse marker map (over 3 cM between adjacent loci), as
we are interested in the recombination process. Difficul-
ties with these data may arise because recombinations are
frequent and mix up shorter segments in various ways. In
addition, the sampled individuals are more distantly
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Haplotype sharing among 44 sampled individuals at each marker locus. HSS is calculated for the original situation
with respect to two different founder levels (19th and 9th generations) and for the reconstruction (9 generations). The signal
in the reconstruction is very weak compared to the true situation.

related to each other in this example than in the previous
one, as can be seen from the average values of R; with
respect to the 9th generation, (0.05 and 0.19, respectively,
in this and in the previous example).

Haplotyping is easier for our method when there are sib-
lings or other close relatives in the sample, since their data
tend to cluster to the same families also in the reconstruc-
tion and thus increase locally the amount of information
on those parts of the pedigree. This can be seen, for exam-
ple, in Figure 4 where the estimates of IBD-sharing are
very close to the true values for siblings (the leftmost pic-
tures) and somewhat less accurate for more distant rela-
tives (the rightmost pictures). Some further
enhancements in the estimates might also be achieved if
we knew some parts of the pedigree and were able to uti-
lize this information in our algorithm. Such possibilities
will be considered in our future work.

On the other hand, we cannot completely rule out the
possibility that the relatively weak signals in haplotype
sharing would be influenced by the slow mixing of the
MCMC sampler.

Discussion

The main motivation leading to this study was to provide
a common methodological basis for considering a
number of inter-related fundamental questions in statisti-
cal genetics, by extending our earlier work [10] to linked
marker data. Our approach can be seen to complement
the methods that are used in the reconstruction of coales-
cents. In particular, both approaches start from DNA sam-
ples taken from present day individuals and then make an
attempt to trace back their common genetic origins. In the
original coalescent analysis the main focus is on attempts
to reconstruct the underlying evolutionary history, driven
by mutations [19]. To do this, one proceeds backwards
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along germ lines looking for Most Recent Common
Ancestors (MRCA's), every time coalescing two lines when
a common ancestor for them is postulated, and finally
ending with the root of the resulting tree structure. Later
the coalescent theory has been extended in several direc-
tions [41], most notably to ancestral recombination
graphs (ARG's) [20,21] that include the recombination
process. Common to the coalescent theory and its exten-
sions is that the relevant time scale for them is usually of
the order of thousands of generations or even much
longer. On balance, generally one then considers only rel-
atively short aligned sequences of DNA at a time. The
present method is analogous to the search for MRCA's in
that it, too, can be seen as a search for chromosomal areas
shared by some individuals in the sample, and is carried
out by sampling explicit hypothetical reconstructions of
the past. Here, however, the genealogies are assumed to be
driven by mating and meioses and the effect of mutations
is ignored. Also the time scale in which these reconstruc-
tions are carried out is very much shorter, of the order of
tens of generations. But then they are carried out by jointly
considering marker loci that cover much wider chromo-
somal areas such as whole chromosomes, or even the
entire genome. Note also that our model builds on an
explicit consideration of diploid chromosomes, which is
a source of substantial technical complications in the
computations. Thus, in trying to resolve questions con-
cerning shared ancestral origins of the marker alleles, we
also allow for the possibility of inbreeding, that is, loops
in the ancestral graph. The original coalescent process
considers the genealogy of a random sample of genes
from a very large and randomly mating population
whence the sample size has a large effect on the coalescent
time. In contrast, if we consider closely related or ascer-
tained (for some phenotype) individuals in an effectively
smaller population, then even a small sample is likely to
find common ancestry within our framework. Thus the
main factor in determining the rate of coalescences in our
method is the relatedness structure that the data contain,
not necessarily the number of sampled individuals in the
data. Additionally, we emphasize that in our model (as in
ARG's) the coalescences may involve only small parts of
the haplotypes and thus the coalecences are not tied to the
number of individuals in the first place. Namely, after a
few generations backwards in time, the haplotypes of any
sampled individual may have split into tens of parts, each
having its own genealogical tree.

Reconstructing plausible pedigrees of the sampled indi-
viduals conditionally on the observed marker data always
requires some knowledge about the recent history of the
population. Here such information is provided in the
form of postulated parameter values for controlling pop-
ulation growth and mating, as well as assuming that the
members of the founder generation are in linkage and
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Hardy-Weinberg equilibrium. Unrelated founders in link-
age equilibrium seems to be a common assumption in
pedigree analyses. This assumption is likely to be unreal-
istic especially when it is applied to small pedigrees whose
founders lie only a few generations backwards in time (as
in traditional linkage analysis). On the other hand,
extending the founder level to some tens of generations
farther back in time, as is done here, allows more realistic
modelling of the relatedness structure within a few of the
most recent generations (i.e. within those generations that
contain the sampled individuals).

When assessing the usefulness of our approach in practi-
cal applications based on real data it will be important to
assess the sensitivity of the results to variations in the tun-
ing parameters. In the gene mapping example one may
also enquire how strongly the results would depend on
the number of generations that are considered in the
reconstruction. As noted in [10] the relation between the
concept of generation in the model and its counterpart in
the real population is not straightforward and varies as a
function of marker data and parameter values.

Our numerical examples illustrated how one can usefully
summarize the relevant posterior information contained
in an MCMC sample of ancestral graphs by considering
certain statistics of interest, such as those describing the
relatedness between a pair of individuals at different
marker loci. One can then think of the sampled pedigrees
as being merely vehicles that alleles need to find their way
through the pedigree from the founders to the study sam-
ple, or as nuisance parameters that will ultimately be inte-
grated out from the results. In view of the enormous size
of the sample space of ancestral graphs, it is the relative
robustness of these summary statistics to the exact pedi-
gree and gene flow information which makes our
approach based on MCMC sampling at all feasible.

Our approach becomes soon computationally infeasible
as the number of generations in the reconstruction
increases since the task of finding suitable proposals
requires computations whose complexity grows rapidly
with an increasing depth of the pedigree. In our numerical
examples we used a single desk computer. However, more
computational power is needed to handle larger data sets
and/or denser marker panels (e.g. SNP data) in a reasona-
ble time. We have sketched a tempering version of the
algorithm in which several chains run in parallel (see also
[42]). The idea there is to improve the mixing of the sam-
pler by giving each chain its own "temperature" that then
controls the weight of each recombination likelihood in
the acceptance ratios of the Metropolis-Hastings updates.
The higher the temperature, the more easily the proposals
are accepted, but the results are monitored only for the
chain at the lowest temperature where the recombination
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likelihood is not relaxed at all. After a certain prespecified
number of iterations the chains at neighbouring tempera-
tures compare their configurations in terms of their
respective likelihood values and then may swap the tem-
peratures according to a suitable rule. The idea is that if
some chain finds a good configuration, this configuration
can move gradually towards the lowest temperature from
which the results are then collected.

Another method, also using parallel Markov chains, is
provided by the Feynman-Kac-Metropolis algorithm [43].
Given a Metropolis-Hastings algorithm with target distri-
bution 7z(x), proposal distribution g(x — y) and accept-
ance probability a(x — y), one can construct a system of N

interacting Markov chains (Xt(l),...,XgN)) as follows. At

time ¢, state of the

(X(l)

[—17er

given the previous system

ng_\?), we sample independently proposal
states )A(El) Jever )A(gN) from the respective proposal distribu-
tions q(Xt(?1 - Xgi)), i=1,..,N. Then, fori=1, .., N,
with probability a( (Xgl_)1 - Xgi)) we take Xgi) = Xt(i),

and otherwise sample Xgi) from the set { )A(p),...,f(gN) }

by assigning the probability

. ) N . .
a(xD - xS ax), - xU)y
j=1

to the choice Xgi) = Xi(j) . In this way the N chains interact
and the particle system explores the target distribution's
landscape more efficiently than a system of N independ-
ent Metropolis chains based on the same proposal kernel
q(x = y). Although the N-fold product distribution z&N is
not the invariant distribution of the N-particle system, it
has been shown that as N — o and t — o, the empirical

N

distribution [N -1 Z J¥0) J converges to the target distri-

. t
i=1

bution 7.

We conclude by some remarks concerning gene mapping.
Often data used in genetic mapping studies consist of a
number of nuclear or extended families, each formed by
first ascertaining an affected individual (proband) and
then collecting marker and/or phenotype data on close
relatives of the proband. If this is the case, it is natural to
make use of the known family structure and of the marker
data that may be available, for example, from the siblings
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and the parents of the proband. Considering the gene
flow within each such small known pedigree, and making
use of this information in a phenotype or penetrance
model, will then correspond to "ordinary" linkage or
QTL-analysis. However, particularly in data sets in which
all probands are collected from a genetic isolate, as is
often the case, also these small pedigrees can be assumed
to share, in the sense of IBD, some part of their ancestry.
In such cases, there is growing interest in the current liter-
ature in modelling the relatedness between founder indi-
viduals (e.g., [12,13,44]). In the currently existing
approaches the recent shared ancestry is modelled only at
the putative QTL-position or estimated separately for each
marker/QTL (based on flanking marker loci), whereas
here we consider this question jointly at all marker loci.
Note also that, by making use of the Haldane map func-
tion, this gives us a handle for doing the same, in terms of
probabilities, on the intervals between flanking markers.
In a near future our plan is to modify the present recon-
struction method in a way which allows us to fix the
known parts of the pedigree and the corresponding
marker information to the extent in which it is known,
and then apply the reconstruction algorithm for building
"bridges between these islands".

