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Abstract

Background: One of the essential processing events during pre-mRNA maturation is the post-
transcriptional addition of a polyadenine [poly(A)] tail. The 3'-end poly(A) track protects mRNA
from unregulated degradation, and indicates the integrity of mMRNA through recognition by mRNA
export and translation machinery. The position of a poly(A) site is predetermined by signals in the
pre-mRNA sequence that are recognized by a complex of polyadenylation factors. These signals
are generally tri-part sequence patterns around the cleavage site that serves as the future poly(A)
site. In plants, there is little sequence conservation among these signal elements, which makes it
difficult to develop an accurate algorithm to predict the poly(A) site of a given gene. We attempted
to solve this problem.

Results: Based on our current working model and the profile of nucleotide sequence distribution
of the poly(A) signals and around poly(A) sites in Arabidopsis, we have devised a Generalized
Hidden Markov Model based algorithm to predict potential poly(A) sites. The high specificity and
sensitivity of the algorithm were demonstrated by testing several datasets, and at the best
combinations, both reach 97%. The accuracy of the program, called poly(A) site sleuth or PASS, has
been demonstrated by the prediction of many validated poly(A) sites. PASS also predicted the
changes of poly(A) site efficiency in poly(A) signal mutants that were constructed and characterized
by traditional genetic experiments. The efficacy of PASS was demonstrated by predicting poly(A)
sites within long genomic sequences.

Conclusion: Based on the features of plant poly(A) signals, a computational model was built to
effectively predict the poly(A) sites in Arabidopsis genes. The algorithm will be useful in gene
annotation because a poly(A) site signifies the end of the transcript. This algorithm can also be used
to predict alternative poly(A) sites in known genes, and will be useful in the design of transgenes
for crop genetic engineering by predicting and eliminating undesirable poly(A) sites.
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Background

Eukaryotic messenger RNA (mRNA), after being tran-
scribed from its coding gene, typically undergoes process-
ing events, such as capping  splicing, and
polyadenylation, before it is translocated to the cytoplasm
and translated into proteins. While these three essential
steps of processing are interrelated, each step is performed
by a defined set of protein factors and uses specific signals
encoded in the precursor mRNA (pre-mRNA) [1]. The
polyadenylation signals for all eukaryotes seem to have
three common parts: a cleavage site (CS), a near upstream
element (called NUE in plants, equivalent to AAUAAA in
animals) about 20-30 nucleotides (nt) upstream of the
CS, and an element about 50 nt upstream of the CS
(termed far upstream element or FUE in plants) [2-4]. In
mammals, there is an additional signal element located
~20 nt downstream of the CS [3], which is not commonly
observed in yeast and plants. Moreover, both yeast and
plants possess much less sequence conservation in NUE
and FUE regions compared to that of animals [4-6]. How-
ever, there is little conservation between yeast and plants
in term of sequences of the poly(A) signal elements.

Plant polyadenylation signals in general are more similar
to yeast, in which no highly conserved signal sequences
have been identified. For example, a recent work revealed
that the NUE signal AAUAAA, albeit proven the best signal
in plants [7], can only be found at the right position in
about 10% of Arabidopsis genes [6]. However, the same
signal is used by over 50% of human genes [4]. This
makes it very difficult to predict the CS of plant genes
without experimental evidence such as EST that can be
used to deduce poly(A) sites. With many ongoing plant
genome sequencing projects, using poly(A) sites as a
determinant of the 3'-end of genes would greatly enhance
the accuracy of genome annotation. To this end, we were
interested in devising an algorithm to predict poly(A) sites
using our newly developed nucleotide composition
model of poly(A) signals in 3'-UTR of the genes in the
model plant Arabidopsis [6].

In our improved plant polyadenylation signal model,
there are three types of sequence elements that possess
some level of conservation, FUE, NUE, and the newly
defined cleavage element (CE) [6]. Within the CE, there
are three sub-domains made up of different prevailing
sequences: the highly conserved di-nucleotide (CA and
UA) right before the CS; and two U-rich sequence ele-
ments on the right and the left sides of CS, termed CE-R
and CE-L. Beyond signal sequence information, the clear
transition of the nucleotide composition [6] also offers
additional features for the design of the algorithm. Briefly,
a high U/A ratio in the FUE decrease to a into a low value
(high A/U ratio) in the NUE. Such a transition happens
two more times between the NUE and CE, and within the
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CE. Finally, the U/A ratio becomes 1 beyond 50 nt down-
stream of the CS. During these U/A transitions, the G and
C contents remain low except at the CS where a spike of C
is evident [6]. Such a profile of the 3'-UTR in Arabidopsis
has been confirmed independently [8]. Other features of
Arabidopsis polyadenylation signals are also found in that
of the rice genome [9].

