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Abstract
Background: We present a probabilistic topic-based model for content similarity called pmra that
underlies the related article search feature in PubMed. Whether or not a document is about a
particular topic is computed from term frequencies, modeled as Poisson distributions. Unlike
previous probabilistic retrieval models, we do not attempt to estimate relevance–but rather our
focus is "relatedness", the probability that a user would want to examine a particular document
given known interest in another. We also describe a novel technique for estimating parameters that
does not require human relevance judgments; instead, the process is based on the existence of
MeSH ® in MEDLINE ®.

Results: The pmra retrieval model was compared against bm25, a competitive probabilistic model
that shares theoretical similarities. Experiments using the test collection from the TREC 2005
genomics track shows a small but statistically significant improvement of pmra over bm25 in terms
of precision.

Conclusion: Our experiments suggest that the pmra model provides an effective ranking
algorithm for related article search.

Background
This article describes the retrieval model behind the
related article search functionality in PubMed [1]. When-
ever the user examines a MEDLINE citation in detail, a
panel to the right of the abstract text is automatically pop-
ulated with titles of articles that may also be of interest
(see Figure 1). We describe pmra, the topic-based content
similarity model that underlies this feature.

There is evidence to suggest that related article search is a
useful feature. Based on PubMed query logs gathered dur-
ing a one-week period in June 2007, we observed approx-
imately 35 million page views across 8 million browser
sessions. Of those sessions, 63% consisted of a single page
view–representing bots and direct access into MEDLINE
(e.g., from an embedded link or another search engine).
Of all sessions in our data set, approximately 2 million
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include at least one PubMed search query and at least one
view of an abstract–this figure roughly quantifies actual
searches. About 19% of these involve at least one click on
a related article. In other words, roughly a fifth of all non-
trivial user sessions contain at least one invocation of
related article search. In terms of overall frequency,
approximately five percent of all page views in these non-
trivial sessions were generated from clicks on related arti-
cle links. More details can be found in [2].

We evaluate the pmra retrieval model with the test collec-
tion from the TREC 2005 genomics track. A test collection
is a standard laboratory tool for evaluating retrieval sys-
tems, and it consists of three major components:

• a corpus–a collection of documents on which retrieval is
performed,

• a set of information needs–written statements describ-
ing the desired information, which translate into queries
to the system, and

• relevance judgments–records specifying the documents
that should be retrieved in response to each information
need (typically, these are gathered from human assessors
in large-scale evaluations [3]).

The use of test collections to assess the performance of
retrieval algorithms is a well-established methodology in
the information retrieval (IR) literature, dating back to the
Cranfield experiments in the 60's [4]. These tools enable
rapid, reproducible experiments in a controlled setting
without requiring users.

The pmra model is compared against bm25 [5,6], a com-
petitive probabilistic model that shares theoretical simi-
larities with pmra. On test data from the TREC 2005
genomics track, we observe a small but statistically signif-
icant improvement in terms of precision.

Before proceeding, a clarification on terminology:
although MEDLINE records contain only abstract text and
associated bibliographic information, PubMed provides

A typical view in the PubMed search interface showing an abstract in detailFigure 1
A typical view in the PubMed search interface showing an abstract in detail. The "Related Links" panel on the right is populated 
with titles of articles that may be of interest.
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access to the full text articles (if available). Thus, it is not
inaccurate to speak of searching for articles, even though
the search itself is only performed on information in
MEDLINE. Throughout this work, we use "document"
and "article" interchangeably.

1.1 Formal Model
We formalize the related document search problem as fol-
lows: given a document that the user has indicated interest
in, the system task is to retrieve other documents that the
user may also want to examine. Since this activity gener-
ally occurs in the context of broader information-seeking
behaviors, relevance can serve as one indicator of interest,
i.e., retrieve other relevant documents. However, we think
of the problem in broader terms: other documents may be
interesting because they discuss similar topics, share the
same citations, provide general background, lead to inter-
esting hypotheses, etc.

To constrain this problem, we assume in our theoretical
model that documents of interest are similar in terms of
the topics or concepts that they are about; in the case of
MEDLINE citations, we limit ourselves to the article title
and abstract (the deployed algorithm in PubMed also
takes advantage of MeSH terms, which we do not discuss
here). Following typical assumptions in information
retrieval [7], we wish to rank documents (MEDLINE cita-
tions, in our case) based on the probability that the user
will want to see them. Thus, our pmra retrieval model
focuses on estimating P(c|d), the probability that the user
will find document c interesting given expressed interest
in document d.