It seems likely that no single method can perform equally
well on the whole spectrum of different types of genetic
data currently available. Indeed, interplay of several meth-
odological approaches will be crucial during the future
gene mapping studies. The main role of our method may
be in the initial stage of a genome-wide mapping project
when interesting regions are sought using a marker spac-
ing that is measured in centimorgans and the pedigree
records are not complete. In the study of complex disease
traits our method can be applied to estimate the haplo-
types and/or relatedness structure which can then be used
as input parameters for subsequent QTL or association
mapping (e.g. [45]). In order to provide a more systematic
approach to this problem, we are currently planning to
build an even larger Bayesian model which would allow
us to combine these two stages of analysis. This would
involve expanding the present method further by adding
to the model one more layer of hierarchy corresponding
to the underlying genetic architecture of the trait [45-48].
In such a large integrated method, generation of IBD and
haplotype distributions as well as screening of QTL-posi-
tions could all be performed as parts of a joint analysis. At
least in principle, the number of contributing loci and
their positions, the size of their effects, interactions within
and between genes and environmental factors, as well as
the mode of a gene action, could be analysed by such a
method. Of course, the computational requirements for
this kind of gigantic model are even larger than for the cur-
rent method, and the practical implementation will be a
major computational challenge.
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Conclusion

We have implemented an algorithm for analyzing recent
history of linked multilocus genotype data sampled from
an isolated diploid population. We model the paths of the
observed alleles through tens of generations by explicitly
including all ancestral individuals and corresponding
meioses into the possible ancestral configurations. Thus
we are extending the methods that estimate gene flows on
fixed pedigrees to the case where also the pedigrees need
to be estimated.

We have tested the method on the problems of haplotyp-
ing and IBD-estimation. In both cases the method per-
forms well compared to some widely used existing
methods. We have also illustrated how our estimates for
IBD-sharing are more informative than a simple IBS-shar-
ing statistic on a tentative example on gene mapping.

Our experiences reported here and in [10] encourage us to
develop the method further. Indeed, the current version of
the method can be seen as a general tool for estimating
genealogical relationships between sample units. In more
complex applications, such as gene mapping, it can serve
as a basis for extended models.
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Appendices
In the following two appendices we describe the MCMC
algorithm in more detail.

Appendix A first discusses why we are not able to sample
from the posterior without MCMC. Then we briefly sum-
marize the theoretical background of the MCMC meth-
ods, describe a way to generate an initial configuration for
the chain, and finally explain the block-updates that are
used to propose new states for the chain.

Appendix B introduces an algorithm to sample the phases
of the parent's genotype given partially observed haplo-
types of his/her children. It is used in our block-updates
described in Appendix A, but it may also turn out to be
useful in other settings.

We use the notation introduced in the Methods section. In
addition we index the individuals in the pedigree starting
from the present generation and assign labels 2k - 1 and
2k respectively to the paternal and maternal haplotype of
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individual k. If the allele at locus I of haplotype i is ances-
tral, we denote its type by h,(I) € E;, otherwise setting h,(1)
= (J, where E, is the set of alleles at locus I. Thus for each
individual k and locus [, g,(1) = {h,,1(1), hy,(D)}.

A Sampling from the posterior distribution

A.| Possibility of sampling without Markov chain Monte
Carlo

We want to study the posterior distribution (1) by using a
Monte Carlo method, so we need an algorithm for sam-
pling random realizations from the posterior. In a way,
constructing such an algorithm corresponds to time-
reversing a Markov process in a discrete state space, where
ideally we could write down the generator of the reversed
dynamics jointly for the ancestral graphs and the allelic
paths, and the posterior distribution of the haplotypes in
the present generation given the data, and then sample
directly independent realizations of the backward process.
However, the number of terms involved in such summa-
tions grows extremely rapidly with the sample size n(0),
the time horizon T and the number of loci, whence the
computation of the reverse generator is not feasible in the
real-life data problems we have in mind. Next we briefly
examine some alternative ideas.

First, we could proceed naively, by sampling repeatedly
from the prior until we obtain a realization @ € C . This
is problematic when 7#{ C) is very small, as is the case
here, and on average it takes far too many attempts to
obtain even one realization from C .

Alternatively, since Q is a finite set for any given (n(0), T,
L), we could compute and draw samples directly from the
posterior just by summing 7z{w)1(® € C) over w € Q.
Again, this is not feasible in practice when |Q] is very
large.

As a third possibility, we could hope to have better
chances for direct simulation by using hidden Markov
model techniques. We discuss briefly this idea, since it is
used later in the construction of the MCMC algorithm.
Given the ancestral graph G with |G| individuals, we con-
struct, according to the recombination model, a Markov

chain (¢(1), ..., (¢(L)), where y(1) = (Vo1 Vo k< |G| -
|F 1), F is the set of founders and y;(1) denotes the
grandparental origin of the allele (ancestral or censored)
at locus I of haplotype i. In order to preserve the Markov
property across consecutive loci, the configuration space
has to contain also the grandparental origins of the cen-
sored alleles. For the individuals in the present generation
(t=0) we also need a random parental phase matrix (@, ([)
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tk=1,..,n(0),1=1, .. L) with entries ¢,(I) € {0, 1} to
determine the haplotypes. The random variables (¢,(1))

are a priori i.i.d. with P(¢,(I) =0) =P(¢,(l) = 1) = % and

together the pairs (y(I), ¢(I)) form a Markov chain on the
finite state space {0, 1}4, where d = 2(|G| - | ¥ |) + n(0).
At each locus |/, the vector Y(I) = (g;(1) : i =1, ..., n(0)) is
observed. The corresponding likelihood contribution
from locus [ is given by

P(Y(1) [y (D.0(1),G) = (@ €C) [T fr(8:(1):D),

ke F

where the genotypes of the founders are determined by
the triple (Y(1), o(1), w(1)).

By using the Viterbi algorithm, it is possible to sample
directly the random vector ((¥(1), ¢(I)) :1=1, ..., L) con-
ditionally on the data Y. Kruglyak and Lander [31] pro-
posed an efficient implementation of the Viterbi
algorithm using Fourier transforms on the commutative
group {0, 1} (see also section A.7.2). The Viterbi algo-
rithm could also be used to integrate out the allelic paths
and to obtain the marginal likelihood P(Y(1), ..., Y(L)|G)
of the data set Y given the ancestral graph G. We would
then be left with the problem of sampling from a poste-
rior distribution on the finite space G of ancestral graphs
with n(0) roots spanning T generations backwards in
time, with probabilities proportional to

P(G) x P(Y(1), ..., Y(L)|G).

There are two problems in this approach, however: Firstly,
the Kruglyak-Lander algorithm can be implemented only
for small values of d, say d = 20 at most. Secondly, the
number of possible ancestral graphs grows extremely rap-
idly with n(0) and T.

In summary, the direct sampling methods described
above will work only for small ancestral graphs, and next
we shall describe the general ideas of Markov chain Monte
Carlo methods that can yield approximate results also in
more complex settings.

A.2 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a recipe to construct
a reversible and ergodic Markov chain (Z,: n € IN) with a
given invariant probability distribution x(z) on a state
space Z [49]. The method can be used for general state
spaces but we shall restrict our considerations to the case

http://www.biomedcentral.com/1471-2105/8/411

where Z is finite. We choose a proposal transition kernel
Q(z = z ) and define the corresponding acceptance proba-
bility
a(z > z) = min{l,w} (2)
Q(z = z)u(z)

Note that in order to compute a(z — z ) we need to know
the target measure x(z) only up to a normalizing constant.
The corresponding transition kernel of the Markov chain
(Z,: n € IN) is then given by

K(z—>7)=a(z > 2)Qz > 2)+1(Z =2)| 1- Y a(z > 2)Q(z - ) |
ZeZ
3)

In other words, given the previous state z, ;, we draw a

n-1r
random sample z from the proposal distribution Q(z, ,
— z ) and then let Z, = z with probability a(z,,., > z),
otherwise setting Z, = z, ;. The distribution of the initial
state Z, together with the transition kernel specifies the
distribution of the Markov chain (Z,: n € IN). If the chain
is irreducible, the construction results in an ergodic
Markov chain for which the law of large numbers holds
meaning that for any integrable function f(z),

n
lim =Y f(Z) = ¥, f(2)u() (4)
n—oe g zeZ

with probability one. This is a useful result when we
would like to approximate numerically the expectation on
the right hand side, but there is no practical algorithm
producing i.i.d. realizations from x(z). The choice of the
proposal distribution Q(z — z ) determines the mixing
properties of the Metropolis chain (Z,). If mixing is too
slow, the Metropolis chain is useless for Monte Carlo
computations.