The Hidden Markov Model (HMM), a widely used system
in bioinformatics, is a probability-based mathematical
model with a complete set of theory, methods and an
algorithm. It is widely used to describe both stability and
variability of signals over background. Rabiner [10] sys-
tematically described the HMM and made it a common
technology in voice recognition. In recent years, because
of the similarity of biological data (DNA, RNA and pro-
tein sequences) to voice signals, the HMM has been used
in different aspects of sequence analysis such as sequence
comparison, prediction of protein structures and gene
annotation. However, the length of the state in the origi-
nal HMM is geometrically distributed, which limits its
application. A new generation of the HMM, called the
Generalized Hidden Markov Model (GHMM; [10-12]),
was introduced to extend the utility of the HMM. The
GHMM gives each state multiple observed values (instead
of the single value in the HMM), so it can easily be used
in describing the organization of gene sequences. In this
paper, we present a GHMM-based method for predicting
the poly(A) sites in Arabidopsis. The prediction results of
poly(A) sites are compared with experimentally validated
data for some of the genes. Interestingly, our program can
also predict the results of traditional mutation studies, as
the site efficiencies and scores given by the program are
linearly correlated.

Results

We were interested in using a computer program to pre-
dict the plant poly(A) site in a given transcript (for con-
venience, presented as a DNA sequence). To do so, we
transformed the profiles of the known poly(A) sites and
their adjacent region, based on the data presented by Loke
et al. [6] from Arabidopsis, into features that can be used
for computational modeling. The analysis of a dataset of
8160 sequences (hereafter called 8K dataset) described in
that paper provided the basis for setting parameters as
described in the Methods section. Hence, we designed an
algorithm and wrote a code named Poly(A) Site Sleuth (or
PASS) in PASCAL.

Sensitivity and specificity of the program

To evaluate the performance of PASS, we employed the
two most common standards: sensitivity (Sn) and specifi-
city (Sp). The definitions are:
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TP P FP
Sn= Sp = =1-
TP + EN TP + FP TP + FP

In these equations, TP (true positive) is the number of
actual sites that are identified or predicted correctly. FN
(false negative) is the number of actual sites that cannot
be identified or predicted correctly. FP (false positive) is
the number of false sites that are predicted by PASS. The
value of Sn represents the fraction of the actual poly(A)
sites that can be predicted, while Sp represents the fraction
of actual poly(A) sites in all the predicted sites. The higher
the Sp value is, the lower the fraction of false positive sites
among predicted sites is.

To evaluate the algorithm, we tested 568 known poly(A)
sites (randomly chosen from the 8K dataset described in
[6] and the Methods) to calculate Sn. Because not all
poly(A) sites have been identified in each sequence of the
database, we cannot calculate the real Sp value. Therefore,
we used several negative control datasets for Sp calcula-
tions. These include Arabidopsis 5' UTRs, introns, coding
sequences, and a randomly generated sequence dataset
that preserve the trinucleotide distributions found in the
8K dataset. Since all the sites predicted by PASS in these
control sequences are false sites, FP was set to be the
number of sites that were predicted in these sequences.
(TP+FP) was set to be the total number of sites. The results
are shown in Figure 1A. The horizontal value represents
the threshold, which is an user selectable standard in
determining whether or not a nucleotide is a poly(A) site.
If the value of a nucleotide is higher than the threshold,
this position is thought to be a poly(A) site. Sn_0, Sn_3,
and Sn_10 represent the distance between the predicted
site and the known site, which are 0, 3 and 10 nucleotides,
respectively. Sn_0 means that the predicted site is exactly
the same as the known poly(A) site (0 distance). Based on
Figure 1A, when the threshold is increased, Sn decreases
while Sp increases. There is no drastic different when the
Sn are calculated with the three positions relative to the
poly(A) sites. However, Sp can be quite different when dif-
ferent control sequences are used. For the coding
sequences and the randomly generated sequences, both
Sn and Sp reach 97% at a threshold 4. For 5' UTR, Sn and
Sp are about 82% at a threshold of 5.2. In the intron
sequences, Sn and Sp are lower than others at 72% at a
threshold of 6. The lower Sp may reflect the feature of the
sequences of 5'UTR and the introns, because these
sequences tend to have higher A and T content, a charac-
teristic shared by 3' UTR on which PASS design was based.

To evaluate the program, we tested the sequences in the
above-mentioned datasets. Using the probability score, an
output of PASS, we examined the distributions of the
scores as shown in Figure 1B. The average scores of the 8K
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dataset peak at location 301, the authenticated poly(A)
site position in these sequences. This is a demonstration
of the efficacy of the program because it was designed to
predict these positions as poly(A) sites. The average scores
of the control sequences are much lower than that of 8K
with the exception of the intron dataset. Again, this could
be due the shared features between 3' UTR and the
introns. Importantly, there is 1 point score difference
between the average peak score of the poly(A) sites and
that of the introns, which is significant enough to differ-
entiate the poly(A) site from introns. This is demonstrated
in the genomic sequence scan that is discussed later.

To further examine the prediction scores that are distinc-
tive for poly(A) sites, the distributions of the scores at
position 301 and the average scores of all other non-
poly(A) sites in all the sequences of 8K dataset were com-
pared (Figure 1C). The majority of the poly(A) sites have
a score between 6 and 7, whereas the average scores of all
other non-poly(A) sites peak at 4-5. Difference of 1 to 2
score points again could be significant enough to resolve
the poly(A) site from the background at the sequence
level.