Let us begin by decomposing documents into mutually-
exclusive and exhaustive "topics" (denoted by the set
{s1...sN}). Assuming that the relatedness of documents is
mediated through topics, we get the following:

Expanding P(sj|d) by Bayes' Theorem, we get:

Since we are only concerned about the ranking of docu-
ments, the denominator can be safely ignored since it is
independent of c. Thus, we arrive at the following criteria
for ranking documents:

Rephrased in prose, P(c|sj) is the probability that a user
would want to see c given an interest in topic sj, and simi-
larly for P(d|sj). Thus, the degree to which two documents
are related can be computed by the product of these two
probabilities and the prior probability on the topic P(sj),
summed across all topics.

Thus far, we have not addressed the important question of
what a topic actually is. For computational tractability, we
make the simplifying assumption that each term in a doc-
ument represents a topic (that is, each term conveys an
idea or concept). Thus, the "aboutness" of a document
(i.e., what topics the document discusses) is conveyed
through the terms in the document. As with most retrieval
models, we assume single-word terms, as opposed to
potentially complex multi-word concepts. This satisfies
our requirement that the set of topics be exhaustive and
mutually-exclusive.

From this starting point, we leverage previous work in
probabilistic retrieval models based on Poisson distribu-
tions (e.g., [6,8,9]). A Poisson distribution characterizes
the probability of a specific number of events occurring in
a fixed period of time if these events occur with a known
average rate. The underlying assumption is a generative
model of document content: let us suppose that an author
uses a particular term with constant probability, and that
documents are generated as a sequence of terms. A Pois-
son distribution specifies the probability that we would
observe the term n times in a document. Obviously, this
does not accurately reflect how content is actually pro-
duced–nevertheless, this simple model has served as the
starting point for many effective retrieval algorithms.

This content model also assumes that each term occur-
rence is independent. Although in reality term occur-
rences are not independent–for example, observing the
term "breast" in a document makes the term "cancer"
more likely to also be observed–such a simplification
makes the problem computationally tractable. This is
commonly known as the term-independence assumption
and dates back to the earliest days of information retrieval
research [10]. See [11] for recent work that attempts to
introduce term dependencies into retrieval algorithms.

Building on this, we invoke the concept of eliteness, which
is closely associated with probabilistic IR models [8]. A
given document d can be about a particular topic si or not.
Following standard definitions, in the first case we say
that the term ti (representing the topic si) is elite for docu-
ment d (and not elite in the second case).

Let us further assume, as others have before, that elite
terms and non-elite terms are used with different frequen-
cies. That is, if the author intends to convey topic si in a
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document, the author will use term ti with a certain prob-
ability (elite case); if the document is not about si, the
author will use term ti with a different (presumably
smaller) probability. We can characterize the observed fre-
quency of a term by a Poisson distribution, defined by a
single parameter (the mean), which in our model is differ-
ent for the elite and non-elite cases.

Thus, we wish to compute P(E|k)–the probability that a
document is about a topic, given that we observed its cor-
responding term k times in the document. By Bayes' rule:

Next, we must compute the two probabilities P(k|E) and

P(k| ). As discussed above, we model the two as Poisson
distributions. For the elite case, the distribution is defined

by the parameter λ, for the non-elite case, the parameter µ:

After further algebraic manipulation, we get the expres-
sion in Equation 8. Since there are differences in length
between documents in the same collection, we account
for this by introducing l, the length of the document in
words. Previous research has shown that document length
normalization plays an important role in retrieval per-
formance (e.g., [12]), since longer documents are likely to
have more query terms a priori. Finally, we define the

parameter η = P( )/P(E).

How does Equation 8 relate to our retrieval model? Recall
from Equation 3 that we need to compute P(c|sj) and P
(d|sj)–the probability that a user would want to see a par-
ticular document given interest in a specific topic. Let us
employ P(E|k) for exactly this purpose: we assume that
users want to see the elite set of documents for a particular
topic, which is computed by observing the frequency of
the term that represents the topic. Finally, we approximate

P(si) with idf, that is, the inverse document frequency of ti.
Putting everything together, we derive the following term
weighting and document ranking function:

A term's weight with respect to a particular document (wt)
can be computed using Equation 9, derived from the esti-
mation of eliteness in our probabilistic topic similarity
model. Similarity between two documents is computed
by an inner product of term weights, and documents are
sorted by their similarity to the current document d in the
final output. We note that this derivation shares similari-
ties with existing probabilistic retrieval models, which we
discuss in Section 3.

