BIVIC Bioinformatics Baoml.-?@mral

Research article

Prediction potential of candidate biomarker sets identified and
validated on gene expression data from multiple datasets
Michael Gormley, William Dampier, Adam Ertel, Bilge Karacali and
Aydin Tozeren*

Address: School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA

Email: Michael Gormley - mpg33 @drexel.edu; William Dampier - wnd22 @drexel.edu; Adam Ertel - ame28@drexel.edu;
Bilge Karacali - bk72 @drexel.edu; Aydin Tozeren* - aydin.tozeren@drexel.edu

* Corresponding author

Published: 26 October 2007 Received: 19 June 2007
BMC Bioinformatics 2007, 8:415  doi:10.1186/1471-2105-8-415 Accepted: 26 October 2007
This article is available from: http://www.biomedcentral.com/1471-2105/8/415

© 2007 Gormley et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Independently derived expression profiles of the same biological condition often
have few genes in common. In this study, we created populations of expression profiles from
publicly available microarray datasets of cancer (breast, lymphoma and renal) samples linked to
clinical information with an iterative machine learning algorithm. ROC curves were used to assess
the prediction error of each profile for classification. We compared the prediction error of profiles
correlated with molecular phenotype against profiles correlated with relapse-free status.
Prediction error of profiles identified with supervised univariate feature selection algorithms were
compared to profiles selected randomly from a) all genes on the microarray platform and b) a list
of known disease-related genes (a priori selection). We also determined the relevance of
expression profiles on test arrays from independent datasets, measured on either the same or
different microarray platforms.

Results: Highly discriminative expression profiles were produced on both simulated gene
expression data and expression data from breast cancer and lymphoma datasets on the basis of ER
and BCL-6 expression, respectively. Use of relapse-free status to identify profiles for prognosis
prediction resulted in poorly discriminative decision rules. Supervised feature selection resulted in
more accurate classifications than random or a priori selection, however, the difference in
prediction error decreased as the number of features increased. These results held when decision
rules were applied across-datasets to samples profiled on the same microarray platform.

Conclusion: Our results show that many gene sets predict molecular phenotypes accurately.
Given this, expression profiles identified using different training datasets should be expected to
show little agreement. In addition, we demonstrate the difficulty in predicting relapse directly from
microarray data using supervised machine learning approaches. These findings are relevant to the
use of molecular profiling for the identification of candidate biomarker panels.

Background cer pathology for diagnostic and prognostic purposes [1].
Clinically validated biomarkers are highly valued in can-  Biomarker sets are also used in clinical trials as early indi-
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cators of drug efficacy and toxicity [2]. Molecular profiling
technologies have the potential to enable high-through-
put candidate biomarker identification. Use of oligonu-
cleotide or spotted cDNA microarrays allows for the
quantification of the mRNA concentration of thousands
of gene products simultaneously [3]. Although measure-
ment of the entire proteome is not yet possible [4],
advances in mass spectrometry and chromatography pro-
vide similar capabilities at the protein level. Molecular
profiling approaches have been applied towards the study
of chronic diseases, including muscular dystrophy [5,6],
diabetes [7,8], arthritis [9], cardiovascular disease [10]
and cancer [11-16]. Microarray studies, in which the class
or phenotype (health vs. disease, responders vs. non-
responders, etc.) of all samples is known, can be used to
identify discriminative features (genes or proteins) that
are statistically associated with class distinction
[6,9,11,12]. These features can be used as potential
biomarker sets to determine the phenotype of new sam-
ples and guide therapy appropriately.

Detection of candidate biomarkers from high-dimen-
sional molecular datasets entails separation of signal from
noise. As such, techniques adapted from signal processing
and machine learning can be applied. The goal of
machine learning is to reliably predict the class, or pheno-
typic state, of a new sample given only a set of measured
input variables. The definition of a function that equates
input variables to response is called supervised learning.
In general, supervised learning consists of three steps: fea-
ture selection, decision rule specification and estimation
of generalization error [17]. Feature selection is the iden-
tification of informative features from noisy or uncorre-
lated features in the dataset. Decision rule specification
involves selection of a classification algorithm and defini-
tion of algorithm parameters by cross-validation
[14,17,18]. Feature selection and decision rule specifica-
tion produce a classifier through the use of cross-valida-
tion on training data. In this process, there is a risk of
overfitting the training data, in which the classifier is
trained to recognize noise and not class distinction. The
estimation of generalization error, or the misclassification
rate expected when the classifier is applied to new sam-
ples, can be used to investigate the likelihood of overfit-
ting. An unbiased estimate of the generalization error can
only be obtained from independent test data [17].