It is also possible to combine different Metropolis kernels
Ki(z > z), i € IN, with the same invariant distribution
and still obtain a Markov chain (Z,) such that (4) holds.
One way is to consider adistribution (p;) on the non-neg-

ative integers, and define a new transition kernel as the
mixture

K&%ﬂzim&wea. (5)
i=0
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Another possibility would be to combine the proposals
into the new proposal

Qz—2) = Y p(D)Qilz - 2) (6)
i=0
where the mixing distribution is allowed to depend on the
current state z, and the corresponding transition kernel is
computed by using (2) and (3).

A.2.1 Gibbs' updates

It is sometimes possible to represent the state space as a
Cartesian product Z = Z'x Z” . Forz=(z',z") e Z'x 2",
the proposal kernel of a Gibbs update is given by

Q") = (@2 =1(F = (' | 2 =)
@

and we obtain another Gibbs' update by inverting the
roles of z' and z". The corresponding acceptance probabil-
ity satisfies a((z', z") - (z’,z”)) = 1. However, it is not
always the case that we can use the Gibbs update for a
given decomposition of the state space, since this requires
direct sampling from the conditional distribution y(z"|Z'
=2z').

A.3 MCMC with auxiliary variables

Here we explain a procedure which is used frequently in
the MCMC-literature (see Appendix 2 in [50]). Suppose
we have constructed a Markov chain (Z,) on the (finite)

state space Z with a given equilibrium distribution 7(z).
Consider an enlarged state space Z= (Z2xY), together
with a stochastic kernel p(y|z) : YxZ — [0, 1]. Define the
probability measure 7 (z, y) = #(z)p(y|z). The idea is to
explore the marginal distribution 7(z) = Zye yﬁ(z, y) by

constructing an ergodic Markov chain (Z,) on the

enlarged state space Z with equilibrium distribution
7 (z, y). In what follows, we assume that for every z € Z

we have an algorithm to sample a random realization of Y
from p(y|z) and a numerical procedure to compute this
conditional distribution.

If K(z — z) is a transition kernel which is reversible with
respect to 7(z), we can always consider on the enlarged

state space Z the transition kernel

K((z.y) = (z.7)) = K(z = 2)p(7 | 2)
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which will automatically be reversible w.r.t 7 (z, y). In

particular, the transition kernel
K((z,y) = (z,7)) =1z =z)p(y | z) is reversible w.r.t
7 (2, ).

Next consider the Metropolis transition kernel with joint

proposal distribution Q((z,7) — (z,7)) on the state

space Z . The corresponding acceptance probability for
transition (z, y) > (z,y) is then given by

L 2@F I DAGET) > @)
z, z, = 1,— .
wllz) = (&7)) mm{ Q((z,y)e(zi))n(z)p(y|z)}

Using this Metropolis-Kernel defined on the enlarged
state space Z, we construct a Markov chain (Z ») with

invariant distribution 7(z) and an initial state z, on the

original state space Z, as follows:

(i) given the previous state z,, sample y, ~ p(y,|z,);

(ii) sample (', y') ~ Q (2, ) = (= ¥));

(iii) with probability a((z,, y,) — (z', y")) take Z,,, = z',
otherwise Z, ,, = z,. Forget y, and y".

Alternatively one could define a proposal kernel Q(z —
z ) directly on the original state space Z by summing out
y, ie,

Qz—2)= Y pr|2Q(z7y) > (7))
yyey

However, the computation of this transition distribution
requires an extra summation step and there are situations
in which we cannot afford using this direct proposal dis-
tribution in the Metropolis step.

A.4 Constructing an initial configuration for the Markov
chain

Now we return to our application. By using the Metropo-
lis-Hastings algorithm, we shall construct a Markov chain
on the configuration space Q with invariant distribution
equal to the constrained distribution (1).

Before entering that topic, however, we need to construct
a configuration @, € C serving as an initial state for the
Metropolis algorithm. In other words, we need to find an
ancestral graph and corresponding gene flow variables
that are logically consistent with the data. Since this is a
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nontrivial problem, we describe the procedure in detail.
Later we use a similar construction to obtain a proposal
distribution for the Metropolis algorithm.

We start from generation 0 with n(0) sampled individuals
and their (partially) observed genotypes (g,(I) : k=1, ...,
n(0),1=1, ..., L). Sequentially, following a uniformly dis-
tributed permutation, these individuals will choose their
parents from generation 1 and transmit their genes to the
chosen parents. Denote by {X, = (f, m)} the event that
child k has chosen f as the father and m as the mother
from amongst Nj possible fathers and N7 possible

mothers in the population. To start the construction, sup-
pose that the first child chooses the first father f and the
first mother m from the population, and transmits his/her
alleles to these parents. For a generic locus ], let g,(1) = {a,

b} be the genotype of the first child. With probability %

we set hy(1) = a, hy(1) = b, g{1) = {a, D} and g,,(]) = {b, T},
and otherwise we set (1) = b, hy(I) = a, g (1) = {b, D} and
g.,(D) = {a, T}. Note that this determines only the haplo-
types of the first child, and partially the genotypes of his/

her parents, but does not give any information about the
pattern of meioises that led to the haplotype of the child.

Proceeding recursively, assume that the first (k - 1) chil-
dren in the present generation have already chosen alto-
gether F(k - 1) fathers and M(k - 1) mothers, and have
transmitted their alleles to the chosen parents. Child k can
then choose parents from among these F(k - 1) fathers and
M(k - 1) mothers or from the ( Ny - F(k - 1)) fathers and

(N7 - M(k - 1)) mothers who had not yet been chosen by

any child. In doing so the child must take into account
his/her own genotype and the possibly censored geno-
types of the candidate parents, which, at this stage, con-
tain the alleles transmitted by the preceding (k - 1)
children. Indeed child k chooses father f and mother m
from generation 1 by sampling from a distribution pro-
portional to

L
P(Xje = (f,m) | Xy, X)) T P(81 (D) | 87 (1), 8 (D).

I=1
(8)
Here the term P(X,, = (f, m)|X, ..., X;.;) is the contribution
from the prior distribution of the ancestral graph, g,() is
the observed genotype (at locus 1) of child k, and g(!) and
g,,(1) are the current values of the partially determined
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genotypes of the parents. Finally, the transmission likeli-
hood P(g,(I)[8A1), (1)) is defined as follows under the
assumption of free recombination.

If both parental genotypes g(!) = {a, b} and g,,(I) ={c, d},
with g, b, ¢, d € E,, are already fully determined,

P(ge(D) = {50} 870) = {a, b}, 30 (D) = {e.d)})
= L0} = 0 )+ 100} = la.d)+
100} = 0.6))+ ({7} = G.d})}

If some of the parental alleles are only partially deter-
mined by the previous transmission events, we integrate
the missing alleles out:

P(gr (D) ={x,v}| g5 () = {a,b}, 8 (1) = {c.d})
= > {P(gk(l) ={x | gp() ={a" b}, gu(l) = {c".d’})x
ab',cdek

fr({a’, b} [{a,b}) fr({c".d} | {c.d})}, x.y € By, abc,de B u{d},

where for a, b, ¢, d € E;, we define the conditional popula-
tion genotype frequencies as

fr({a.b} [ {2,2}) = fr({a,b}),
_ (I(c =a) +1(c = b)) fr({a,b})
e} o)) = SR
fr({a,b} | {c,d}) =1(a = o)i(b = d) +1(a # b)i(a = d)I(b = c).