Predicting poly(A) sites by PASS

To demonstrate the efficacy of the algorithm and the soft-
ware, we tested many sequences including those with
multiple poly(A) sites. Three of the typical results are
shown graphically in Figure 2. In general, most of the
experimentally authenticated poly(A) sites are found in
the high probability area with scores larger than or around
6. However, not all predicted sites with high scores are
confirmed by EST data. There are a few possible reasons
for this. First, the EST data may not be exhaustive, mean-
ing that not all sites have been found in the available EST
dataset. Second, not all possible sites are efficiently used
in the cells. Instead, some sites may only be used under
certain environmental or developmental conditions.
Third, some may be inaccurately predicted. This could be
corrected by further optimization of the algorithm. It is
very interesting to note that in several cases, there are
authenticated poly(A) sites located in the low score area
(e.g. the first site in Figure 2A, with a score around 2). The
reason for this is not clear. One possible explanation
could be that the use of this site could be facilitated by yet
unknown trans-acting factors.

Identification of multiple poly(A) sites

To see if PASS can differentiate multiple poly(A) sites, we
further tested some genes that have been reported by oth-
ers or collected from GenBank collections (e.g. NCBI's
Unigenes). Tobacco RNA binding protein-30 gene (Acces-
sion# X65118), which is known as a gene with many alter-
native poly(A) sites [13], was scanned for poly(A) site
scores by PASS. As shown in Figure 3, most of the poly(A)
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site. Sn_0, Sn_3, and Sn_10 represent the distance between the prediction site and the validated site to be 0, 3, and 10 nucle-
otides, respectively. Random 8K, a randomly generated 8000 sequence dataset based on the 2" order distribution of trinucle-
otide in the 8K dataset. Coding Segs, 8000 coding sequences from Arabidopsis (downloaded from TAIR). Intron (8000
sequences) and 5'-UTR (974 sequences) datasets are also from Arabidopsis. B. The average prediction scores of the 8K dataset
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Figure 2

Representative outputs of the software using sequences with multiple poly(A) sites. The triangles indicate the poly(A) sites
confirmed by EST data. The majority of the real sites have relatively high probability (scores). However, in some cases (e.g., the
first site in A) there are low prediction value sites. See text for more detail. Locations of the horizontal axis indicate the rela-
tive positions of the poly(A) sites in the sequence.
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sites are in the highly scored (around 5) area of the 3'-UTR
with a couple of exceptions (<4). However, the PASS pre-
dicted peaks at around location 280 were not validated. It
is very likely that there are other factors contributing to the
site selection, e.g. protein factors, RNA secondary struc-
tures, etc.

Prediction of mutational alterations of poly(A) site
efficiencies

One way to further assess the software would be to see if
it can predict the change of the utility of poly(A) sites after
the polyadenylation signals are mutated. Examples of this
can be found in the well-studied 3'-UTRs. The polyade-
nylation signals for two genes, pea rubisco small subunit
gene (rbcS) E-9 and cauliflower mosaic virus (CaMV) 358
transcript, have been extensively studied by classical
mutagenesis and genetic means [2,6,7,14], and are being
used widely in transgene constructions [15,16]. As shown
on Figure 4A, the main poly(A) sites of the CaMV 3'UTR
are located on the peak of the scores predicted by PASS.
There are four validated poly(A) sites in rbcS, but sites 2
and 3 are the major poly(A) sites [17] (Figure 4B). Inter-
estingly, our program predicted such site usage bias by 6-
7 score points (compare to site 1). Again, similar to Fig. 3,
there are a few peaks (meaning good poly(A) sites) after
site 3 that are not used, presumably due to unknown fac-
tors that are not considered in this algorithm. It may also
be possible that these sites are behind the major sites, and
thus being skipped. Nonetheless, our predicted sites are
typically in the near vicinity of the authenticated sites.

http://www.biomedcentral.com/1471-2105/8/43

Detailed conventional mutagenesis experiments were per-
formed on the poly(A) signal for rbcS site 1, which was
chosen to avoid the overlapping signals of sites 2 and 3
[7]. Linker scanning, base substitution, and enhancing the
signal by using AAUAAA all altered the site usage at differ-
ent levels [7]. Interestingly, these changes can also be pre-
dicted by our software as indicated in Figure 4C. This
becomes evident when the PASS scores are compared with
the site efficiency (the fraction of a poly(A) site being cho-
sen and used in the pool of the rbcS mRNA) after muta-
tion (Figure 4D). There is a tendency of linear relationship
between PASS scores and site efficiencies following muta-
tion. This suggests that our model can identify the poly(A)
sites both qualitatively and may be also quantitatively.

Predicting poly(A) sites in the genomic sequences

One of the utilities of PASS is to predict poly(A) sites of
unannotated genomic sequences, which could be helpful
in genome annotation. This is because a poly(A) site
marks the end of a 3'-UTR, which generally is the end of a
gene. To test the effectiveness of PASS in this regard, we
used it to scan several 50,000 nt genomic sequences
downloaded from TAIR ([18];Arabidopsis Genome Initia-
tive release 5). Figure 5 shows one of these examples, in
which many poly(A) sites were predicted. When the gene
annotation data (gene units, from TAIR) were overlaid
with the PASS prediction scores, several interesting phe-
nomena became obvious. The ends of the 6 genes anno-
tated in this region (from left to right orientation only,
since PASS scans one direction from 5' to 3' of the
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Figure 3