1.2 Parameter Estimation
The optimization of parameters is one key to good
retrieval performance. In many cases, test collections with
relevance judgments are required to tune parameters in
terms of metrics such as mean average precision (the
standard single-point measure for quantifying system per-
formance in the IR literature). However, test collections
are expensive to build and not available for many retrieval
applications. To address this issue, we have developed a
novel process for estimating pmra parameters that does
not require relevance judgments.

The pmra model has three parameters: λ, µ, and η . The
first two define the means of the elite and non-elite Pois-

son distributions, respectively, and the third is P( )/
P(E). To make our model computationally tractable, we
make one additional simplifying assumption: that half
the term occurrences in the document are elite and the
other half are not. This corresponds to assuming a uni-
form probability distribution in absence of any other
information–a similar principle underlies maximum
entropy models commonly used in natural language
processing [13]. This leads to the following:

Experimental results presented in Sections 2.2 and 2.3
suggest that this assumption works reasonably well. More
importantly, it reduces the number of parameters in pmra
from three to two, and yields a slightly simpler weighting
function:
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Nevertheless, we must still determine the parameters λ
and µ (Poisson parameters for the elite and non-elite dis-
tributions). If a document collection were annotated with
actual topics, then these values could be estimated
directly. Fortunately, for MEDLINE we have exactly this
metadata–in the form of MeSH terms associated with each
record. MeSH terms are useful for parameter estimation in
our model precisely because they represent topics present
in the articles. Thus, we can assume that if Hn is assigned
to document d, the terms in the MeSH descriptor are elite.
For example, if the MeSH descriptor "headache"
[C10.597.617.470] were assigned to a citation, than the
term "headache" must be elite in that abstract. We can
record the frequency of the term and estimate λ from such
observations. Similarly, we can treat as the non-elite case
terms in a document that do not appear in any MeSH
descriptors, and from this we can derive µ. There is, how-
ever, one additional consideration: from what set of cita-
tions should these parameters be estimated? A few
possibilities include: the entire corpus, a random sample,
or a biased sample (e.g., results of a search). In this work,
we experiment with variants of the third approach.

As a final note, while it is theoretically possible to estimate
the parameter η based on MeSH descriptors using a simi-
lar procedure, this assumes that the coverage of MeSH
terms is complete, i.e., that they completely enumerate all
topics present in the abstract. Since the assignment of
MeSH is performed by humans, we suspect that recall is
less than perfect–therefore, we do not explore this idea
further.

2 Results
2.1 Experimental Design
We evaluated our pmra retrieval model against bm25–a
comparison that is appropriate given their shared theoret-
ical ancestry (see Section 3.2). Despite the popularity and
performance of language modeling techniques for infor-
mation retrieval (see [14] for an overview), bm25 remains
a competitive baseline.

Our experiments were conducted using the test collection
from the TREC 2005 genomics track [15], which used a
ten-year subset of MEDLINE. The test collection contains
fifty information needs and relevance judgments for each,
which take the form of lists of PMIDs (unique identifiers
for MEDLINE citations) that were previously determined
to be relevant by human assessors. See Section 5.1 for
more details.

The evaluation was designed to mimic the operational
deployment of related article search in PubMed as much
as possible. In total, there are 4584 known relevant docu-
ments in the test collection from the TREC 2005 genomics
track. Each abstract served as a test "query", and we evalu-
ated the top five results under different experimental con-
ditions (the same number that the current PubMed
interface shows). Precision, a standard metric for quanti-
fying retrieval performance, is defined as:

More specifically, we measured precision at a cutoff of five
retrieved documents, commonly written as P5 for short.
Since our test collection contains a list of relevant PMIDs
for each information need (i.e., the relevance judgments),
this computation was straightforward.

We performed two types of experiments:

• a number of runs that exhaustively explored the param-
eter space to determine optimal values, and

• additional runs of pmra using parameters that were esti-
mated in different ways.