)
After choosing parents f and m, child k transmits his/her
alleles to them. For that, let us consider the assignment of
phase. Let g(1) = {a, b} and g,(I) = {c, d} be the current
values of the genotypes of the chosen parents with q, b, c,
d € E;u {J}, and let {x, y} be the genotype of the child.
When a, b, ¢, d € E;are already determined, we have

P(x paternal,y maternal | g, () = {x,y}, 87 (1) = {a.b}, 8, (1) = {c.d})
_ P(8x(]) = {x,y},x paternal,y maternal | g(I) = {a,b}, 8, (1) = {c.d}),
B P(ge(D) = {x,7v} | g5 (D) = {a,b}, g (D) = {c.d})

(10)

where

P(g,(1) = {x,y},x paternal,y maternal | gr() = {a,b}, 8, (1) ={c,d})
- i{(l - %1(61 — O)(x = a)i(y = &) + (1 - %1(61 —d))(x=a)l(y=d)+
(1- %1(11 = O(x = b)I(y = ) +(1— %1(17 = d))i(x = b)I(y = d)}

(11)
and then set, according to this probability, h,, () = x and
h,,(1) =y, and otherwise h,,, ;(I) = y and hy,(1) = x.
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If there are undetermined alleles among a, b, ¢ and d, we
integrate them out with respect to the conditional geno-
type frequencies. Thus the parental origins of the alleles x
and y are sampled according to the probability (10),
where formula (11) is extended to the case of partially
censored parental genotypes {a, b}, {c, d}, witha, b, ¢, d
E,u {J} by

P(g (1) = {x,y}, x paternal,y maternal | gr() = {a,b}, g, (D) = {c,d})
- < 2 - L@ =emx=any =)+
4 a' b, cdeE 2

(1 _%1(41’ =d)N(x=a)(y=d)+(1 —%1(b’ =) (x=b)(y=c)+

- %1(10' =d)(x =)y = d)] fr({a’ b’} [{a,b}) fr({c".d’} | {e,d})}-

Then, given the phase of the alleles of the child at locus I,
we update independently the genotypes of the parents. To
do so, consider the case where h,;, ;(I) = x, that is, x came
from the father, and let g(I) = {a, b} be the current value
of the father's genotype. There are three cases to consider:
(i) If a and b are both determined, there is nothing to do,
(i) Ifa=b=2, wesetg(l) = {x, I}, and (iii) If a € E;and
b=, and if a # x, then the genotype of the father must be
8(1) = {a, x}, whereas if a = x, we set g{I) = {a, a} with
probability

fr({a,a})
fr({a,2}) + fr({a,a})

and otherwise leave g(1) = {a, @}. After having completed
this step for all the individuals in generation 0, we have
determined their haplotypes and also partially the geno-
types of their parents.

For the induction step, we assume that we have followed
the procedure for t - 1 generations. and we now describe
the procedure for generation ¢ <T. The individuals in gen-
eration t have to choose parents from generation (¢ + 1)
and transmit their ancestral alleles to these parents. Note
that the situation in generation t > 0 differs from the situ-
ation in generation 0, since not all alleles are necessarily
ancestral. Let g,(I) = {a, b} be the genotype of individual k
in generation t. He or she will choose parents according to
the distribution given in (8). In case a, b € E, that is, both
alleles are ancestral, we proceed as in the case t = 0. Oth-
erwise, however, we need to specify the probabilities
P(g(1) 8 (1), 8(1)) also in cases in which g(1) is censored
or partially censored.

If g,(1) is completely censored, we make the convention

that P(g,(1) = {D, D}Igd1), gx(1)) = 1. If g(I) is partially
censored, we define forx € E;and 4, b, € E;u {J},

flal{ab}) = flix @} [{ab)) == Y (1(x=a)+1(c=D))fi({a’ b} | {a.b}),

1
2 a bek
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which is the conditional probability of picking the allele x
from the partially observed genotype pair {4, b} that was
sampled from the population. Then we define, for x, a, b,
C, d S El’

P(ge(1) = {x. B} | g(1) = {a,b}, g (D) = {c.d}) = %/r({x@} [{a.b}) +%ﬁ({x,®} [{c.d}),

which is the probability that, given the information on the
genotypes of the parents, a randomly chosen allele from
the genotype of child k at locus [ is of type x. Having cho-
sen the parents, we decide the parental origin of the allele
x according to the probability

Sr({x 2} | {a,b}) )
fr(§x, 2} [{a,b}) + fr({x, 2} | {e.d})

(12)
After this, it remains to update the genotype of the chosen

parent by transmitting the allele x. This is done in exactly
the same way as for the alleles in generation 0.

P(x paternal | g,(1) = {x,@}, 87(1) = (a0}, 8 (1) = fe,d}) =

Having followed this procedure for all children in genera-
tion ¢, we have determined their ancestral haplotypes, the
censoring pattern on these haplotypes, and the ancestral
genotypes of the parents. Moreover, when t > 0, this deter-
mines partially the meiosis pattern of the ancestral haplo-
types of the individuals in generation (¢ - 1). For example,
let m be the mother (in generation t) of child k (in gener-
ation (¢ - 1)). This child has inherited from his/her mother
the haplotype h,;, and the corresponding meiosis pattern
Wy, is determined, for every locus I, as follows:

(1) If hy(1) = &, we set yy,,(1) = &.

(ii) Let hy,(1) = x € E, and let the alleles of the mother,
respectively of grandpaternal and grandmaternal origin,
be h,,, ,(I) =aand h,,,(I) =b, a, b € E;u {J}. Note that (g,
b) = (D, D), since either (a = x) or (b = x). If a # b, the
grandparental origin of the ancestral allele x is determined
as vy (1) = 1(x = a). The grandparental origin of x remains
undetermined only when a = b = x € E,. In such a case we

have to sample simultaneously the grandparental origins
of all ancestral alleles at locus I in generation ¢ - 1 that are
inherited from the mother m. In order to do so, suppose
that &y, ..., k, are the children of mother m and h,,, ;(I) =

hyu(1) = hap, (1) = ... = hy, (I) =x € E;. Note that since the

mother has two ancestral alleles, necessarily n > 2, and we

may exclude the event

I={yar, () =war,() = .. =wap, (D} -

Conditioning on the complementary event I¢is equivalent
to the following procedure: We sample without replace-
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ment two children, say k and k , among {ky, ..., k,}, and

assign v/ () =0 and y,j, (I) = 0. Given this the grandpa-

rental origins of the remaining children are conditionally

. o1 .
independent Bernoulli (5 ) random variables.

We iterate the above procedure backwards in time until
we reach the founder generation, where we determine, by
tossing fair coins, the parental origins of the founders'
ancestral genotypes. Given that, we compute the meiosis
pattern on the haplotypes in generation (T - 1) as
described above.

Remarks

(1) Although at a first reading these sampling formulae
may not be completely obvious, the idea behind the
sequential scheme is simple: a child chooses his/her par-
ents from the population and transmits his/her alleles to
the parents according to Bayes' formula, by conditioning
on his/her own alleles as well as on the parental choices
and allele transmissions of the previous children. Note,
however, that the procedure is not fully Bayesian, since
the conditioning does not include at every intermediate
stage the information about the genotypes of the children
still in the list, and that we are not taking into account the
true recombination likelihood. Therefore the resulting
configuration is only compatible with the data, but not an
exact sample from the posterior distribution.

(2) An alternative way to proceed would be to first let all
children from the considered generation choose their par-
ents, and then sample jointly the parental phases of the
alleles of the children given the family structure, and
finally transmit the alleles to the parents. We develop this
idea later in section A.7, as we construct a block-update
for the Metropolis-Hastings algorithm.

(3) If the population of candidate parents is small, it is
possible that, when a child k is choosing his/her parents,
the genotypes of the possible parents are already partially
determined by the alleles of the previous (k - 1) children
in such a way that every possible parental choice is logi-
cally incompatible with the genotype of child k. When
such a contradiction is found, we have to restart from the
beginning, or at least from one generation back. If the
algorithm keeps failing, we may need to increase the size
of the population in the prior.

A.4.1 Incorporating the true recombination likelihood

In the construction of an initial configuration we have
used the model with free recombination. In the case of
closely linked markers, the resulting initial configuration
will be compatible with the data, but it will not look real-
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istic, since most likely it will contain too many recombi-
nations.

It is shown in Appendix B, how to apply the Viterbi algo-
rithm to sample the parental phase vector ¢, = (¢,(1), ...,

@(L)) of an individual k, say for a female, in generation ¢
> 0, from a joint conditional distribution, where we con-
dition on her partially observed genotypes (g.(1), ...,
(L)), on the partially observed genotypes (g{1), ..., §{L))
and (g,,(1), ..., §,(L)) of her parents f and m in generation
(t + 1), and on the partially observed haplotypes
{(har(j(),-... hagjy(L)) :j =1, .., n} which she has trans-

mitted to her children k(1), ..., k(n) in generation (¢ - 1).
We can then generally improve on the initial configura-
tion by substituting the sampling distribution (10) or
(11) by this joint conditional distribution that takes into
account the true recombination likelihood of the haplo-
types of the children. It is also shown in Appendix B, how
to integrate out the phase vector ¢, in order to compute
the marginal likelihood of the partially observed haplo-
types of the children. We could compute this marginal
likelihood for all logically compatible choices of pairs of
grandparents and include it as a new factor in expression
(8) which is proportional to the probability of choosing a
pair of grandparents. Alternatively, we could choose the
grandparents using expression (8) with free recombina-
tion, and then use the true recombination likelihood only
for assigning the parental origins to the genes of the par-
ent.

A.5 Block-updates for the Metropolis-Hastings algorithm
Next we discuss the construction of a proposal distribu-
tion Q(@— ® ) for the Metropolis-Hastings algorithm on
the configuration space Q. Ideally, we would like to pro-
pose only configurations that are compatible with the
data, or at least we want that Q(w — C ) is not too small
when starting from some w € C . The resulting Markov
chain should also be irreducible, that is, it should be able
to reach every state in C with positive probability regard-
less of where it started from. Single-site updates, like
changing the phase of one allele at a time, are not enough
to produce an irreducible chain. Larger block-updates are
needed also because changes to the ancestral graph usu-
ally require simultaneous changes to the allelic paths.