Comparison of PASS prediction and the validated poly(A) sites of a tobacco RNA binding protein-30 gene X651 8. The trian-
gles indicate the authenticated poly(A) sites, and the number of the triangles at one position denote the number of times

cDNA:s associated with the specific poly(A) site were found [13].
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PASS predicted scores of well-studied poly(A) signals and the relative efficiencies of polyadenylation signal mutants of rbcS
determined by wet experiments. The red triangles denote validated poly(A) sites in the wild type mRNA. A. PASS scan of
CaMV 35S RNA 3'-UTR [14, 28], which is widely used as a polyadenylation signal for transgene expressions. B. Wild type 3'-
UTR of rbcS profile scanned by PASS. The authenticated poly(A) sites are as marked. The predicted scores and the actual effi-
ciencies of each site being used are tightly associated in which sites 2 and 3 are the major ones, while sites | and 4 are minor
ones [7]. C. A set of representative poly(A) signal mutations of the site | of rbcS and their predicted scores by PASS. The dash
line indicates the poly(A) site positions. D. Relationship between predicted score and poly(A) site | efficiencies of the mutants
shown in C. The poly(A) site efficiency data were extracted from the results presented by Li and Hunt ([7]; Figures 2 to 4
therein).
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sequence) all have the relative high score at the 3' termini
of their transcripts, particularly when comparing the
scores in the coding region and 3'-UTR (e.g. AT4G02510
and AT4G02540, Figure 5). Some of them show a few sites
with good scores in the 3'UTR (AT4g02500) or even in the
coding sequences (AT4G02750), which may reflect alter-
native poly(A) sites. More interestingly, however, the two
regions with the highest scores (marked with "?") were
not located in any annotated genes. This could be due to
the traditional annotation process failing to recognize the
genes. Alternatively, there may be some special sequences
that possess the features of a poly(A) site. It is also possi-
ble that PASS produces false positive sites. These possibil-
ities could be distinguished using wet lab experiments
(RT-PCR approach with oligo-dT and a sequence specific
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primer to detect transcript with a poly(A) tail, for exam-
ple).

Discussion

Based on the current model of Arabidopsis poly(A) sig-
nals and their features, we developed a GHMM-based
algorithm that for the first time can predict poly(A) sites
in plant mRNA. In this paper, the structure of the model
is described, and the program was tested with known
poly(A) sites. Using this model, we achieved sufficient
sensitivity and specificity both at 97% in the coding
sequence and random datasets at a threshold of 4. For
other control datasets like 5' UTRs and introns, which are
known to share some features with 3'UTRs, the Sn and Sp
are still in a range of 72-82% at thresholds between 5.2
and 6. Moreover, the algorithm was able to predict many

1,000, 00¢ "1,124 'oob " " "1,112d 0bb " "1 158, '0bb " T 11140 'ood " T 115«
ATACDZ2490 .1 ATACO2520.1 ATACO2550.,1 ATACO2570.1 3;T‘1f:0250f 1 .T "
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Figure 5

A representative result of using PASS to scan a segment of the genomic sequence of Arabidopsis. The top part of the image was
downloaded (screen shot) from TAIR web page (Seqviewer) showing the gene annotation units (from chromosome 4, nucle-
otides 1,100,000 to |,150,000). Each gene is label with an AGl locus ID. The lower part is the scores of this region by PASS. The
double-headed arrows point to the relative location of the poly(A) sites and the peaks of PASS scores. The question marks indi-
cate the regions of unknown gene annotation (see text for detail discussion on this). Note that the gene units on the reverse
orientation are not predicted because PASS only predicts the sense direction as in mRNA.
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poly(A) site regions accurately when scanning a big frag-
ment of Arabidopsis genomic sequences.

GHMM is an important model in gene identification and
is widely used by gene identification software such as
GENSCAN, GeneMarkS and HMMgene [19-21]. GHMM
can give each state multiple observed values (instead of a
single value to each state in HMM) which makes it more
suitable for describing a model of biological sequences.
This improvement, however, is at the expense of an
increase in computation. For example, the calculation
complexity of the Viterbi algorithm, a traditional HMM
algorithm, is O(N2L), in which N is the number of states
and L is the length of a sequence, while the calculation
complexity of GHMM is O(N2L3/2). Such an improve-
ment resulted in better sensitivity.

Graber et al. [5] described a HMM model that predicts the
poly(A) sites in yeast. While the basic principles of HMM
are used in modeling algorithms in which the parameters
were designed rather than trained, the difference and
improvement using GHMM can be found in our algo-
rithm. Each of the two models deals with a distinct group
of organisms both of which have different types of
poly(A) signal conservation, from which different param-
eters have to be given. Our model was produced based on
information of plant poly(A) signals from a much large
dataset (from 8K, but also applicable to a dataset of
16,000 sequences, [6]). Moreover, the generalized HMM
was used in our algorithm. GHMM is known for better
detaching the main model from sub-modeling of each sig-
nal state, a function that is expandable for modeling com-
plicated signals. Detailed comparisons of the differences
between HMM and GHMM that was used in our algo-
rithm can be found in additional files [see Additional file
1].

