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Abstract

Background: Multiple data-analytic methods have been proposed for evaluating gene-expression
levels in specific biological pathways, assessing differential expression associated with a binary
phenotype. Following Goeman and Bihlmann's recent review, we compared statistical
performance of three methods, namely Global Test, ANCOVA Global Test, and SAM-GS, that test
"self-contained null hypotheses" Via. subject sampling. The three methods were compared based
on a simulation experiment and analyses of three real-world microarray datasets.

Results: In the simulation experiment, we found that the use of the asymptotic distribution in the
two Global Tests leads to a statistical test with an incorrect size. Specifically, p-values calculated by
the scaled 2 distribution of Global Test and the asymptotic distribution of ANCOVA Global Test
are too liberal, while the asymptotic distribution with a quadratic form of the Global Test results
in p-values that are too conservative. The two Global Tests with permutation-based inference,
however, gave a correct size. While the three methods showed similar power using permutation
inference after a proper standardization of gene expression data, SAM-GS showed slightly higher
power than the Global Tests. In the analysis of a real-world microarray dataset, the two Global
Tests gave markedly different results, compared to SAM-GS, in identifying pathways whose gene
expressions are associated with p53 mutation in cancer cell lines. A proper standardization of gene
expression variances is necessary for the two Global Tests in order to produce biologically sensible
results. After the standardization, the three methods gave very similar biologically-sensible results,
with slightly higher statistical significance given by SAM-GS. The three methods gave similar
patterns of results in the analysis of the other two microarray datasets.

Conclusion: An appropriate standardization makes the performance of all three methods similar,
given the use of permutation-based inference. SAM-GS tends to have slightly higher power in the
lower o-level region (i.e. gene sets that are of the greatest interest). Global Test and ANCOVA
Global Test have the important advantage of being able to analyze continuous and survival
phenotypes and to adjust for covariates. A free Microsoft Excel Add-In to perform SAM-GS is
available from http://www.ualberta.ca/~yyasui/homepage.html.
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Background

Some microarray-based gene expression analyses such as
Significance Analysis of Microarray (SAM) [1] aim to dis-
cover individual genes whose expression levels are associ-
ated with a phenotype of interest. Such individual-gene
analyses can be enhanced by utilizing existing knowledge
of biological pathways, or sets of individual genes (here-
after referred to as "gene sets"), that are linked via. related
biological functions. Gene-set analyses aim to discover gene
sets the expression of which is associated with a phenotype
of interest.

Many gene-set analysis methods have been proposed previ-
ously. For example, Mootha et al. [2] proposed Gene Set
Enrichment Analysis (GSEA), which uses the Kol-
mogorov-Smirnov statistic to measure the degree of differ-
ential gene expression in a gene set by a binary phenotype
(see also [3]). Goeman et al. [4] presented Global Test,
modeling differential gene expression by means of ran-
dom-effects logistic regression models. Goeman et al. [5]
also extended their methods to continuous and survival
outcomes. Mansmann and Meister [6] proposed
ANCOVA Global Test, which is similar to Global Test but
having the roles of phenotype and genes exchanged in
regression models. Mansmann and Meister [6] pointed
out that their ANCOVA Global Test outperformed Global
Test, especially in cases where the asymptotic distribution
of Global Test cannot be used. Dinu et al. [7] discussed
some critical problems of GSEA as a method for gene-set
analysis and proposed an alternative method called SAM-
GS, an extension of SAM to gene-set analysis. Goeman
and Bithlmann [8] provided an excellent review of the
methods, discussing important methodological questions
of gene-set analysis, and summarized the methodological
principles behind the existing methods. An important
contribution of their review was the distinction between
testing "self-contained null hypotheses" via. subject sam-
pling and testing "competitive null hypotheses" via. gene
sampling. They argue, and we agree, that the framework of
the competitive hypothesis testing via. gene sampling is
subject to serious errors in calculating and interpreting
statistical significance of gene sets, because of its implicit
or explicit untenable assumption of probabilistic inde-
pendence across genes.

Although Global Test, ANCOVA Global Test, and SAM-GS
each test a self-contained hypothesis on the association of
expression patterns across a gene set with a phenotype of
interest in a statistically appropriate manner, it is unclear
how the three methods compare on performance in
detecting underlying associations. In this paper, we com-
pare the performance of the three methods via. simulation
and real-world microarray data analyses, both statistically
and biologically.

http://www.biomedcentral.com/1471-2105/8/431

Results

Simulation experiment

Our first evaluation of the three methods used a simula-
tion study, similar to that of Mansmann and Meister [6]
with some modifications that make the simulated data
more realistic, and evaluated the size and power of the
three hypothesis tests. Gene-set analysis was performed
for both the original and "z-score standardized" simulated
datasets so that the effects of standardization on the three
tests' performance can be assessed. The z-score standardi-
zation was motivated by that fact that gene-expression
variances can vary greatly across genes, even after a nor-
malization, which could influence gene-set analysis. In
the z-score standardized datasets, gene expression was
standardized using the following equation:

P x'k_i'
jk =]7‘] (1)
5j

X

. . . X
where x;, is the gene expression for gene j in sample k, J
and s; are the sample mean and standard deviation of gene

j expression using all samples, respectively. All simulation
analyses compared the mean expression of a gene-set of
interest between two groups, each with a sample of 10
observations.