Our aim is to construct a block-proposal distribution by
applying locally similar ideas that were used in generating
an initial configuration. Starting from some configuration
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® € C, a selected group of individuals in the ancestral
graph try to choose new parents and redirect their ances-
tral alleles from the "old ancestors" to the new ones. This
is done by conditioning on the paths of the ancestral alle-
les of the other individuals, which are kept fixed during
the block-update step. Before making these points more
precise, we introduce some more notation.

A.5.1 Conditional probabilities for the types of non-ancestral alleles

Given a configuration o, we define fr(a|k, ) for any locus
I and individual k as the conditional probability that k
transmits an allele of type a € E; at locus I to a "hypothet-

ical new child". When the genotype g, = { g;?, g;lz } atlocus

I of individual k is fully ancestral, we have

frla | kw) = {1(a = g0+ 1(a = gh)}.

Otherwise individual & has at least one non-ancestral
allele at this locus, and in order to compute fr(alk, @), we
must take into account all possible ways in which he/she
may have inherited the non-ancestral allele(s) from his/
her ancestors.

We also need the joint transmission probabilities for pairs
of alleles. We denote by fr(a, a'|k, k', ®) the conditional
probability that individual k transmits an allele of type a
to his/her hypothetical new child and simultaneously
individual k' transmits an allele of type a' to his/her hypo-
thetical new child. Here a4, a' € E;, and we let the indexes
k, k' go through all individuals in a given generation. If at
least one of the genotypes g, or g, is fully ancestral,

fr(a, a'|k, k', w) = fr(a|k, o)fr(a'|k', @).

However, this equation may not hold, if in configuration
o both k and k' carry some non-ancestral allele at locus I,
and there is a common ancestor of k and k' who has had
a positive probability of transmitting the same non-ances-
tral allele to both k and k".

We compute these transmission probabilities recursively,
starting from the founders, by setting

fr(alk, @) = fr(alg),

where g, = { g7, 2} } < E;U {@}, is the possibly censored

genotype of founder k in configuration @, and fr(a|{x, y})
was defined in (12) by using the genotype frequencies of
the population. Moreover, if k and k' are distinct founders,
we have
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fr(a, a'|k, k', w):= fr(a|k, o)fr(a'|k', @),

whereas for k = k'

fra,a |k ko)=Y fr(a|{xy})fr(a’ | {x v} fr({xy} {8k 8k}),
{xy}

where the sum is taken over all possible genotypes at locus
I. It remains to specify fr(a|k, w) and fr(a, a'|k, k', @), when
k and k' are not founders and g, or g, contains non-ances-
tral alleles. For that let f and m be the father and the
mother of k, and let x and y be his/her possibly censored
alleles at locus ! of paternal and maternal origin, respec-
tively. Since we proceed recursively, we may assume that
fr(a|f, ®) and fr(a|m, @) are already computed. Then

fr(alk, @) = % {1(x=a) + 1(x = D)fr(alf, @) + 1(y = a) +

1(y = Q)fr(alm, @)},

for all a € E,. It remains to speficy fr(a, a'|k, k', @), when k
and k' are not founders and both genotypes g, = {x, y} and
8, = {x', y'} contain some non-ancestral alleles. Let (f, m)
and (f, m') be the parents of k and k', and assume that x,
x' € E;u {J} are paternal and y, y' € E;U {<J} are mater-

nal. For g, a' € E;, we obtain, again using recursion, that

fr(a,a’ | k1, w) = i({l(x =a)+1(y =a)} {I(x"=a) +1(y’ = a')}
Hix=@)fr(a] f,w)+ 1y =D)fr(a|mw)}{l(x" = a) +1(y = a')}
HAx=a)+1(y =a)} {1« = D) fr(d'| f,w) + 1(y’ = D) fr(a’ | m,w)}
H(x =N = D) fr(a,a’| f, ', w) + 1x = DN = D)fr(a,a’| f,m',w)
+1(y = Q)(x" = D) fr(a,a’ |m, f,w) +1(y = DNy = D) fr(a,a"| m,m’,w)),

where the formula holds also if k = k' or f = f or m = m".

These recursive formulae are exact, taking into account all
intersections between the possible paths of the two non-
ancestral alleles. In principle we could extend these for-
mulae to allele triples, quadruples, and generally, for n-
tuples. However, since we will consider only one genotype
at a time, we need only the joint transmission probabili-
ties for pairs of alleles.

A.5.2 Conditional genotype probabilities

For any pair of candidate parents f and m, belonging to
generation 1 <t < T, we define the conditional genotype
probabilities at every locus ! of a hypothetical common
child k by

P({a, b}|f. m, @) := fr(a, b|f, m, ®) + 1(a = b)fr(b, a|f, m, ®),
a,bek,.
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We also define, fora € E,

P({a B} | fm,0) = frla] fim0)= - fila] f,0)+ fila | m,a)

=L S (@b fmo)+ fribal fim o)}

2 beE

= A faa| fme)+ T frfab}] fmo)f,

beE,
(13)

which corresponds to the conditional probability that an
allele at locus I of a hypothetical common child is of type
a. We also set, as a convention, P({J, B}|f, m, w) = 1.

A.6 Block-update I: Children choosing new parents
We consider a randomly selected group of children,
indexed by ky, ..., k,, all belonging to the same generation

0 <t <T, who will choose new parents and redirect their
ancestral alleles from their "old ancestors" to "new ances-
tors". Before choosing new parents, these children must
withdraw their alleles from their old parents. Starting
from configuration @, we construct a modified configura-
tion @ in which, ascending from generation (¢t + 1) to
generation T, we delete the paths of the ancestral alleles
that go through the children k, ..., k,. Consequently all
the ancestral alleles that were transmitted only by these
children become censored.

Next we look at the individuals in generation (¢t + 1),
including the part of the population which was left out-
side the ancestral graph, and consider all possible parental
pairs (f, m). Recall that the individuals outside the ances-
tral graph have genotype {&, &} by default, and their
conditional genotype probabilities coincide with the pop-
ulation genotype frequencies. Following the sequential
ordering, each of the children k,, ..., k, will choose ran-
domly a pair of parents from generation (t + 1) and trans-
mit to them (and to their ancestors) his/her ancestral
alleles. Locally this is like the construction of the initial
configuration explained in section A.4, with the difference
that here we must condition on the upper part of the
ancestral graph and on the allelic paths that are deter-
mined by the modified configuration ® . Indeed, if child

k has genotypes {gg 0, g;lz (1)}, then he/she chooses
parental pair X, = (f, m) with a probability proportional to

expression (8), where we extend the definition of
P(g(D) 8D, (1)) to non-founder parents by means of
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the conditional genotype probabilities P(g,(I)|f, m, @)
given in formulae (13) and (13).

A.6.1 Dropping and adding ancestors

After the children k;, ..., k, have chosen new parents, it is
possible that a former parent in the ancestral graph is left
without children. In this case he or she will be dropped
from the ancestral graph. By induction, the same may
apply to the more distant ancestors in the elder genera-
tions. In order to obtain a reversible Markov chain, the
children are given the possibility of choosing new parents
also from the population outside the ancestral graph,
whence these new parents together with their ancestors
will become a part of the updated ancestral graph.

Note that it is straightforward to use the sequential con-
struction of the prior distribution to sample the ancestry
of the population outside the ancestral graph, condition-
ally on the ancestral graph. In principle such a resampling
step must be included in the MCMC algorithm as a pre-
move, before updating the ancestral graph. However, that
may not be practical if the size of the population is large.
In that case, instead of resampling the ancestry of all
members of the population, it is enough to sample (con-
ditionally on the current ancestral graph) the ancestry of a
limited number of candidate parents outside the ancestral
graph.