Liu et al. [22] used a machine learning method to generate
human poly(A) signals and then used a support vector
machine to identify the real sites. After refinement of their
method, the sensitivity of their program increased from
56.3% to 94.4%, while its specificity reached 92.2%. Our
results reached a similar level (although not by direct
comparison), even though plant poly(A) signals are less
conserved than those of humans. In particular, there are
only 10 patterns that cover about 90% of NUE equivalent
signals (53% being AAUAAA) in animals [23]. By con-
trast, in Arabidopsis, a list of such patterns reaches several
hundreds, with no predominant patterns ([6]; Y-J. Shen
and Q.Q. Li, unpublished observation). The prevalent sig-
nal AAUAAA, although it is the best, can only be found in
about 10% of the plant genes [6]. The rest of hundreds of
signal patterns form a continuous distribution without a
clear cut-off value (Y-J. Shen and Q.Q. Li, unpublished
observation). Even so, NUE is still the strongest signal
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among the tri-part poly(A) signals, including FUE and CE,
based on classical genetics analysis [2].

Most recently, Cheng et al. [24] also reported a human
poly(A) site prediction algorithm using a support vector
machine. The algorithm took advantage of 15 highly con-
served poly(A) signals, but also used other signals and U-
rich elements to contribute to the prediction efficiency.
These additional features improved the program's sensi-
tivity, although the specificity remained more or less the
same. Integrating new features like secondary structure
into PASS should also improve its performance.

Beyond the known variability of the NUE signals in
plants, a lack of conservation and identifiable features of
other signal regions presents another difficulty in the pre-
diction of poly(A) site by an algorithm. No highly con-
served pattern was found in the FUE region. However,
deletions of the FUE region were found to affect adjacent
poly(A) site efficiency [2]. The best feature in the FUE that
helped our program was the distinct T and A richness of
the region [6]. The CE region also suffered a lack of
sequence conservation. However, this region exhibited
complex nucleotide profiles (See Additional file 2) that
made feature selection easier. Under such circumstances,
our program can predict many of the alterations of the
poly(A) site efficiency in mutants constructed by conven-
tional genetic means (Figure 4). In particular, upon the
change of a few nucleotides within polyadenylation sig-
nals, PASS predicted the change of the poly(A) site usage
efficiencies (Figure 4C and 4D) implying that the program
has high merit in terms of accuracy.

PASS should also be useful in gene annotation, where
DNA sequences can be entered and the poly(A) site pro-
files deduced. The high values of the PASS predictions are
indicative of potential poly(A) sites which signify the end
of a mature transcript. We demonstrated this possibility
by scanning fragments of genomic DNA in 50,000 nts in
length (though it can process longer sequences essentially
without an upper limit) as shown in Figure 5. Further-
more, PASS can also be used to predict alternative poly(A)
sites that are not normally found by EST experiments.
Alternative polyadenylation has been found to be more
frequent than what was originally anticipated in human
(50%) and plant (25%) genes [23,25]. A complete under-
standing of the significance of alternative polyadenylation
is yet to be realized. Our program should also be a useful
addition towards achieving this goal.

Conclusion

Based on the profiles of Arabidopsis polyadenylation sig-
nals, a new algorithm, named PASS, was developed to pre-
dict the poly(A) sites in plants. The efficacy of the program
was tested using known poly(A) sites collected from EST
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sequencing projects or published papers. Interestingly,
PASS can also predict the alterations of poly(A) site effi-
ciency by traditional genetic mutations of poly(A) signals.
Both specificity and sensitivity of the program reached
around 97% at the best datasets. This algorithm will be
useful in genome annotation by predicting the ends of the
transcripts, in the study of alternative polyadenylation of
mRNA, and in genetic engineering by enabling researchers
to recognize and then eliminate potential undesirable
poly(A) sites in the transgenes. The PASS program is avail-
able through our web site [26].

Methods

The datasets

The experimental dataset (also called the 8K dataset) used
here has been described previously [6], and contains 8160
sequences from the genome of Arabidopsis thaliana.
Briefly, all available expressed sequence tags (ESTs) were
downloaded from GenBank, and those containing termi-
nal poly(A) sequences [8 to 15 nucleotide (nt) with at
least 80% adenine content] were recognized and
trimmed. The terminal nt of each trimmed polyade-
nylated transcript was classified as the last nt before a
poly(A) site. A total of 8160 such poly(A) sites were iden-
tified and confirmed through the comparison of genomic
and EST sequences (The oligo(A) should not be found in
the genomic sequence because these were added post-
transcriptionally during the polyadenylation process).
Using the poly(A) sites as a reference, the corresponding
400 nt genomic sequences were extracted in such a way
that each sequence contained 301 nt upstream and 99 nt
downstream of the poly(A) site. Thus, the poly(A) site in
each sequence was between the 301stnt and the 302nd nt
(from left to right; the poly(A) site was also the cleavage
site. The cleavage reaction occurs between two nucleotides
linked by a phosphodiester bond). The cleavage site is
defined as the "0" position (note there is no nucleotide
assigned to this position). Hence, the nucleotide
sequences on the left (upstream) have a negative designa-
tion, and on the right have a positive (often omitted) des-
ignation. In general, for the purpose of easier description,
the nucleotide on the left of the cleavage site (position
301 in the dataset) is normally referred to as the a poly(A)
site.