Feature selection is particularly important in gene expres-
sion profiling, in which the number of features (genes) is
much larger than the number of observations (microarray
data samples). Identification of discriminative features
eases the process of data interpretation and communica-
tion, decreases computation time for training, and, in
biomarker identification, enables the development of reli-
able clinical assays. Numerous feature selection algo-
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rithms can be found in the literature, most of which rank
features in a univariate manner, sorting them on the basis
of correlation with class distinction [12,18-21]. In molec-
ular profiling studies, univariate methods are used more
often than multivariate feature selection methods [22-24]
due to their intrinsic simplicity and the higher computa-
tional cost of multivariate methods.

Application of supervised feature selection methods in
microarray analysis identifies a set of genes whose expres-
sion patterns, or profiles, are most correlated with
response. However, discriminative feature sets identified
in multiple microarray studies of the same disease state or
biological condition typically share few common genes
[25-27], indicating perhaps that multiple gene subsets can
be used as effective biomarker panels in disease classifica-
tion. Many genes cluster into similar expression profiles
and may have similar roles in signalling or metabolic
pathways. Variation between studies can also be partially
attributed to biological variations between sample popu-
lations and technical variations, such as the microarray
platform (cDNA vs. oligonucleotide), protocol and ana-
lytical techniques used [28,29]. Moreover, selection of
discriminative genes within a given dataset is dependent
on the selection of training set arrays [30-34].

Given the presence of multiple, generally exclusive expres-
sion profiles of disease states such as metastatic breast
cancer, it is appropriate to ask whether feature selection
identifies expression profiles that classify better than is
expected by chance, i.e. better than gene subsets selected
randomly. It is also important to determine to what extent
technical and biological variability between studies affects
the generalization error of classifiers trained on expression
profiles. In this study, we analyzed a multitude of publicly
available microarray datasets consisting of expression
data linked to clinical data for breast cancer, renal cancer,
and lymphoma [35-41]. Expression profiles, composed of
features associated with response, were created using
supervised, univariate feature selection algorithms
[12,18]. Our analysis considered multiple microarray
technologies (Affymetrix, cDNA spotted arrays, cDNA oli-
gonucleotide arrays), normalization, feature selection and
classification methods. Our results point to the efficiency
of gene subsets randomly selected from known disease-
related genes in the accurate classification of cancer sam-
ples according to molecular phenotypes. Results also
point to the challenges of predicting relapse directly from
microarray data annotated with clinical outcome.

Results and Discussion

Simulated datasets confirm the performance of
classification algorithms

Analysis of simulated gene expression datasets indicated
the effectiveness of the feature selection and classification
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algorithms used in this study to predict in binary end-
points. Simulated datasets consisting of 100 observations
and 1000 features were designed to approximate a binary
classification problem [42]. Expression values were drawn
from a multivariate normal distribution with mean equal
to 0. Differentially expressed genes were simulated from a
mixture of the original distribution with a second multi-
variate normal distribution with mean equal to 2. Our
computations, presented in Figure 1, produced highly dis-
criminative decision rules on simulated expression data.
Elimination of differential expression, simulated by gen-
erating all values from the same distribution, resulted in
classifiers with poor classification performance (Figure 1).