A.6.2 Resampling the paths of the ancestral alleles

Having chosen a new father f and a new mother m for
child k, we sample new parental origins of the ancestral
alleles of k by extending formulae (10) and (11) as fol-

lows: When both g;g () and g;lz (1) are ancestral, we have

fr(gR(1). () | f,m, @) _
Fr(&), gk () | f.m, @)+ fr(gh(),80() | f,m, @)

(14)

P(g2(1) paternal, gk (1) maternal | g, (1), f,m, @) =

Otherwise, if g;? (1) is ancestral and g;lz (1) is non-ancestral,

we have

o
P(82(1) paternal, gl (1) maternal | gy (1), f,m, &) = frige(D) | f, @) )
B P S e 8 T O = () ) + (gl () | m)

(15)

and symmetrically, if g;le (D) is ancestral and g;? (D) is non-

ancestral,

_ Ly | m,@)
P(gP (1) paternal, g} (I) maternal | g,(1), f,m, &) = frigi .
‘ ‘ ’ fr(sh() | £.@) + fi(sh() | m, @)

(16)
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Finally, if both g;g (1) and g;lz () are non-ancestral, we
have that

P(g;g(l) paternal, g;lz(l) maternal | g, (1), f,m,®) =

1
2
(

After this, in case one or two ancestral alleles were trans-
mitted, we must update the genotypes of the new parents
f and m, and eventually also the genotypes of their ances-
tors higher up in the ancestral graph. If both genotypes of
the new parents are already fully ancestral at the given
locus I, there is nothing to do. If the parents are founders,
we proceed as in section A.4. Otherwise, let the alleles in
locus I of child k be h,, () = a (paternal) and hy,(I) = b
(maternal), with a, b € E;u {J}, and at least one of them
ancestral. Consider first the case in which only one of a
and b is ancestral and, for example, that it is paternal. If
the father f has already two ancestral alleles, there is noth-
ing to do. Otherwise, let hy (1) =x and hy(1) =y, x, y € E,
U {}, where x or y or both are non-ancestral. We denote
by f' and m' the father and the mother of f, respectively.
With probability

W(x=a)+1(x=D)fr(a| f @)
(¥ =a)+1(x = D)fr(a | [,0) +1(y = a) + 1(y = D)fr(a | 7, 5)

the ancestral allele a was inherited from the grandfather f,
and in case hy,(I) was censored, we update it to h,.,(I) =
a, and leave h,((1) = y. Otherwise a was inherited from the
grandmother m', and if h,(l) was censored, we update it
by setting h,(1) = a, and leave hy(1) = x.

Next we consider the case where both a and b are ances-
tral. If only one parent has censored alleles, we are back to
the previous case, since at most one parental allele will be
updated. Otherwise we have to follow the origins of a and
b simultaneously. Assume therefore that both f and m
have censored alleles, that is, hyg; (1) = x, h,{(l) =y and h,,,.
1(D) =x', hy,, (1) =y', with x or y or both censored and x' or
y' or both censored. Let f' and m' be the father and mother
of f, and let f* and m" be the father and mother of m. Then
with probability

{Iix=a)l(x" =b)+1(x =a)l(x"= D) fr(b ]| f", @)

H(x =N =b)fr(a| [, @)+ 1(x =D)N(x" =D)fr(a,b| f.f" @)}/C
a was inherited from f' and b was inherited from f", with
probability

{I(y = 1(x" =) +1(y = Q)I(x" = D) fr(b | f*, )

+1(y = ON(x" =b)fr(a | m’, @)+ 1(y = D)(x" = D) fr(ab|m’, f",@)}/C
a was inherited from m' and b was inherited from f", with
probability
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{1(x = a)I(y" = b) + 1(x = a)I(y" = D) fr(b | m", ®)

+1(x = DN =b)fr(a| f',@) +1(x = D) = D)fr(a,b | f',m".@)}/C
a was inherited from f' and b was inherited from m", and
finally with probability

{1y = a)l(y" =b) + 1(y = a)I(y' = D) fr(b | m", )

+1(y =Ny = b)fr(a|m’, &) +1(y = DNy = D) fr(a,b | m’,m".@)}/C
a was inherited from m'and b was inherited from m". Here
Cis a normalizing constant. In each of these cases, the cor-
responding alleles of the parents become ancestral if they
were non-ancestral before. This completes the updating
procedure for the alleles of the parents.

If some censored allele became ancestral we must update
the alleles of the grandparents as well, and possibly con-
tinue the procedure further backwards in time, until the
alleles coalesce to some ancestral alleles or until the
founder generation is reached. This is done in the same
way as we updated the alleles of the parents.

We resume the updating procedure as follows. Given the
choice of new parents, we sample new allelic paths for the
ancestral alleles carried by the child. The path of an allele
is a random walk on the ancestral graph, where in each
generation the allele is assigned to either the paternal or
the maternal origin, conditionally on the paths of the
other ancestral alleles determined by the configuration
@ . The new path of an ancestral allele is sampled sequen-
tially until it crosses a path of an ancestral allele of the
same type in the configuration @, or until the path
reaches the founder generation. Note also that, if the child
transmits two ancestral alleles to the parents at some locus
I, we are coupling the corresponding allelic paths in such
a way that the paths are always compatible with each
other and with the configuration @ .

A.6.3 Incorporating the true recombination likelihood

In the update procedure we have described so far, the
transmission patterns are resampled by using the model
with free recombination. However, we are able to take the
true recombination likelihood partially into account.
Namely, having assigned the new parents f and m to child
k in generation 0 <t <T, we sample jointly the vector of the
(@(1), ... @fL)) of the alleles
({81 (). 8k(D)},1=1,...,L) of k, by conditioning on the
ancestral alleles of the ancestors of k and on the ancestral

haplotypes that he/she transmits to his/her children in
generation (t - 1). This is done by the Viterbi algorithm

parental origins
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given in appendix B, where we specify the prior 7 for the
vector of parental origins (¢,(1), ..., ¢,(L)) as

L
(P (D), (L) = [ T 1@ (1), 1), where
I=1

7,(0,1) = 1= 7, (1,1) = P(g0(1) paternal, g} (1) maternal | g, (1), f,m, @),
(18)

and the right hand side of the last expression was defined
in formulas (14-17).

Similarly we improve the procedure which updates the
paths of the ancestral alleles (see section A.6.2). When an
ancestor receives alleles from his/her descendants, some
of his/her censored alleles may become ancestral and we
need to sample the phases of these alleles. The Viterbi
algorithm can be used to sample all these phases jointly
(keeping the phases of the ancestral alleles fixed) by com-
bining the product of the sampling distributions across
the marker loci as given in section A.6.2 with the recom-
bination likelihood contribution of the children's haplo-

types.

A.6.4 Completing the block-update

Once the procedure is completed, we have updated the
modified configuration @ by assigning new parents to
children &, ..., k, and new paths to their ancestral alleles.
The resulting updated configuration ® is the proposal
state in the Metropolis-Hastings algorithm. Note that
when creating @ we are also able to compute sequentially
the proposal probability Q(@w — ® ), and similarly, start-
ing from @, we can compute the proposal probability
Q(® — ) for the reverse transition. Therefore the corre-
sponding Metropolis-Hastings update can be imple-
mented.

We also use slightly different versions of this block-
update. In the first of these the children do not change
parents but the paths of their ancestral alleles are updated
simultaneously. This is done by simply skipping the sam-
pling of parents described in section A.6. In the other ver-
sion we let the children involved in the update belong to
different generations.

Remarks

(1) If one child is selected to choose new parents under
the model with free recombination this proposal distribu-
tion is a Gibbs' update (see section A.2.1). The same does
not hold more generally, since, when updating the paren-
tal choice and the paths of the ancestral alleles of child k,,
we take into account neither the ancestral alleles of the
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other children k,, ..., k,, nor the complete recombination
likelihood.

(2) If more than one child are selected for an update, it is
possible that a selected child k; does not find any parents
compatible with his/her genotypes. This may happen
when the children k;, ..., k;_; have already transmitted their
alleles to their ancestors in such a way that it is no longer
possible to extend the paths of all ancestral alleles of child
k; up to the founder generation. In this case the proposed
block-update is rejected.

A.7 Block-update II: Half-siblings changing one parent
We take a random father in generation (¢t + 1) < T and con-
sider all his children belonging to generation t, denoted
by ky, ..., k,. These children are going to stay with their
original father but will choose new mothers and conse-
quently the paths of their ancestral alleles will be resam-
pled. (To be politically correct, we also use the symmetric
update which switches the roles of mothers and fathers.)
We could continue as in the previous sections, resampling
sequentially, for one child at a time, a new mother and
new paths of the ancestral alleles. However, there is a
potential problem here: as explained in section A.6.2,
after a new mother has been chosen, the parental phases
of the alleles of child k, are resampled without simultane-
ously considering the ancestral alleles of children k,, ..., k,,.
When there are many children and many marker lodi, it
becomes unlikely that this procedure will assign several
children to the same mother, and most of the time the
algorithm proposes to add more mothers to the ancestral
graph than would be necessary. As a consequence, if the
true ancestral graph contains couples with many children,
the corresponding Metropolis chain is slowly mixing, and
the mixing gets even worse as the number of markers
increases. To improve on that, we change the order in the
resampling procedure. First the children &, ..., k, choose
new mothers, and then we sample jointly the new paren-
tal phases of their alleles, by conditioning on the ancestral
alleles of the new parents and taking into account the
recombination likelihood contribution from the haplo-
types of the children k;, ..., k,. This block-update is com-
putationally demanding, but it concerns only a small
number of children at a time.