The pmra experiments used the ranking algorithm
described in the previous section. For bm25, we used the
complete text of the abstract verbatim as the "query" and
treated the resulting output as the ranked list of related
documents. Finally, as a computational expedient, we ran
retrieval experiments as a reranking task using the top 100
documents retrieved by bm25 with default parameter set-
tings (k1 = 1.2, b = 0.75), as implemented in the open
source Lemur Toolkit for language modeling and infor-
mation retrieval [16]. Due to the large number of queries
involved in our exhaustive exploration of the parameter
space and the length of each query (the entire abstract
text), this setup made the problem much more tractable
given the computational resources we had access to (half
a dozen commodity PCs). Since we were only evaluating
the top five hits, we believe that this procedure is unlikely
to yield different results from a retrieval run against the
complete corpus. An experiment to validate this assump-
tion is presented in Section 5.2.

The following procedures were adopted for our exhaustive
runs: For bm25, we tried all possible parameter combina-
tions, with k1 ranging from 0.5 to 3.0 in 0.1 increments
and b from 0.6 to 1.0 in 0.05 increments. This range was
selected based on the default settings of k1 = 1.2, b = 0.75
widely reported in the literature. Our exploration of the
pmra parameter space started with arbitrary values of λ
and µ. Assuming that the performance surface was convex
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and smooth, we tried different values until its shape
became apparent. This was accomplished by first fixing a
λ value and varying µ values in increments of 0.001; this
process was repeated for different λ values in 0.001 incre-
ments.

In the second set of experiments, λ and µ for pmra were
estimated using the procedure described in Section 1.2,
on different sets of citations. We also performed cross-val-
idation as necessary to further verify our experimental
results.

2.2 Optimal Parameters
The results of our exhaustive parameter tuning experi-
ments for bm25 are shown in Figure 2, which plots preci-
sion at five across a wide range of parameter values. We
note that except for low values of k1 and b, P5 performance
is relatively insensitive to parameter settings (more on this

below). Results for the pmra parameter tuning experi-
ments are shown in Figure 3–regions in the parameter
space that yield high precision lie along a prominent
"ridge" that cuts diagonally from smaller to larger values
of λ and µ (more on this in Section 3.3).

The highest P5 performance for bm25 is achieved with k1
= 1.9 and b = 1.0; by the same metric, the optimal setting
for pmra is λ = 0.022 and µ = 0.013. Table 1 shows preci-
sion at five values numerically for optimal bm25 and opti-
mal pmra, which we refer to as bm25* and pmra* for
convenience. For comparison, the performance of bm25
with default parameter values k1 = 1.2, b = 0.75 (denoted
as bm25b) is also shown. We applied the Wilcoxon signed-
rank test to determine if the differences in the evaluation
metrics are statistically significant. Throughout this paper,
significance at the 1% level is indicated by **; significance
at the 5% level is indicated by *. Differences that are not

P5 for the bm25 model given different settings of the parameters k1 and bFigure 2
P5 for the bm25 model given different settings of the parameters k1 and b. This plot was generated by exhaustively trying all k1 
values 0.5 to 3.0 (in 0.1 increments) and b values 0.6 to 1.0 (in 0.05 increments). Notice that except for low values of k1 and b, 
P5 performance is relatively insensitive to parameter settings.
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statistically significant are marked with the symbol °.
Results show a small, but statistically significant improve-
ment of pmra over bm25 (both default and optimized),
but no significant difference between optimized and
default bm25. Due to the large number of test abstracts, we
are able to discriminate small differences in performance
between the models (recall that each of the 4584 relevant
documents from the test collection was used as a test
abstract).

Information needs from the TREC 2005 genomics track
were grouped into five templates, each with ten different
instantiations; see Section 5.1 for more details. Precision
at five values broken down by template are shown in
Table 2. Relative differences are shown in Table 3, along
with the results of Wilcoxon signed-rank tests. We find
that in general, differences between default and optimized
bm25 are not statistically significant, except for template
#3. Optimized pmra outperforms optimized bm25 on four
out of five templates, three of which are statistically signif-
icant.

Table 1: Overall comparison between the bm25 and pmra models.

Run Model Description P5 vs. bm25b bm25*

bm25b bm25 (k1 = 1.2, b = 0.75) bm25, default parameters 0.381 -0.5%°
bm25* bm25 (k1 = 1.9, b = 1.00) bm25, optimal parameters 0.383 +0.5%°
pmra* pmra (λ = 0.022, µ = 0.013) pmra, optimal parameters 0.399 +4.7% ** +4.2% **

Table shows model parameters, P5 values over the entire test collection, and relative differences.