Univariate feature selection is a poor predictor of relapse
in breast, lymphoma and renal cancers

Computations with breast cancer microarray datasets
from four independent cohorts of patients (GSE3494,
GSE2034, NKI, Sorlie; Table 1) indicate the poor potential
of univariate feature selection in predicting relapse-free
survival. Figure 2 shows the classification error metric E
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Classification of Simulated Gene Expression Data.
Receiver operating characteristic (ROC) curves showing
classification performance of DLDA classifiers on simulated
gene expression data. The symbols o and B3 are |-specificity
and sensitivity as described in the Methods section. Solid
lines are average ROC curves over 100 iterations of training
and test set selection. Dashed lines are empirical 95% confi-
dence intervals. Bar plots give the mean |-AUC (E) with
error bars showing empirical 95% Cls.
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(described in the methods section) as a function of the
number of features used for classification. Columns 1 and
2 in this figure correspond to classification with respect to
ER-status and relapse-free survival, respectively. Dark gray
bars indicate univariate feature selection whereas light
and medium gray bars correspond, respectively, to ran-
dom selection from either the entire gene set or from an a
priori gene set. Error bars indicate the variance over one
hundred iterations of the machine learning algorithm. As
the figure shows, decision rules trained on relapse-free sta-
tus classify test samples with low accuracy. Analysis of dif-
fuse large B-cell lymphoma (DLBCL) and conventional
renal cell carcinoma (CRCC) datasets similarly yielded
high errors in the prediction of relapse-free status (Figure
3, Additional File 1). Survival time is a multi-factorial
response variable with many potential confounding fac-
tors (ie. lifestyle, age, etc.) that may affect gene expression.
The influence of these confounding factors may result in
tumor classes that are highly heterogeneous in regards to
gene expression. These results indicate the difficulty in
predicting relapse-free status in several forms of cancer
from microarray data with the use of univariate feature
selection.

Univariate feature selection as well as randomly chosen
features from a priori knowledge set classifies microarray
data according to molecular phenotype

In contrast, machine learning methods were able to clas-
sify microarray datasets according to molecular pheno-
type with high accuracy (Figure 2, Additional File 2). In
analysis of breast cancer datasets, Figure 2 shows that deci-
sion rules trained on ER status classified test samples more
accurately than decision rules trained on relapse-free sta-
tus. These results agree with previous studies in that the
expression profiles of many genes seem to be correlated
with ER status [11,43]. Estrogen receptor is a hormone-
activated transcription factor [44] and also participates in
cellular signalling by heterodimerization with membrane-
bound receptors such as the endothelial growth factor
receptor [44]. Loss of estrogen receptor expression inhib-
its ER-responsive gene transcription and signaling in
downstream pathways and therefore can be expected to
affect the expression of downstream genes in a similar
manner across tumors. Consistent with the analysis of
breast cancer data, lymphoma datasets exhibited low
errors in the prediction of BCL-6 status. BCL-6 is a zinc-
finger protein that functions as a transcriptional repressor
[45] and is expressed in germinal center B cells [46]. In
DLBCL, BCL-6 expression, assessed by both immunohis-
tochemistry and RT-PCR, has been associated with better
survival in several studies [47,48]. Univariate feature
selection may be successful in predicting molecular phe-
notype due to the fact that expression profiles of many
genes are correlated with changes in expression of these
transcriptional modulators.
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Table I: Description of microarray datasets
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Disease Type Datasets Platform # of Arrays Restrictions Reference
Breast Cancer GSE3494 Affy HG-UI33a 251 a Miller et al. [33]
GSE2034 Affy HG-U133a 286 b, c Wang et al. [34]
NKI Hu25K 295 d, e f Van de Vijver et al. [35]
Sorlie cDNA 121 a Sorlie et al. [36]
Diffuse large B-Cell Lymphoma  Broad Affy HG-U133a 176 a Monti et al. [37]
GSE4475 Affy HG-U133a 220 a Hummel et al. [38]
Renal Carcinoma Zhao cDNA 177 a Zhao et al. [39]