A.7.1 Sampling distribution for choosing the mothers
We start from the modified configuration @ obtained as

in section A.6 from the current configuration w by with-
drawing the ancestral alleles transmitted by the children
ki, ..., k, to their ancestors. Let f be the common father of

these children. Let k; choose his/her mother as in section
A.6, with the constraint that the father f is fixed. Thus k,
chooses his/her mother m, from a distribution propor-

tional to
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L
P(Xp, = (fm)| X, je ks DT P(81, (D | £,m,®).
1=1

(19)
Instead of continuing as in section A.6.2, i.e. by sampling
the parental phases of the alleles of k, and updating the
genotypes of the parents f and m, at each locus I, we com-
pute the joint conditional distribution

P(@re, (1,8 (1) 8, (D | 81, (D, [, @) (20)

under the model with free recombination. Here at every
locus I, g¢ (1) and g, (I) are possible values of the

updated genotypes of the parents after k, has transmitted
to them his/her ancestral alleles, and ¢, (I) is the parental

phase of the alleles of k;. The computation of (20) is done
by combining the computations from section (A.6.2).

We shall illustrate the procedure with an example. Assume
that given the configuration @ , the ancestral genotypes of

the parents and the child are respectively g (I) = {J, T},
8m, (1) ={a, D}, and g, (I) = {a, b}. In this particular case

formula (20) would give the following probabilities

pr e P(f transmits a | @) X P(g,, (1) = {a,b} | m; transmits a,®),

py o P(f transmits b | ®),

ps o< P(f transmits b | @) X P(g,, = {a,a}|m, transmits a,®).
Proceeding then by induction, suppose that children k,,

..., k;.; have chosen mothers m;, ..., my;.;), where M(i - 1)
<1i- 1, and for each locus I we have computed the joint

conditional distribution for the phases of the alleles of the
children &, ..., k., and of the genotypes of the parents,

denoted by

P(@te, (050t (D 8 (D By (D --r 8y yy (O &y (Drvve 8y (D frmy g1y @)-

Given that, we must specify how Fk; chooses his/her
mother, and consequently, how the joint conditional dis-
tribution for the phases of the children's alleles and of the
genotypes of the parents is updated.
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Child k; will choose either one of the previously chosen
mothers my, ..., M1, or a mother who was not yet cho-
sen by any of the first (i - 1) children, with probability pro-
portional to

where X; = (f;, m;) denotes the parental choice of child j,
and

P(8r, (D) | frm, @, g (1), Xpey r--es 81, (1 X, )

= % P& (&7 (D 8mD)P(&7 (1), 8 (D) | @, 81, (1), Xy s 81, (D, X )
8f:8m

In the last expression the ancestral genotypes of the father
and the mother are integrated out with respect to the con-
ditional probability (20), after it is extended to the case in
which a mother m had not yet been chosen by any of the
first (i - 1) children, by the formula

P8 (1), 8 (D)1, 81, (1, Xy o i, (0, X ) = PUSF (D)1 @ 84, (1, Xy o 81, (), K )X P8 ()| ).
Continuing with the example, consider the situation in
which the second child has ancestral genotype g, (I) =

{b, ¢} atlocus, and he/she has already chosen mother m;.
Then the possible outcomes are

pt = pP(gs ={ac}|f transmits a,®),
Py o PoP(gy, ={a.c}|m transmits a,»),
p5 o= pP(gs = {bb}| f transmits b, @) x P(8y, ={a,c}|my transmits a,®),

Py o< p2P(85 ={b.c}| f transmits b, @) X P(g,, ={a,b}|m, transmits a,®).
Let the third child with ancestral genotype g (I) = {b, d}
choose mother m,, who currently has ancestral genotype

&m, (1) = {d, @}. Then the possible outcomes are

pl < pa

p; e paP(gy ={b,b}| f transmits b, @) + 2p3,

p5 o prP(gm, ={d,d} | m, transmits d,»),

py o (PaP(gf ={b,b}| f transmits b, ®) + 2p5) + P(8,, = {d,d} | m, transmits d, @),
ps o paP(gy ={b.d}| f transmits b, @)X P(g,,, = {b,d} | m, transmits d,»),

ps < P

p7 o pyP(8m, ={d.d}|m, transmits d,®).

Note that now the event { ¢, (I) = 0} has zero probability.

Table I:
Pr, () g0 8m, P
0 {a, B} {a, b} pi
I {6, @} {a, &} P2
I {b, &} {a, a} P3
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Table 2:
Pr, O Pr, O g0 Sm, () P
0 I {a, ¢} {a, b} jut
| 0 {b, 2} {a.¢} P2
| 0 {b, b} {a, ¢} pé
| . {b, ¢} {a, b} Pa

At the end of this sequential step children k,, ..., k, have
chosen new mothers in a way which is compatible with
their ancestral genotypes and the information about the
genotypes of the parents carried by the modified configu-
ration @ . We have also produced a joint sampling distri-
bution for the phases of the children and the ancestral
genotypes of the parents. Therefore we could complete the
block-update by sampling, independently at each marker
locus, the parental phases of the children's alleles and the
ancestral genotypes of the parents from the joint sampling
distribution above, and by transmitting recursively the
new ancestral alleles upwards to the ancestors as in sec-
tion A.6.2. However, this strategy would not take into
account linkage between the marker loci, which is consid-
ered next.

A.7.2 Sampling the phases of the children's and parents' alleles
jointly across the marker loci

We continue the block-update by computing for each par-
ent j involved in the update and for each locus I the con-
ditional probability of the parental phase ¢(I) given the
transmitted genotype g;(!) and the genotypes of his/her
ancestors under the modified configuration ® . Namely,
as in equations (14-17),

Plpj()=01g;() ={ab},®) = 1-P(p;()=1]g;() = {a,b},®)

%, ifa=b=0,
fr(a| f,@)/fr(al f,@)+ fr(a| m’@)], ifazb=0,
filab] £, @) Ifi(ab] £, @)+ fibal fom',@)], ifabz2,

where f' and m' are the father and the mother ofj.

We then combine, at every locus J, the product of the con-
ditional phase distribution of the parents together with
the joint distribution of the phases of the children and of
the ancestral genotypes of the parents, as given in the pre-
vious section. By doing this, we obtain a joint distribution
for the parental phases of the children and of the parents
atlocus I. In turn, the phases of the children together with
the phases of the parents determine the grandparental ori-
gins of the alleles of the children. This gives a joint distri-
bution for the grandparental origins of the children at
locus I, which will be denoted by

QW ar, 1Dy ar, (o, -1 (D 2r, (1)) = Qie(1)-

We now include in the sampling distribution the likeli-
hood contribution from the consecutive marker loci.
Recall that the recombination likelihood from the chil-
dren's haplotypes is given by

Table 3:
) @, () Pr, () 80 gm, O 8m, O P
| 0 0 {b, T} {a, ¢} {d, &} Pf
I 0 0 {b, b} {a, & {d, @} 0
| 0 0 {b, O} {a, ¢} {d, d} P;
| 0 0 {b, b} {a, ¢} {d, d} PZ
| 0 | {b, d} {a, ¢} {d, b} p§
I I 0 {b,c {a, b} {d, 2} A
| | 0 {b, ¢} {a, b} {d, d} P;
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L-1
[TR-(w.(+1)),

1=1
where

R (- Q-1+ 1)) = p(t,1+ 1) UV ED g o3y U O,

Here y;(I) € {0, 1} is the grandparental origin of the hap-
lotype j at locus I, p(I, I + 1) is the recombination fraction
between marker loci l and I + 1, and J = {2k, - 1, 2k, ...,
2k, - 1, 2k,}. We use the forward-backward Baum-Viterbi
algorithm to sample (and to compute the sampling distri-
bution of) the grandparental origins (y;(I):j €/, 1=1, ...,
L) from the joint distribution proportional to

QL (ll/-(l))Llj[_l {Qv- DR (w-(Dy-(1+1))}
Note that -
Rijmv-()y.(I+1)) = qrz,m(lyj(l) -y i(l+1) ),
je
wherer; 1, (x) = p(I, I + 1)¥(1 - p(I, | + 1))+,
In the forward part of the algorithm, starting with Q 1

(w.(D) = Q,(w.(1)) we compute recursively forI =1, ..., L -
1 the updated probability distributions

> QI Tn(w;t+1)-y; D}

ref{o1y jel

Qa1 +1)) o Qi (w.(1+1))

On the right hand side appears a convolution in the com-
mutative group ({0, 1}27, +) which is computed effi-
ciently by discrete Fourier transforms [31]. In the
backward part of the algorithm we sample first y.(L) ~

Q ,, and then iteratively w.(I) given w.(I + 1) from the dis-
tribution

Crx Q- T (v +D ;D) 1=L-1L-2,..,1
jel

with normalizing constant C; = Q,,;(w.(I + 1))/Q (v
+1)).

Note that at any marker locus ! different combinations of
the children's phases and parents' phases may lead to the
same vector w.(l) of children's grandparental origins.
Therefore an additional step is required where, independ-
ently across the marker loci, the children's and parents'
phases are sampled, conditionally on sampled grandpar-
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ental origins of the children. This will determine also the
ancestral genotypes transmitted to the parents. The block
proposal is completed by transmitting the new ancestral
alleles from the parents to their ancestors in the upper part
of the ancestral graph. This is done exactly as in sections
A.6.2 and A.6.3.