P5 for the pmra model given different settings of the parameters λ (Poisson parameter for the elite distribution) and µ (Poisson parameter for the non-elite distribution)Figure 3
P5 for the pmra model given different settings of the parameters λ (Poisson parameter for the elite distribution) and µ (Poisson 
parameter for the non-elite distribution). Notice that the parameter settings resulting in high P5 values lie along a "ridge" in the 
parameter space.
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2.3 Estimated Parameters
We also attempted to automatically estimate parameters
for the pmra model using the method described in Section
1.2. However, that method is underspecified with respect
to the set of MEDLINE citations over which it is applied.
We experimented with the following possibilities:

• The complete set of documents examined by human
assessors in the TREC 2005 genomics track (see [3] for a
description of how these documents were gathered).

• The top 100 hits for each of the 4584 PMIDs that com-
prise our test abstracts, using bm25 with default parame-
ters.

• The top 100 hits for each of the 50 template queries that
comprise the TREC 2005 genomics track, retrieved using
Indri's default ranking algorithm based on language mod-
els. Indri is a component in the open source Lemur
Toolkit.

• Same as previous, except with top 1000 hits.

The estimated parameters given each citation set is shown
in Table 4, along with the size of each set and the precision
achieved. In the first condition, the estimated parameters
differ from the optimal ones, but the resulting P5 figure is
statistically indistinguishable. For the three other citation
sets, the estimated parameters were very close to the opti-
mal parameters. Once again, the differences are not statis-
tically significant. These results suggest that our parameter

estimation method is robust and effective. Furthermore, it
also appears to be insensitive with respect to the size and
composition of the citation set.

Finally, to further verify these results and to ensure that we
were not estimating parameters from the same set used to
measure precision, cross-validation experiments were per-
formed on the second condition. The 4584 test abstracts
were divided into five folds, stratified across the templates
so that each template was represented in each fold. We
conducted five separate experiments, using four of the
folds for parameter estimation and the final fold for eval-
uation. The results were exactly the same–P5 figures were
statistically indistinguishable from the optimal values.

In summary, we have empirically demonstrated the effec-
tiveness of our pmra retrieval model and shown a small
but statistically significant improvement in precision at
five documents over the bm25 baseline. Furthermore, our
novel parameter estimation method was found to be
effective when applied to a wide range of citation sets var-
ying in both composition and size. Notably, the tuning of
parameters did not require relevance judgments, the com-
ponent in a test collection that is the most expensive and
time-consuming to gather.

3 Discussion
3.1 Significance of Results
Although we measured statistically significant differences
in P5 between pmra and bm25, are the improvements
meaningful in a real sense? The difference between base-
line bm25 and optimal pmra (achievable by our parameter
estimation process) is 4.7%. In terms of the PubMed inter-
face, for each abstract, one would expect 2.0 vs. 1.9 inter-
esting articles in the related links display. We argue that
although small, this is nevertheless a meaningful
improvement.

PubMed is one of the Internet's most-visited gateways to
MEDLINE–small differences, multiplied by thousands of
users and many more interactions add up to substantial
quantities. In addition, our metrics are measuring per-
formance differences per interaction, since a list of related

Table 3: Relative differences between the bm25 and pmra models.

Template bm25* vs. bm25b pmra* vs. bm25b pmra* vs. bm25*

#1: methods or protocols -0.5%° +20.0% ** +20.5% **
#2: role of gene in disease +0.6%° +3.1% * +2.5% *
#3: role of gene in biological process +4.0% ** -0.6%° -4.4% **
#4: gene interactions in organ/disease -5.4%° +2.0%° +7.8%°
#5: mutation of gene and its impact -0.5%° +5.0% * +5.5% **

Three conditions are compared: bm25b (default parameters), bm25* (optimized parameters), and pmra* (optimized parameters). Each column 
represents a x vs. y comparison, where the figures indicate the relative improvements of x over y. In general, we see that the differences between 
optimized and default bm25 are not statistically significant, whereas the differences between pmra and bm25 are.

Table 2: Comparison between the bm25 and pmra models, 
broken down by template.