a. No restrictions

b. Lymph-node negative

c. No adjuvant therapy

d. <5 cm in diameter

e. < = 52 years at diagnosis

f. No previous history of cancer

To determine whether gene sets identified with supervised
feature selection are uniquely correlated with response,
the classification performance of expression profiles was
compared with the performance of decision rules created
without feature selection (ie. from random gene subsets
drawn from either the entire genechip (random selection)
or a list of known disease related genes (a priori selec-
tion)) (Figure 2). Random selection of subsets of 1 genes
gives a baseline error rate expected for classification based
on decision rules with n features. A priori selection pro-
vides a baseline error rate based on the known pathology.
In Figure 2, we demonstrate that decision rules that incor-
porate supervised feature selection classify test samples
more accurately than decision rules using a priori selec-
tion or random selection. However, in molecular pheno-
type prediction, the difference in prediction error
decreases drastically as the number of features increases.
This indicates that the power of univariate supervised fea-
ture selection methods lies in identifying small sets of dis-
criminative features. Low prediction error resulting from
classification based on multiple, exclusive gene sets has
been demonstrated previously by investigating the classi-
fication potential of feature sets found down the list of
genes ranked by their association with response [32].
Consistent with these previous observations, we demon-
strate that randomly selected gene subsets classify molec-
ular phenotype much better than the 50% error rate
expected from random classification. In addition, limiting
the feature space to genes that have demonstrated disease-
relevance in the experimental setting improves classifica-
tion performance of randomly selected gene sets. These
results suggest that the presence of multiple, mostly exclu-
sive biomarker sets identified from different studies
[11,35-37] can be partially attributed to the large number
of combinations of discriminative feature sets [33].

Error in predicting relapse is insensitive to normalization
and classification algorithms

Our computations indicate that classification error is only
weakly dependent on normalization, feature selection,
classification and training/testing partition. Breast cancer
dataset GSE3494 was used to assess the effects of these
classification parameters on predicted error. Figure 4
shows that these parameters have little effect on predic-
tion for relapse-free survival whereas pre-processing
methodologies may have a small impact on the prediction
error for ER status.

Leave-one-out cross-validation scheme may lead to
overfitting

It has been shown that decision rules based on microarray
data are capable of clearly differentiating tumors by out-
come when all data is used for feature selection in a leave-
one-out cross-validation scheme. Our findings validate
previous results in the literature concerning, for example,
the prediction of relapse in lymphoma [12]. In their
study, Shipp etal. [12] used a machine learning procedure
consisting of feature selection with the signal to noise
ratio, classifier training by a weighted voting algorithm
and leave one out cross-validation on a cohort of 58 lym-
phoma patients linked to clinical outcome. Importantly,
the final geneset was selected from the consensus of all 58
leave-one out models of the data. Using Kaplan Meier
analysis [49], Shipp et al. demonstrated a significant dif-
ference in survival between the classes predicted by
machine learning. We replicated their calculations in this
study using a larger microarray dataset (GSE4475, Table
1) and found similar results using both their and our
methods of feature selection and classification (Figure 5,
Row 1; Additional File 3). Next, we divided the data in
GSE4475 into a learning set (randomly selected set of 58
arrays) and test set (remaining 101 arrays) and computed
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Figure 2

Prediction error of DLDA classifiers trained and vali-
dated on breast cancer datasets. Column |: Classifiers
trained on ER-status. Column 2: Classifiers trained on
relapse-free status. E is the mean |1-AUC of the correspond-
ing set of ROC curves, calculated as described in the Meth-
ods section. Error bars show empirical 95% Cls.

Kaplan Meier survival curves. Results shown in row 2 of
Figure 5 (Additional File 3) demonstrate the diminished
capacity to identify groups of tumors with different sur-
vival rates when complete separation of training and test-
ing sets is maintained in the computations. Thus, when
feature selection was included in the cross-validation pro-
cedure, such that features selected only from training data
were applied to the test data, the difference in survival
time between predicted classes decreased. These results
suggest the possibility of overfitting in previously reported
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Prediction error of DLDA classifiers trained and vali-
dated on a diffuse large B-cell ymphoma dataset.
Column I: Classifiers trained on BCL-6 status. Column 2:
Classifiers trained on relapse-free status. E is the mean |-
AUC of the corresponding set of ROC curves, calculated as
described in the Methods section. Error bars show empirical
95% Cls.

classifiers based on microarray data linked to clinical out-
come.