This dataset was used to extract the features of the poly(A)
signals and poly(A) sites. Other test sequences shown in
the results were either downloaded from GenBank or
from published papers as cited. For the Sp calculation,
control datasets of the Arabidopsis coding (which do not
include 5' and 3' UTRs and introns), 5'-UTR, and intron
sequences were downloaded from The Arabidopsis Infor-
mation Resources website (TAIR; [18]; Arabidopsis
Genome Initiative Release 5, 2004). These sequences were
trimmed into 400 nt in length each for better comparison

http://www.biomedcentral.com/1471-2105/8/43

with the 8K dataset. The coding sequence datasets were
extracted from downloaded sequences in the range of
300-700 to avoid the inclusion of UTRs. The random
sequences for the Sp calculation were generated based on
the second order trinucleotide distribution [5] in the 8K
dataset. For the genomic sequence scan, the Arabidopsis
chromosome 4 genomic sequence was used
(ATH1_chr4.1con.01222004; from TAIR). It is worth
mentioning that the sequences used in this work are in
DNA form, so nucleotides in these sequences are ATCG
instead of AUCG as in RNA. This does not impact the
analysis.

Modeling routine

The topological structure is one of the most important fac-
tors in designing a GHMM model. The regular expression
of topological structures in GHMM models is based on all
connection structures, in which every state can go to any
other state. This kind of topological structure does not
take advantage of the positions of the signal elements in
the 3' UTR (Figure 6A). Therefore, we employed a GHMM
model that recognized the signals from left to right, and
only allowed the recognition of signals from the current
state to the next state in one direction, as indicated in Fig-
ure 6B. Based on the analysis of the current model of plant
poly(A) signals [6], we classified the sequences into five
regions (Figure 6A). The poly(A) signals are distributed in
these regions with some spacing between the two signal
elements. Based on this, we added a background state
between the two signal states. To simplify the model, we
assumed that the length of every signal was fixed but the
length of background was variable. It was also possible
that two signals were next to each other and thus the
length of the background may be 0. The final model was
designed in such a way that all calculations began on the
first state and ended at the last state (Figure 6B). The order
of the algorithm is shown in Figure 6C.

Parameter setting

In this model, some basic parameters were set as follows:
the number of states was 11 (Figure 6B, from Bgl through
Bg6); the array of signals in every state is set to be {A, T, C,
G}. States in odd numbers were the background state with
variable length, and states in even numbers were signal
states with fixed length. Because the model begins with
the first state and ends at the last state, the initial state dis-
tributionissetinm = {1,0,...,0}. Because every state (i) can
be only transferred to the i+1 state, only the value of a;;,
is 1 in the state transition probability matrix, and other
elements of the distribution matrix are 0. Other parame-
ters such as distribution of nucleotides and length of state
will be described below.
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Initiate parameters and variables

v

C.

FUE

Sliding window (size 180 nts)

H NUE HCE-L HYAHCER }—
- J

Y

CE

>

Calculate GHMM forward-backward
variables of each stage, using the sub-
program for nucleotide distribution

v

Calculate probability (i.e. score) of the

CE-L

current position being the cleavage site in

Bgl }>|FUE |-»{Bg2 } »|NUE|»{Bg3 }»

the current window based on the forward-

‘——»{Bg4}—>YA _.{Bgs}->CE-R—>{Bg6}—>@ +

Figure 6

backward variables

Move window 1 nt

End of sequence?

The structure of plant mRNA polyadenylation signals, the order of the GHMM, and a flowchart of PASS. A. A working model
based on [6]. B. The order of GHMM. The arrowheads indicate the probability of changing of states (all probabilities were set
to be I). The rectangles represent regions with fixed length while the braces indicate regions with variable length. 3'-UTR, 3'
untranslated region; CD, coding region; FUE, Far Upstream Element; NUE, Near Upstream Element; CE, cleavage element; CE-
L, CE-R, Cleavage element left or right to the poly(A) site; CS, cleavage site, also known as poly(A) site; YA, represents TA or
CA — predominant dinucleotides right before CS; B, beginning of the scan; Bg, background sequences between cis-elements; E,
end of scan. Note that because YA is not found in all sequences, other dinucleotide combinations are also considered in

GHMM. C. Flow chart of the PASS algorithm.

Length of the signal elements

For modeling purposes, we needed to assign each state a
few parameters including the signal nucleotide composi-
tion, signal pattern length, etc. To simplify the model, we
assumed that the size or nucleotide length of each signal
(FUE, NUE, CE, respectively) was fixed. As a first step, we
had to designate reasonable signal lengths for each of
them. To this end, we designed the following method to
extract this data from the SignalSleuth experiments as
described in Loke et al [6]. The observed total count of 3
nt patterns was used as a basis to calculate the "expected

count" of pattern sizes of 4 nt, and the observed total
count of 4 nt patterns was used to calculate the "expected
count" of 5 nt, and so on. For example, the expected count
of 4 nt patterns should decrease by 25% of the actual total
count of 3 nt patterns because of an increase in length by
one of the four nucleotides. The difference between the
predicted count of patterns (random chance) and the
actual observed count is useful in measuring pattern
length uniqueness. The measure of the deviation from the
randomness of the patterns offers a clue as to the potential
length of the signals, because the real signals should have

Page 11 of 15

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:43

greater deviation from randomness than that of non-sig-
nals. As indicated on the histogram (see Additional file 3),
the greatest difference observed for FUE is at 8 nt, NUE at
6 nt, CE-L at 6 nt, and CE-R at 7 nt, respectively. Impor-
tantly, using this bioinformatics approach, the signal
lengths of the NUE and FUE match the lengths of NUE
and FUE defined by classical genetic analysis, in which it
was found that the NUE signal length is 6 nt, and the FUE
is about 8 nt [2,27]. Note that the signal length is different
from the range of signal region where the signal can be
found. The latter is for modeling purposes, and is larger
because it describes a collective area where the signals are
found in different genes.