Template bm25b bm25* pmra*

#1: methods or protocols 0.211 0.210 0.253
#2: role of gene in disease 0.484 0.487 0.499
#3: role of gene in biological process 0.351 0.365 0.349
#4: gene interactions in organ/disease 0.297 0.281 0.303
#5: mutation of gene and its impact 0.440 0.438 0.462

Table shows P5 values for bm25b (default parameters), bm25* 
(optimized parameters), and pmra* (optimized parameters).
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articles is retrieved for every citation that the user exam-
ines. In the course of a search session, a user may examine
many citations, especially when conducting in-depth
research on a particular subject. Thus, the effects of small
performance improvements accumulate.

One might also argue that this accumulation of benefits is
not linear. Consider the case of repeatedly browsing
related articles–the user views a citation, examines related
articles, selects an interesting one, and repeats (cf. the sim-
ulation studies in [17,18]). In that case, the expected
number of interesting links per interaction can be viewed
as a branching factor if one wanted to quantify the total
number of interesting articles that are accessible in this
manner. In about 13 interactions, an improvement of 0.1
(i.e., 1.913 vs. 2.013) would result in potential access to
twice as many interesting articles.

3.2 Comparison to Other Work
A suitable point of comparison for this work is the Binary
Independent Retrieval (BIR) model for probabilistic IR
[5,6], which underlies bm25. Indeed, bm25 was chosen as
a baseline not only for its performance, but also because
it shares certain theoretical similarities with our model.
Along with related work dating back several decades [8,9],
these two models share in their attempts to capture term
frequencies with Poisson distributions. However, there
are important differences that set our work apart.

The pmra model was designed for a fundamentally differ-
ent task–related document search, not ad hoc retrieval. In
the latter, the system's task is to return a ranked list of doc-
uments that is relevant to a user's query (what most peo-
ple think of as "search"). One substantial difference is
query length–in ad hoc retrieval, user queries are typically
very short (a few words at the most). As a result, query-
length normalization is not a critical problem, and hence
has not received much attention. In contrast, since the
"query" in related document search is a complete docu-
ment, more care is required to account for document
length differences.

Another important difference between pmra and bm25 is
that there is no notion of relevance in the pmra model,

only that of relatedness, mediated via topic similarity.
Note, however, that the concept of relevance is still implic-
itly present in the task definition–in that the examination
of documents may take place in the context of broader
information-seeking behaviors. In contrast, the starting

point of BIR is a log-odds, i.e., P(R|D)/P( |D), which
explicitly attempts to estimate the relevance (R) and non-

relevance ( ) of a document (D). Relevance is then mod-
eled in terms of eliteness (see below). The starting point
of our task definition leads to a different derivation.

Although both bm25 and pmra attempt to capture term
dependencies in terms of Poisson distributions, they do
so in different ways. BIR employs a more complex repre-
sentation, where term frequencies are modeled as mix-
tures of two different Poisson distributions (elite and non-
elite). In total, the complete model has four parameters–

the two Poisson parameters, P(E|R), and P(E| ). Since
eliteness is a hidden variable, there is no way to estimate
the parameters directly. Instead, Robertson and Walker
devised simple approximations that work well empirically
[19]. One side effect of this 2-Poisson approximation is
that bm25 parameters are not physically meaningful,

unlike λ and µ in pmra, which correspond to comprehen-
sible quantities. Unlike BIR, our model makes the simpli-
fying assumption that terms are exclusively drawn from
either the elite or non-elite distribution. That is, if the doc-
ument is about a particular topic, then the corresponding
term frequency is dictated solely by the elite Poisson dis-
tribution; similarly, the non-elite distribution for the non-
elite case.

Finally, the derivation of our model, coupled with the
availability of MeSH headings in the biomedical domain,
allow us to directly estimate parameters for our system.
Most notably, the process does not require a test collec-
tion with relevance judgments, making the parameter
optimization process far less onerous.

R

R

R

Table 4: Values of pmra parameters (λ, µ) estimated using different sets of MEDLINE citations.

Set Used Size λ µ P5

All assessed documents from TREC 2005 genomics track 39874 0.032 0.022 0.397°
Top 100 hits for every relevant citation, bm25 453402 0.023 0.013 0.398°
Top 100 hits for every template query, Indri 4991 0.022 0.012 0.397°
Top 1000 hits for every template query, Indri 49907 0.024 0.013 0.397°
Optimal parameters 0.022 0.013 0.399

We see that estimated values are close to optimal parameter values in many cases, and that differences in P5 performance are not statistically 
significant.
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3.3 Parameter Estimation
The estimation of parameters in the pmra model depends
on the existence of MeSH terms, which is indeed a fortui-
tous happenstance in the case of MEDLINE. Does this
limit the applicability of our model to other domains in
which topic indexing and controlled vocabularies are not
available? We note that effective access to biomedical text
is suffciently important an application that even a nar-
rowly-tailored solution represents a contribution. Never-
theless, we present evidence to suggest that the pmra
model provides a general solution to related document
search.