Molecular phenotype prediction is maintained in across

dataset cross-validation on the same microarray platform
Next, we tested whether prediction error calculated by
within dataset cross-validation holds when decision rules
trained on one dataset are applied to arrays from other
datasets profiling similar populations. Within dataset
cross-validation may be biased according to the degree of
non-specific correlation between the training and test
data. Non-specific correlation can be described as techni-
cal noise that arises in sample preparation, hybridization
and scanning and results in data collected from the same
lab being more highly correlated than data collected in
different labs [50]. To investigate this issue further, we
used the Affymetrix dataset GSE3494 for developing deci-
sion rules for ER status prediction and applied these rules
to arrays profiled on either the same (GSE2034) or differ-
ent microarray platforms (NKI and Sorlie). There was no
need to test validation of relapse prediction across data-
sets since our results showed poor prediction capacity
even for within dataset cross-validation. Figure 6 illus-
trates the results of this analysis in the form of ellipses
whose size and shape indicate the distribution of predic-
tion errors. The column on the left (Column 1) belongs to
computations using univariate feature selection and the
column on the right (Column 2) indicates results corre-
sponding to random selection from an a priori dataset.
The figure shows that the prediction error and its variance
were much lower on test datasets profiled on the same
platform (Figure 6, Row 1) in comparison to test datasets
using different platforms (Figure 6, Rows 2 and 3). The
same trend held true when the decision rule was based on
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Figure 4

Senstivity of classifiers to normalization and
machine-learning parameters. Decision rules trained
and validated on breast cancer dataset GSE3494 using super-
vised feature selection. Row |: Expression values obtained
using different pre-processing algorithms. Row 2: Different
univariate feature selection methods. Row 3: Different classi-
fication schemes. Row 4: Different mode of partition into
training and test data. E is the mean |-AUC for the corre-
sponding set of ROC curves, calculated as described in the
Methods section. Error bars are empirical 95% Cls.

feature selection from a random set chosen with a priori
knowledge (Figure 6, Column 2). These results suggest
that decision rules obtained for classification do not accu-
rately predict molecular phenotype in microarray data

http://www.biomedcentral.com/1471-2105/8/415

obtained using different platforms, possibly due to differ-
ent strategies in probe design, or shortcomings in the
matching of probes using probe set annotations [51].
Overall, these results demonstrate that bias resulting from
non-specific correlation is negligible when samples are
analyzed on the same platform. Results also validate the
use of feature selection algorithms to identify small, dis-
criminative feature sets that can be adapted for use in
biomarker panels for identifying molecular phenotypes.

Conclusion

Biomarker sets derived from different global gene expres-
sion datasets for the purpose of predicting molecular phe-
notype or relapse in cancer contain very few common
genes [25-27]. In a typical microarray experiment, expres-
sion values of many genes are correlated with response
[31,33] and therefore, one could predict that multiple
biomarker sets could accurately predict the classification
of arrays into defined phenotypes. In this study, we used
an iterative machine learning approach to determine the
prediction potential of biomarker sets chosen using uni-
variate feature selection from training sets selected ran-
domly. On simulated gene expression data, this approach
generated several highly discriminative decision rules.
Similarly, multiple expression profiles capable of classify-
ing tumors by molecular phenotype were identified in
both breast cancer and DLBCL datasets.

We also compared the prediction error resulting from
supervised feature selection vs. features selected randomly
from either the entire set of genes represented on the
microarray or an a priori defined subset of disease-rele-
vant genes. Overall, univariate feature selection led to
more accurate classification; however, the difference in
prediction errors decreased as the number of features
increased. Similar results were also observed in the appli-
cation of decision rules to samples from other gene
expression datasets profiled on the same microarray plat-
form. From this, we conclude that the presence of multi-
ple biomarker sets in the prediction of molecular
phenotype arises from the large number of genes corre-
lated with response.

In contrast, decision rules trained on the basis of relapse-
free status classified samples with relatively high predic-
tion errors in breast cancer, DLBCL and CRCC datasets.
Specifically, prediction error was approximately 40% in
all cases that were studied regardless of the method used
for feature selection. Overall, these results indicate the dif-
ficulty of developing biomarker sets predictive of cancer
relapse using a single microarray dataset. Our results do
not apply to meta-analytical approaches, in which cancer
relapse predictions are obtained by integrating data from
multiple microarray datasets prior to machine learning
[52-55]. In addition, combined use of clinical informa-
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Kaplan-Meier plots of survival rates for predicted tumor classes with different feature selection/cross-valida-
tion methods. Classifiers trained on the basis of relapse-free status on diffuse large B-cell lymphoma dataset GSE4475. Col-
umn |: Signal to noise ratio. Column 2: Ratio of between class to within class sum of squares. Row |: Leave-one out cross-
validation. All data used for training and testing. Row 2: Training and test sets selected randomly from the dataset. Training

based on leave-one out cross-validation.

tion and gene expression data may result in decision rules
with better accuracy in predicting relapse [56-58].