First, we checked the size of the three tests, before and
after the standardization, according to the following three
scenarios of no differential expression between two
groups: (1) randomly generate expression of 100 genes for
the two groups from a multivariate normal distribution
(MVN) with a mean vector x and a diagonal variance-cov-
ariance matrix ¥, where the 100 elements of z and the 100
diagonal elements of £ were randomly generated as 100
independently-and-identically-distributed (i.i.d.) uni-
form random variables in (0,10) and 100 i.i.d. uniform
random variables in (0.1, 10), respectively (i.e., no gene
was differentially expressed between the two groups and
expression was uncorrelated among the 100 genes); (2)
exactly same as (1) except the variance-covariance matrix
% of the MVN being changed to have a correlation of 0.5
between all pairs of the first 20 genes and also between all
pairs of the second 20 genes; (3) exactly same as (2) with
the correlation value changed from 0.5 to 0.9.

Second, we estimated the power of the three tests, before
and after the standardization, by randomly generating a
gene set of size 100, using the exactly same simulation set-
up of the size-evaluation (2) above, but allowing the first
40 genes being differentially expressed. The mean expres-
sion of the 40 differentially expressed genes was randomly
generated from Uniform(0,10) as in the size-evaluation
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(2), but was subsequently modified by an addition and a
subtraction of a constant y, as in Mansmann and Meister
[6], such that mean vectors y;'s for the two groups (i = 1,

I.
. =(=1)P20
2) differ by 2y, Haj = Haj = (=1) Y ,forj=1,..,40. We

considered a range of y from 0 to 2 with an increment of
0.1. The 40 differentially expressed genes were set to have
a correlation of 0.5, as in the size-evaluation (2), but no
correlation and a correlation of 0.9 were also considered.

In the comparison of size across the three tests, the size
was estimated by the observed proportion of replications
with a p-value smaller than the correct size «. By defini-
tion, under the null hypothesis, a proportion « of the rep-
lications of an experiment is expected to yield a p-value
smaller than «. In order to assess the size, we ran 5000
replications and used « = 0.05. For each permutation-
based p-value, 1000 random permutations were carried
out.

In the comparison of power across the three tests, the
power was estimated by the observed proportion of the
replications of an experiment in which the null hypothe-
sis was correctly rejected. Given the fixed numbers of sam-
ples and genes with the fixed correlation structure in the
simulation experiment, a larger effect size yleads to higher
power for a given a-level. In estimating the power, we ran
1000 replications of an experiment for each y value. We
considered « at 0.05, 0.01, 0.005, 0.0025, and 0.001. For
obtaining a permutation-based p-value, 1000 random
permutations were carried out.

Table I: Assessment of type | error probabilities

http://www.biomedcentral.com/1471-2105/8/431

The empirical Type I error rates of SAM-GS and the two
Global Tests with permutations were almost right on the
target of the nominal value of 0.05, before and after the
standardization, for all three scenarios considered for the
evaluation of size (Table 1). Type I error rates of Global
Test with the scaled 2 null distribution and Global Test
with the asymptotic null distribution with a quadratic
form deviated noticeably from the nominal size, being
too liberal with the scaled y2 and too conservative with the
asymptotic distribution (non #? distributed quadratic
form) as shown in Table 1. As the correlation among the
40 genes increased, the Type I error rates of Global Test
with the scaled #2 null distribution and the Global Test
with the asymptotic null distribution with a quadratic
form generally moved towards the nominal size of 0.05.
Type I error rates of ANCOVA Global Test with the asymp-
totic distribution also deviated noticeably from the nom-
inal size: 0.0692, 0.1034 and 0.0898 before the
standardization and 0.037, 0.0848 and 0.0792 after the
standardization, for r = 0, 0.5, and 0.9, respectively. Here-
after, therefore, the p-values for Global Test and ANCOVA
Global Test are calculated based on permutations. We also
estimated the size of the three tests using 25 samples,
instead of 10 samples, in each group, and observed simi-
lar patterns. As the sample size increased, the Type I error
rates of the two Global Tests by using the asymptotic dis-
tributions moved towards to the nominal level of 0.05.