We see from Figure 3 that our model performs well with
settings that lie along a ridge in the parameter space. This
observation is confirmed in Figure 4–for each value of λ
(from 0.015 to 0.035 in increments of 0.001), we plot the
optimal value of µ. Superimposed on this graph is a linear
regression line, which achieves an R2 value of 0.976, a very
good fit. This finding suggests that the relationship
between λ and µ is perhaps even more important than
their absolute values, since good performance is attaina-

ble with a wide range of parameter settings (as long as the
relationship between λ and µ is maintained).

How good is related document search performance along
this ridge? The answer is found in Figure 5. On the x-axis
we plot values of λ ; the y-axis shows P5 values for two
conditions–optimal µ (for that λ), shown as squares, and
interpolated µ based on the regression line in Figure 4,
shown as diamonds. The performance of the globally-
optimal setting (λ = 0.022, µ = 0.013, which yields P5 =
0.399) is shown as the dotted line. We see that across a
wide range of parameter settings, P5 performance remains
close to the global optimum. The Wilcoxon signed-rank
test was applied to compare the performance at each set-
ting with the globally-optimal setting: differences that are
statistically significant (p < 0.05) are shown as solid dia-
monds and squares. Only at both ends of the wide λ range
do differences become significant.

This finding suggests that the pmra model is relatively
insensitive to parameter settings, so long as a particular
relationship is maintained between λ and µ. Thus, it

Optimal µ (Poisson parameter for the non-elite distribution) for each λ value (Poisson parameter for the elite distribution) in the pmra modelFigure 4
Optimal µ (Poisson parameter for the non-elite distribution) for each λ value (Poisson parameter for the elite distribution) in 
the pmra model. Regression line shows a linear relationship between these two parameters, corresponding to the "ridge" in 
Figure 3.
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would be reasonable to apply our model to texts for which
controlled-vocabulary resources do not exist.

4 Conclusion
In most search applications, system input is comprised of
a short query, which is a textual representation of the
user's information need. In contrast, this work focuses on
related document search, where given a document, the
goal is to find other documents that may be of interest to
the user–in our case, the specific task is to retrieve related
MEDLINE abstracts. We present a novel probabilistic
topic-based content similarity algorithm for accomplish-
ing this, deployed in the PubMed search engine. Experi-
ments on the TREC 2005 genomics track test collection
show a small but statistically significant improvement
over bm25, a competitive probabilistic retrieval model.
Evidence suggests that the pmra model is able to effectively
retrieve related articles, and that its integration into
PubMed enriches the user experience.

5 Methods
5.1 Test Collection
The test collection used in our experiments was developed
from the TREC 2005 genomics track [15]. The Text
Retrieval Conferences (TRECs) are annual evaluations of
information retrieval systems that draw dozens of partici-
pants from all over the world each year [20]. Numerous
"tracks" at TREC focus on different aspects of information
retrieval, ranging from spam detection to question
answering. The genomics track in 2005 focused on
retrieval of MEDLINE abstracts in response to typical
information needs of biologists and other biomedical
researchers.

The live MEDLINE database as deployed in PubMed is
constantly evolving as new articles are added, making it
unsuitable for controlled, reproducible experiments.
Therefore, the TREC 2005 genomics track evaluation
employed a ten-year subset of MEDLINE (1994–2003),

P5 at optimal and interpolated values of µ for each λ in the pmra modelFigure 5
P5 at optimal and interpolated values of µ for each λ in the pmra model. Squares represent optimal µ at each λ, corresponding 
to the squares in Figure 4. Diamonds represent interpolated µ at each λ, corresponding to the regression line in Figure 4. P5 of 
the globally optimal parameter setting is shown as the dotted line. The filled square and diamond represent points at which P5 
is significantly lower than the globally optimal setting.