Methods

Microarray datasets

Publicly available gene expression data for a multitude of
cancer types (breast cancer, lymphoma, and renal cancer)
were collected from the online repositories Gene Expres-
sion Omnibus (GEO) [59] and Stanford Microarray Data-
base (SMD) [60] (Table 1). All datasets used in the study
were linked to clinical data including outcome and were
further restricted to exclude datasets with less than 100
samples. Expression datasets analyzed in this article
included data from multiple platforms (Affymetrix,
cDNA, Hu25K), allowing us to assess the platform
dependence of our results. Typically, datasets were col-

lected from population-based studies with no age/status
restrictions. Two exceptions to this rule are as follows: 1)
dataset GSE2034 was restricted to breast cancer patients
with lymph-node negative disease and with no adjuvant
therapy; and 2) dataset NKI was restricted to patients with
tumors less than 5 cm in diameter, and under age 52 at
diagnosis (Table 1).

Each microarray dataset was analyzed independently to
evaluate the error in predicting relapse (or histological
expression of a surrogate biomarker of relapse) using uni-
variate feature selection compared to the resulting error
from biomarker sets chosen randomly from either the
entire set of genes represented on the microarray (ran-
dom) or a smaller set of experimentally validated cancer-
associated genes (a priori). To this end, we used an itera-
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Prediction error of DLDA classifiers on breast cancer datasets by within-dataset and across-dataset cross-vali-
dation. Decision rules trained on ER-status. Ellipses are centered on the mean |-AUC of the associated ROC curves. The
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Prediction error of decision rules based on random selection of features from a subset with a priori disease relevance.

tive supervised, machine-learning approach, described
below. For completeness, we tested the dependence of our
approach on the use of different pre-processing, feature
selection and classification algorithms and cross-valida-
tion schemes. The primary focus of our study was on
breast cancer, where multiple datasets were available for
analysis. Lymphoma and renal carcinoma datasets were
used to assess the applicability of our conclusions relevant
to breast cancer on other disease states. All work described
in this study was carried out using the R statistical envi-

ronment [61] and was duplicated independently in Mat-
lab unless otherwise noted.

Pre-processing microarray data

Microarray datasets were collected in raw format when
available (GSE3494, GSE4475). Two pre-processing algo-
rithms, Robust Multi-Array Analysis (RMA) [62] and MAS
5.0 [63], were applied to these datasets to determine the
effect of pre-processing on downstream analysis. RMA was
implemented with the Bioconductor package [64,65] in
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the R statistical environment [61]. MAS 5.0 was imple-
mented with Array Express Lite. All other datasets were
obtained in pre-processed form. The methods used for
pre-processing in these cases are summarized briefly as
follows. The Broad and GSE2034 datasets were pre-proc-
essed using MAS 5.0 [63]. In the GSE2034 dataset, only
chips with an average signal intensity of greater than 40
and a background signal of less than 100 were included
and probe sets were scaled to a target intensity of 600 [36].
Sorlie and Zhao datasets were obtained from the Stanford
Microarray Database (SMD) [60] in log base 2 form. Spots
flagged by the scanning software were not included. Miss-
ing values were imputed using a nearest neighbour algo-
rithm [66]. Expression values in the NKI dataset were
quantified by averaging the intensity across the Cy3 and
Cy5 channels and subtracting a local background estimate
[37]. Each channel was normalized to the mean intensity
across genes.