Output probability of signal state

After determining the length of the signals, we needed to
study the output probability B of the nucleotides (A, T, C,
and G) in every signal state. To this end, we analyzed the
distribution of nucleotides in each region (FUE, NUE and
CEs) with the formula below, using the frequency data
that was generated by SignalSleuth as described by Loke et
al [6] using the 8K dataset.

N
2. (&xW;)
i=1
D, = B
> X(exw;))
ee{AT,C,G} i=l
where W; = — — is the statistical weight of sequence i,

2.6
s=1

and the more repeats this sequence has, the higher the
weight is; C; is the frequency at which the ith sequence

occurs in this signal area; D, represents the probability of
the nucleotide £in the signal element, i.e. the distribution
of nucleotides, which is € € {A, T, C, G}; & is the fre-

quency of gin the ith sequence, where 1 <i < N, and N is
the number of signal patterns considered.

Taking signals in the FUE as an example, the representa-
tive nucleotide output probability B was calculated based
on the top 50 patterns [see Additional file 4]. First, we cal-
culated the weight of every pattern by count, and then cal-
culated the repeat times ¢ of every nucleotide in these
patterns. The nucleotide output probability B for FUE
hence are 0.0485, 0.7740, 0.0479 and 0.1290 for A, T, C,
and G, respectively.

Using the same method, the nucleotide output probabil-
ity B for CE-L and CE-R are: CE-L: 0.09987, 0.74970,
0.06186, 0.08860; CE-R: 0.08520, 0.78700, 0.07050,
0.05680 for A, T, C, and G, respectively.

http://www.biomedcentral.com/1471-2105/8/43

The NUE signals are slightly better conserved than other
signals, and the transition from one nt to the next may be
constrained. To present these interactions of hexamer sig-
nals, we used a subset of first order inhomogeneous
Markov model to describe the feature information. A fre-
quency transport matrix was used to analyze the 50 most
predominant NUE signals [6]. The equation is shown
below:

[ S(AA) S(AT) S(AC) S(AG) |
ZA ZA ZA ZA
PN(A/A) PN(T/A) PN(C/A) PN(G/A) S(TA)  S(IT)  S(IC)  S(TG)
PN(A/T) PN(T/T) PN(C/T) PN(G/T)| | Xr ¢ 2r X
PN(A/C) PN(T/C) PN(C/C) PN(G/C)| | S(CA) S(CI) S(CC) S(CG)
PN(A/G) PN(T/G) PN(C/G) PN(G/G)] | X e e  Xc
S(GA)  S(GT) S(GC)  S(GG)

L Zc Zc Zc ZG ]
where PN(T/A) is the probability of a transition from state
"A" to "T"; S(AT) is the sum of times of this transport; X,
=S(AA) + S(AT) + S(AC) + S(AG). The same rule was used
for the others. Thus, we obtained parameters of the NUE
sub-model as: probability distribution of the first nucle-
otide, PN, = [0.6276, 0.3563, 0.0001, 0.0161]. The distri-
butions of the second to sixth nucleotides are listed
below, respectively,

PN =

[0.6215, 0.3785, 0.0001, 0.0001 ]
0.6788, 0.3212, 0.0001, 0.0001
1 , 0.0001, 0.0001, 0.0001 |
|1 ., 0.0001, 0.0001, 0.0001 |
[0.5229, 0.4464, 0 ., 0.0307 |
0.6003, 0.2637, 0.0441, 0.0920

PN, =

[0.5470, 0.4258, 0 , 0.0272]
PN, = PN = 0.6700, 0.2377, 0.0418, 0.0505

1 , 0.0001, 0.0001, 0.0001 1 , 0.0001, 0.0001, 0.0001
11 , 0.0001, 0.0001, 0.0001 | 11 , 0.0001, 0.0001, 0.0001 |
[0.6181, 0.3584, 0.0001, 0.0235] [0.5550, 0.4212, 0.0001, 0.0238]
0.7537, 0.2463, 0.0001, 0.0001 0.5277, 0.4723, 0.0001, 0.0001
1 , 0.0001, 0.0001, 0.0001 | 1 , 0.0001, 0.0001, 0.0001
|1 . 0.0001, 0.0001, 0.0001 | |1 , 0.0001, 0.0001, 0.0001 |

PN, = PNs =

Therefore, for a certain hexamer sequence S = §,5,5;5,555¢
we can calculate the probability of the NUE signal at the S
position:

P [S | NUE] =
PN (1) *PN; (,]51) * PN, (85]55) * PN (54]83) * PN, (5554) * PN5 (56 55)-

The same kind of first order inhomogeneous Markov
model was established for the poly(A) site signal (YA in
the model, Fig. 6A). For this, we randomly selected 1000
sequences from the 8K dataset and obtained the poly(A)
site parameters listed blow. Initiated state CSPN, =
[0.0730,0.4630, 0.3250, 0.1390],

2nd
0.4247, 0.3973, 0.1096, 0.0685
0.7171, 0.1620, 0.0648, 0.0562
state CSPN; =
0.7785, 0.1569, 0.0431, 0.0215
0.8489 0.0935 0.0144 0.0432
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Based on the same method, we calculated a dimer
sequence S = s; s, and obtained the probability at S posi-
tion: P[S|CS] = CSPN(s;)* CSPN,(s,|s,)-

The background parameters

Apart from the signal regions, there is not much informa-
tion on the background states. Therefore, the parameters
for background states were relatively random. Based on
this condition, we first analyzed several basic factors in the
background and modified them accordingly. The nucle-
otide output probabilities of background states were cal-
culated by counting the nucleotide distribution of the
whole sequence. We tested the distribution of nucleotides
in the region of -160 to +100 nt.

The most important factor in the background state is the
length between two signal states. Taking the background
states near the poly(A) site as an example, Bg4 and Bg5 are
located upstream and downstream of the poly(A) site, and
both the CE-L and CE-R signal states could be about 10 nt
distance from the poly(A) site. Therefore, the length of the
background state can be set to a range with 0 nt to 10 nt.
The maximum length D was set to 10. However, because
the length of the background could change slightly, we set
all the lengths to a uniform distribution, which can be cal-
culated by P;(d) = 1/(1+D;), where P;(d) is the probability
of the length of the background ith to be d, and D; is the
possible maximum length of the ith background. All back-
ground lengths were set by this method. The initial possi-
ble maximum length of Bgl1, Bg2, Bg3, Bg4, Bg5 and Bg6
were set to 100, 100, 20, 10, 10 and 15, respectively.

To identify the background region, we needed to consider
the near signal region of both sides. For example, Bg3 lies
between NUE and CE-L signal states, the range of NUE
state is 10~30 nt and CE-L signal region is from 1 to 10 nt.
Therefore, the range of Bg3 could be set in the center of
these two regions which is 6~20 nt. The distributions of
the background region and nucleotide output probability
B are listed in [Additional file 5].

Formula for the output of scores

We applied a sliding 180 nt-wide window to calculate the
output of scores for the sequences. For every nucleotide,
our program computed a score in all windows that con-
tained this nucleotide. The window slid along the entire
sequence, combining values of forward-backward varia-
bles using the following equation for the output of the
score at nucleotide t:

Score(t) = max{S(t) }

S(t) ={logq PS,,; +120}/2

http://www.biomedcentral.com/1471-2105/8/43

where w is all of the windows that include nucleotide ¢
PS,, ,is the forward-backward algorithm's probability that
nucleotide ¢ is a poly(A) site in window w; the two con-
stants, 120 and 2, are used to adjust the scores to be in a
manageable range.

Calculation of sensitivity and specificity

The formulas for Sp and Sn calculations are given in the
Results. The methods for the compiling false positive and
false negative numbers are shown here. We employed a
user defined value called threshold in these calculations. At
a given threshold value (1), the score at an nt must be at
least t in order for that nt to be a predicted poly(A) site.
The False Positive sites (FP) were calculated as following:
for a sequence of interest, let n represent the total number
of nucleotides; let p represent the number of true poly(A)
sites with a score equal or larger than a given ¢; let m rep-
resent the number of all sites with a score equal or larger
than t. Then, FP = m-p. As one can see, using the 8K dataset
sequences to calculate FP requires that all poly(A) sites
have to be identified. Due to the fact that the identifica-
tion of true poly(A) sites in a given 3'UTR is incomplete in
plants (many alternative poly(A) sites may not be repre-
sented in the EST collection, or the dataset is not suffi-
ciently large enough), sequences that are known to not
possess poly(A) sites were used to tally FP. These
sequences include protein-coding sequences, 5'-UTRs,
and introns as indicated in "The Datasets" under Meth-
ods. Random sequences generated by preserving the trinu-
cleotide distribution were also used. In these control
datasets, FP = m. For True Positive sites (TP), at a given ¢,
in the sequences with known poly(A) sites, TP = p. In the
control sequences, TP = n-m. False negative (FN) is the
number of actual sites that cannot be identified or pre-
dicted correctly. To calculate FN, let f represent the
number of true poly(A) sites with a score smaller than a
given t. Hence, at a given ¢, in the sequences with known
poly(A) sites, FN = f.

Abbreviations
CaMyV, cauliflower mosaic virus

CE, cleavage element

CS, cleavage site

FN, false negative

FP, false positive

FUE, far upstream element

GHMM, Generalized Hidden Markov Model
HMM, Hidden Markov Model
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mRNA, messenger RNA

nt, nucleotide(s)

NUE, near upstream element
PASS, Poly(A) Site Sleuth program
poly(A), polyadenine

pre-mRNA, precursor mRNA

rbcS, rubisco small subunit gene
Sn, sensitivity

Sp, specificity

TAIR, the Arabidopsis Information Resources [18]
TP, true positive

UTR, untranslated region(s)
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