 0.39

 0.392

 0.394

 0.396

 0.398

 0.4

 0.015  0.02  0.025  0.03  0.035

P
5

λ

P5 at optimal and interpolated values of µ for each λ in the pmra model

global optimum for pmra (λ=0.022, µ=0.013)

optimal
interpolated

optimal (p < 0.05)
interpolated (p < 0.05)
Page 11 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:423 http://www.biomedcentral.com/1471-2105/8/423
which totals 4.6 million citations (approximately a third
of the size of the entire database at the time it was col-
lected in 2004). Each record is identified by a unique
PMID and includes bibliographic information and
abstract text (if available).

One salient feature of the evaluation is its use of generic
topic templates (GTTs) to capture users' information
needs, instead of the typical free-text title, description, and
narrative combinations used in other ad hoc retrieval
tasks, e.g., [21]. The GTTs consist of semantic types, such
as genes and diseases, that are embedded in common
genomics-related information needs, as determined from
interviews with biologists. In total, five templates were
developed, with ten fully-instantiated information needs
for each; examples are shown in Table 5. The templates
impose a level of organization on the information needs,
but do not have a substantial impact on system perform-
ance since participants for the most part did not exploit
the template structure, but instead treated the topics no
differently than free-text queries.

In total, 32 groups submitted 59 runs to the TREC 2005
genomics track, consisting of both automatic runs and
those with human intervention. Relevance judgments
were provided by an undergraduate student and a Ph.D.
researcher in biology. We adapted the judgments for our
task by treating each relevant document as a test abstract–
citations relevant to the same information need were said
to be related to each other. In other words, we assume that
if a user were examining a MEDLINE citation to address a
particular information need, other relevant citations
would also be of interest.

5.2 Reranking Experiments
Recall from Section 2.1 that for computational expedi-
ency, our experiments were performed as reranking runs
over results retrieved by bm25 with default paramters. We

describe an experiment that examined the potential
impact of this setup.

In theory, both bm25 and pmra establish an ordering over
all documents in a corpus with respect to a query. Rerank-
ing in the limit yields exactly the same results; thus, the
substantive question is whether reranking the top hun-
dred hits would yield the same results as searching over
the entire corpus. We can examine this issue by tallying
the original rank positions of the top five results after
reranking–that is, if reranking promotes hits that are
highly ranked in the original list to begin with, then we
can conclude that hits in the lower ranked positions of the
original list matter little. On the other hand, if the rerank-
ing brings up hits that are very far down in the original
ranked list, it might cause us to wonder what other docu-
ments from lower-ranked positions are missed.

We performed exactly this experiment with the optimal
pmra run (λ = 0.022, µ = 0.013). For each test abstract, we
tallied the original ranks of the top five results, e.g., hit 1
of pmra was promoted from hit 9 of the original ranked
list, etc. We divided the original rank positions into ten
bins of equal size and plotted a histogram of the bin fre-
quencies. The results are shown by the bar graph in Figure
6; the line graph shows the corresponding cumulative dis-
tribution. We see, for example, that approximately 80% of
the top five pmra results came from the top ten results in
the original ranked list. That is, 80% of the time the pmra
algorithm was merely reshuffing the top ten bm25 results–
this is not unexpected, since bm25 already performs well
and there's not much to be done in terms of improving
the results in many cases. The cumulative distribution
tops 95% at rank 31 and 99% at rank 67–which means
that pmra is promoting hits below these ranks to the top
five positions only five and one percent of the time,
respectively. Thus, it is unlikely that our reranking setup
resulted in different conclusions than if the retrieval had

Table 5: Templates and sample instantiations used in the TREC 2005 genomics track evaluation.

#1 Information describing standard [methods or protocols] for doing some sort of experiment or procedure.
methods or protocols: how to "open up" a cell through a process called "electroporation"
#2 Information describing the role(s) of a [gene] involved in a [disease].
gene: interferon-beta
disease: multiple sclerosis
#3 Information describing the role of a [gene] in a specific [biological process].
gene: nucleoside diphosphate kinase (NM23)
biological process: tumor progression
#4 Information describing interactions between two or more [genes] in the [function of an organ] or in a [disease].
genes: CFTR and Sec61
function of an organ: degradation of CFTR
disease: cystic fibrosis
#5 Information describing one or more [mutations] of a given [gene] and its [biological impact or role].
gene with mutation: BRCA1 185delAG mutation
biological impact: role in ovarian cancer
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been performed on the entire corpus. This experiment
supports the validity of our experimental design.
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