Probe set annotation

Affymetrix probe sets were annotated using the hgul33a
package [67] in R. Stanford clone IDs were annotated
using the SOURCE database [68]. Stanford cDNA datasets
consisted of samples processed on different generations of
c¢DNA platforms. To obtain comparable data within each
dataset, we limited the dataset to the clone IDs repre-
sented on all generations. This step resulted in 8404 and
39414 clone IDs for the Sorlie and Zhao datasets respec-
tively. The NKI probe sets were annotated using Unigene
cluster IDs from Unigene build 158 [69]. Retired cluster
IDs were identified and re-annotated using records from
Unigene. These IDs are sometimes split into multiple clus-
ters. In these cases, annotation was not possible. These
probe sets were excluded from the analysis. By retaining
only the probe sets that could be definitively annotated,
we were left with 8069 probe sets for further analysis.

Mapping between probe sets and genes

A single probe set representing each gene was selected due
to the varying redundancy of gene representation on
microarray platforms. In datasets compiled in this study,
approximately 60% of genes were represented by a single
probe set. Genes represented by multiple probe sets were
dealt with in the following manner. For Affymetrix data-
sets, probe set suffixes were used to remove redundant
probe sets. For the HG-U133a chip, probe sets are
encoded with _at, _s_at and _x_at suffixes that describe
the quality of probe design [70]. All _x_at probe sets
(~10% of probe sets on the array) were excluded. If a gene
were represented by an _at probe set, and multiple _s_at
probe sets, the _at probe set was selected. Approximately
20% of redundant probe sets could be dealt with in this
manner. In cases in which a unique probe set could not be
chosen by the suffix, the average expression value of the
remaining probe sets was used. For the non-Affymetrix
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probe sets, a unique probe set was chosen by selecting the
probe set with the highest variance across samples.

Feature selection

Microarray datasets were iteratively divided into learning
sets (LS) and test sets (TS) to create a population of classi-
fiers and determine their classification performance in a
Monte Carlo cross-validation approach [71]. Two types of
response variables were used to divide tumors into groups
of poor prognosis and good prognosis, either histological
expression of biomarkers (ER status in breast cancer, BCL-
6 status in lymphoma) or relapse-free survival, in which
relapse is defined as disease recurrence or death from dis-
ease. Learning sets and test sets were selected by first divid-
ing datasets by response variable and then randomly
selecting equal proportions of arrays from each class. Two
different partitions were used: 2/3 LS, 1/3 TS and 1/2 LS,
1/2 TS. Learning sets were used to select informative fea-
tures and train the decision rule. Genes were selected from
learning set data in a supervised manner using a univari-
ate feature selection algorithm, implemented with the
stat.bwss function in the sma package [72]. Briefly, each
gene was ranked by the ratio of between class sum of
squares to within class sum of squares. High scoring genes
have large between class variances and small within class
variances and are therefore correlated with class distinc-
tion. A second univariate feature selection method [12]
was used to determine if our results were sensitive to fea-
ture selection algorithms. In this second method, genes
are ranked by the signal to noise ratio, namely the ratio of
the difference in class-specific means to the sum of the
class-specific standard deviations [12]. This is quite simi-
lar to the two-sample t-statistic. We use the term signal to
noise ratio to maintain consistency with previous litera-
ture in the field. For comparison, genes were selected ran-
domly from either the entire list of genes represented on
the array (random), or a list of experimentally validated
disease-related genes obtained from the Ingenuity Path-
ways Database [73] (a priori). All three feature sets (fea-
ture selected, a priori, and random) were used in
downstream analyses.

Classification

Two classification algorithms, diagonal linear discrimi-
nant analysis (DLDA) and k- nearest neighbour (NN, k =
3), were used to create decision rules on the basis of train-
ing data. The NN algorithm classified test samples by the
class of the three closest samples in the training set using
Euclidean distance [72]. DLDA is based on the maximum
likelihood discriminant rule [72]. These relatively simple
classifiers have been shown to give accurate classifications
when used to analyze expression data and appear to per-
form as well as or better then more sophisticated algo-
rithms, such as support vector machines, and resampling
methods, such as bagging or boosting [72,74].
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Validation

To obtain an estimate of generalization error, decision
rules were applied to thecorresponding test sets. The con-
fidence (8) with which each sample was classified was cal-
culated as follows:

_dr
(dg+dy)

in which dg and dy are the distances predicted by the deci-
sion rule to the poor and good prognosis classes, respec-
tively. Samples are classified as good prognosis if the score
is greater than 0.5 and vice-versa.