Remarks

(1) The computational complexity of this block update
grows linearly with L, the number of markers, and expo-
nentially with n, the number of children involved in the
block update. In practice we restrict our sampling algo-
rithm to values n < 7.

(2) In this block update we are sampling a full meiosis
vector (y;(l) :j €J, 1 =1, .., L) which contains also the
recombination pattern in the non-ancestral part of the
haplotype. We have to proceed in this way, since it is not
straightforward to sample the meiosis pattern only at the
loci carrying ancestral alleles (the first-order Markov prop-
erty across loci is lost). This means that we are temporarily
extending the state space of the Markov chain algorithm
with auxiliary variables. A theoretical justification is given
in A.3. Note that, in order to compute the acceptance
probability of this block update, we need to sample the
meiosis pattern on the non-ancestral part of the haplo-
types of the children as specified in the old configuration
. This can be done directly by using the Kruglyak and
Lander algorithm [31]. Once we have sampled the block
update and computed the Hastings ratio, we erase the
recombination pattern in the non-ancestral part of the
haplotype and keep only the information about the paths
of the ancestral alleles.

(3) In the construction of this block proposal we have
included the recombination likelihood from the haplo-
types of the children but not the recombination likeli-
hood from the haplotypes of the grandchildren and of the
ancestors. Also these recombination likelihood terms con-
tribute to the acceptance probability of the proposal.

A.8 Block-update Ill: Sex-switching

We introduce one more update step into the algorithm.
Consider the bipartite graph formed by the individuals in
generation t > 0, where two nodes are connected by an
edge if and only if the corresponding individuals have at
least one common child. This bipartite graph is decom-
posable into connected components. We select a random
connected component and obtain the proposal configura-
tion @ by switching the sexes of all the individuals in the
selected component. Note that the prior distribution of
the ancestral graph is not invariant under sex-switching
(except for particular choices of the parameters « and £),
but the distribution of the geneflow on the ancestral graph
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is, since our model for recombination does not depend on
sex. Therefore, only the prior of the ancestral graph con-
tributes to the Hastings' ratio which is given by min(1,
P(G(®))/P(G(w)). This simple update is important for
the mixing of the sampler, since a fixed sex assignement
would unnecessarily restrict the mating possibilities.

B Sampling the parental phases conditionally on
the partially observed haplotypes of the children:
a Viterbi algorithm

Consider a parent whose (fully observed) genotype at
locus 1is (1) = {g°(1), 8" (1)} c E;, where the two alleles
are arbitrarily ordered. Let ¢ = (¢(1), ..., (L)) € {0, 1}Lbe
the phase vector of the parent, i.e. if allele go(l) was

inherited from the (grand)father, then ¢(I) = 0, whereas if
it came from the (grand)mother, then ¢(I) = 1.

For each of the n children of the parent we introduce an

& =G G e {01}, which
together with the genotype of the parent determines the
haplotype h; = (h;(1), ..., h;(L)) inherited by the i-th child
from the parent as follows:

origin  vector

~0 o g _
g ifg()=1

Note that the origin vector ¢; together with the phase vec-

tor of the parent ¢ determines the grandparental origins
and the recombination pattern for the haplotype h;.

Next we introduce a censoring mechanism & € {0, 1}Lon
haplotype i that is independent of ¢ and h;. We define the
partially censored origin vector &; = (j(1), ..., (L)) by set-
ting

£i(0) = &), if 5;(I) = 1 (uncensored allele),
' @, if §;(I) = 0 (censored allele).

Given ¢jforalli =1, ..., n, we define the partially censored
parental genotype g(I) = {g°(1), g'())} < E;v {<} as fol-
lows:

0 J, iffi:1<i<nand (1) =j} # 9,
g&'\)= .
Q, otherwise (§’(1) is not ancestral).

Now the problem is to sample the parental phase vector ¢
conditionally on the children's partially censored origin
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vectors ¢, i = 1, ..., n, the partially censored parent's geno-
type vector g, and the information available on the geno-
types of the grandparents.

Without loss of generality we assume that g(1) # {<J, J}
for all I, since we can skip the loci where the genotype of
the parent is completely censored. We assume that, a pri-
ori, the phases ¢(I), I = 1, ..., L, are independent with
respective distributions 7(0, I) = (1 - (1, 1)) € [0, 1]. The
prior distributions 7( ¢(1), 1) can be specified by using the
information available on the genotypes of the grandpar-
ents as explained in section A.4.

Given the censoring pattern ¢; on haplotype i, we denote
the last uncensored locus up to I by j(&, 1) := max{k <1:
S(k) = 1} if such a locus exists, and otherwise set j(J;, 1) :=
0. Let g ::{j(Si,l):ISiSn andj(8;1) >O} . Note
that &< (&;_1U{l}) and since by assumption the parent

transmits at least one allele to at least one child at each
locus, I € &) = {l} < {1, ..., 1} forall I. Note also that with-

out censoring, we would have simply & = {I} forall L.

We then consider the process

3 = (o(k): keg) e o8 for 1= 1, ., L. This is a
Markov chain whose transition law P(¢; | ¢;_;) is simply
described: the coordinates ¢(k) do not change for
ke (8_1n&;), whereas ¢(I) is sampled independently

from the parental phase prior #{¢(I); 1). At each locus I >
1 we observe ¢(1) = (&,(1), .., &,(1)) where only the compo-
nents in

K()={i: () # P and j(5, 1-1) > 0}

contribute to the likelihood of the phase vector (¢(1), ...,
o(1)) by a factor

PEM | @1, o1-1,Hi) =
[T ROle() = o(i(8;.1= 1)) () = & ({631 = 1)), p(i(8;.1 = 1).1)).

ieK(l)

Here R(0, 0, p) =R(1, 1, p)=1-p, R(1,0, p) =R(0, 1, p)
= p, p (k, 1) is the recombination fraction between the loci

kandland H; := {{(k): k<1}.

Summarizing: If we do not have censoring, (¢(1), ¢(1)) is a
Markov chain with hidden state ¢(I) € {0, 1}, and given
the censoring pattern (;:i =1, ..., n), we have constructed

a Markov process ¢; with an enlarged state space &;
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depending on the locus J, such that the conditional distri-
bution of the observation process £(1), given ¢; and (¢(k),

{(k) : k <), depends only on ¢;, ¢;_; and the previous
observations (¢(j(d; 1 - 1)) : i < n) at the last uncensored
lodi, i.e. given the censoring pattern ¢, (¢, (&(j(d;, 1)) @i

< n)) is a Markov process.

After having enlarged the state space, we are back to the
framework of hidden Markov models, and we can use the
Viterbi algorithm to sample from the joint posterior distri-

bution the vector (¢,...,¢;) (which contains the same

information as the vector (¢(1), ..., ¢(L)), conditionally
on the observations (&(1), ..., (L) :i =1, ..., n). Next we
sketch the algorithm.

At the first locus we have always ¢; = (¢(1)) and
P(¢, |H,) = #(p(1); 1). For the following loci we com-
pute sequentially the distribution of the phase vector
o =(p(k) :ke&))e {0,1}‘81‘ conditionally on the data

up to locus I:

P(g [ H) = ),

— 81—
g {01yl

Py [H1-1)P(@r | @1-1.H)p),
where

Py | @1—1,H;p) =< P(@y | @1—1)P(E D) | @1, P1—1,H 1)

Next, we sample ¢; = (¢(k):ke&;) from P(pp |Hi),
and continue sequentially backwards from locus L to
locus 1. Having sampled @; ,...,¢;,;, we sample ¢; from

the conditional distribution

P(¢ | @11, Hipr) = Py |7{Z)P((El+1 | 1. Hi)

By the same method one computes the posterior proba-
bility of a given sample (¢(1), ..., ¢(L)), and it would also
be possible to find the phase vector of maximal posterior
probability by using dynamic programming.

In a similar fashion, we can compute recursively the mar-

ginal distribution of the data. For the given sampling pat-
tern, at the first locus we have simply

P(1,4(1)) = 2(p(1);1)P(S (1)), with P(¢(1)) = 27 FHEaM=1),

Then we compute recursively, for 1 </ <L,

http://www.biomedcentral.com/1471-2105/8/411

PEMC@m M) = Y {PEM)l=1),011) X

&1-1]

giaefon)
P(@ | o-)PE D 1 CU-1), 01,1},
and finally
P(C(1),¢(2),.CL) = Y PEA),...5(1).1).
5 &L
¢.{0,1}

It is quite remarkable that this algorithm does not need to
sample the missing data. The possiblity of sampling the
parental phases, by conditioning on the haplotypes of the
children, is crucial for the mixing of the MCMC algorithm.
Sampling the phases from the prior only is unlikely to
produce a reasonable recombination pattern on the hap-
lotypes of the children, with the consequence that the
acceptance probability of the whole move will be very
low.
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