5= (1)

With this methodology, the classification performance of
the decision rulescould be visualized and compared with
the use of receiver operating characteristic (ROC) curves
[75]. ROC curves plot sensitivity, or detection rate, ()
against 1-specificity, or false alarm rate (o).

TruePositives

(2)

- (TruePositives + FalseNegatives)

FalsePositives

o= (3)

( FalsePositives + TrueNegatives )

Classification performance was determined from the area
under the curve (AUC). Good classifiers have high detec-
tion rates across the range of false alarm rates and there-
fore have a large AUC. ROC curves were generated for
each classifier using the ROC package in R [76]. The score
d was divided into thresholds and p and a were calculated
at each cut-off point. The AUC of each classifier was then
calculated using the sum of trapezoids. The entire process
of feature selection, decision rule specification and esti-
mation of generalization error was repeated 100 times to
determine the expected performance of each gene set on a
randomly selected set of samples. Average ROC curves
were calculated from the distribution of detection rates at
given false alarm rates [77]. Empirical confidence intervals
were obtained as the 97.5% and 2.5% quantiles of this
distribution [77]. The expected classification performance
was quantified using a prediction error metric E defined as
the mean 1-AUC. A smaller E value corresponds to a more
accurate classifier.

Simulated expression data

Simulated microarray datasets were generated to verify
that the machine learning algorithm described above
leads to accurate classification. Simulated expression data
was created in the manner described by Bura and Pfeiffer
[42]. Datasets consisted of 100 observations with 1000
variables each, corresponding to arrays and genes respec-
tively. Half of the observations were labelled as class 1 and
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the remainder were labelled class 0. All data for class 0
samples were drawn from a multivariate normal distribu-
tion with mean 0 and a covariance matrix of X. Five per-
cent of genes were simulated to be differentially
expressed. For class 1 samples, differentially expressed
genes were drawn from a mixture of two multivariate nor-
mal distributions with means 0 and 2 and covariance
structure 2. The mixing probability was 1/2. Non-differen-
tially expressed genes were generated from the same distri-
bution as class 0 samples. The covariance matrix £ = o
was generated with a block structure with o;;= 0.2 for | j-i
| <5 and 0 otherwise.

Statistical significance of molecular profile prediction from
microarray data

To determine the significance of the calculated prediction
error metric E for molecular profile prediction in breast
cancer and lymphoma, the machine learning algorithm
was repeated 1000 times with permuted class labels. An
empirical p-value was calculated as the fraction of deci-
sion rules based on permuted class labels that performed
better than the expected classification performance, E
(described above), of decision rules based on true class
labels. Permutation processes give an estimate of the like-
lihood that the true E value could be obtained by chance
alone and are frequently used in similar studies for this
purpose [21,78]. Results are summarized in Additional
File 2.

Independent validation

In addition to cross-validated generalization error, we
determined the classification accuracy across datasets. To
this end, decision rules trained on one dataset were tested
in both the corresponding test subset and datasets
obtained by other laboratories, resulting in E values for
each test case. For across platform comparisons (Affyme-
trix vs. Hu25K, Affymetrix vs. cDNA), probe sets were
matched by annotation to Entrez Gene identifiers.
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Prediction error of DLDA classifiers on lymphoma (Broad) and renal
carcinoma (Zhao) datasets. Classifiers trained to predict relapse-free sta-
tus. E is the mean 1-AUC of the corresponding set of ROC curves, calcu-
lated as described in the Methods section. Error bars show empirical 95%
Cls.
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Additional file 2

Significance of prediction error (P values) of DLDA classifiers trained
to predict molecular phenotype. Bold entries indicate significant P-val-
ues <= 0.01.
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Additional file 3

Kaplan-Meier plots of survival rates for tumor classes with different
classification/cross-validation methods. Classifiers trained on the basis
of relapse-free status on diffuse large B-cell lymphoma dataset GSE4475.
Column 1: Weighted-voting algorithm. Column 2: DLDA. Row 1: Leave-
one out cross-validation. All data used for training and testing. Row 2:
Training and test sets selected randomly from the dataset. Training based
on leave-one out cross-validation.
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