The second step of the simulation was to assess power, the
results of which are shown in Figure 1, 2, 3, 4, 5, 6. Before
the standardization, SAM-GS showed higher power than
the Global Tests at ¢ = 0.05, with increasing power

10 vs. 10 samples

25 vs. 25 samples

Type of
Methods inference 0 0.5 0.9 0 0.5 0.9
Before Global Test  The scaled 3?2 0.0982 0.0778 0.0722 0.0696 0.0700 0.0686
standardization
Asymptotic 0.0006 0.0128 0.0298 0.0090 0.0328 0.0442
Permutation 0.0496 0.0434 0.0464 0.0534 0.0554 0.0556
ANCOVA Asymptotic 0.0692 0.1034 0.0898 0.0576 0.0840 0.0736
Global Test
Permutation 0.0482 0.0462 0.0458 0.0526 0.0552 0.0562
SAM-GS Permutation 0.0498 0.0462 0.0478 0.0514 0.0518 0.0556
After Global Test  The scaled 3?2 0.1090 0.0844 0.0736 0.0734 0.0702 0.0698
standardization
Asymptotic <0.0001 0.0094 0.0276 0.0036 0.0320 0.0424
Permutation 0.0524 0.0464 0.0458 0.0524 0.0528 0.0530
ANCOVA Asymptotic 0.0372 0.0848 0.0792 0.0474 0.0838 0.0730
Global Test
Permutation 0.0532 0.0462 0.0466 0.0544 0.0542 0.0544
SAM-GS Permutation 0.0522 0.0468 0.0470 0.0526 0.0540 0.0542
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Power at 0=0.01, r=0

Power
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= Global Test
= * Global Ancova
SAM-GS

The results of the simulation experiment, evaluating power of the three tests before the standardization, for correlation of 0

among 40 genes.

differences with decreasing « levels. This pattern was
observed regardless of the correlation level in the 40 dif-
ferentially-expressed genes (correlation of 0, 0.5, or 0.9).
After the standardization, the performances of these three
methods became closer: SAM-GS showed slightly higher
power than the Global tests with increasing power differ-
ence with decreasing « levels.

Real-world data analyses

Our next evaluation of the performance of the three meth-
ods used biologically, a priori defined gene sets and three
microarray datasets considered in Subramanian et al. [3],
download from GSEA web-page, [9]: 17 p53 wild-type vs.
33 p53 mutant cancer cell lines; 15 male vs. 17 female
lymphoblastoid cells; 24 acute lymphoid leukemia (ALL)
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The results of the simulation experiment, evaluating power of the three tests after the standardization, for correlation of 0

among 40 genes.

vs. 24 acute myeloid leukemia (AML) cells. For pathways/
gene sets, we used Subramanian et al.'s gene-set subcata-
logs C1 and C2 from the same web-address above on
"Molecular Signature Database." The C1 catalog includes
gene sets corresponding to human chromosomes and
cytogenetic bands, while the C2 catalog includes gene sets

that are involved in specific metabolic signaling pathways
[3]. In Subramanian et al., Catalog C1 included 24 sets,
one for each of the 24 human chromosomes, and 295 sets
corresponding to the cytogenetic bands; Catalog C2 con-
sisted of 472 sets containing gene sets reported in manu-
ally curated databases and 50 sets containing genes
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Power at =0.01, r=0.5
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The results of the simulation experiment, evaluating power of the three tests before the standardization, for correlation of 0.5

among 40 genes.

reported in various experimental papers. Following Sub-
ramanian et al. [3], we restricted the set size to be between
15 and 500, resulting in 308 pathways to be examined.

We compared the performance of the three methods
before and after the standardization by listing the gene
sets which had a p-value < 0.001 by any of the three
methods.

Table 2 shows the associations of biologically-defined
gene sets with the phenotype, assessed by Global Test,
ANCOVA Global Test, and SAM-GS, in the analysis of
gene expression differences between p53 wild-type vs.
mutant cancer cell lines. Gene sets with a p-value < 0.001
by any of the three methods are listed in Table 2. Before
the standardization, SAM-GS identified 16 gene sets with
a p-value <0.001, while Global Test and ANCOVA Global
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Power at a=0.01, r=0.5
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The results of the simulation experiment, evaluating power of the three tests after the standardization, for correlation of 0.5

among 40 genes.

Test identified three and one gene sets, respectively, with
a p-value < 0.001 (Table 2). Two of these three sets were
among the 16 sets identified by SAM-GS. The third set was
CR_DEATH which had a p-value = 0.008 from SAM-GS.
Among the 17 gene sets listed in Table 2, seven involve
p53 directly as a gene-set member. Furthermore, five gene
sets directly involve the extrinsic and intrinsic apoptosis

pathways, and three involve the cell-cycle machinery; each
of these eight gene sets, then, is in a direct, well-estab-
lished relationship with aspects of p53 signaling. The
remaining two gene sets have plausible, if less well estab-
lished, links with p53 [7]. The disagreement between
results of SAM-GS and the two Global tests was consider-
able before standardization. Although 16 of the 17 gene
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The results of the simulation experiment, evaluating power of the three tests before the standardization, for correlation of 0.9

among 40 genes.

sets in Table 2 had a SAM-GS p-value < 0.001, 7 had p-val-
ues larger than 0.1 by the two Global tests. For example,
SAM-GS identified the gene set p53hypoxia pathway as a
significant set with a p-value < 0.001, which seems biolog-
ically appropriate, yet the Global Test and the ANCOVA
Global Test gave p-values greater than 0.6.

We then compared the three methods incorporating the z-
score standardization. For SAM-GS, the p-values before

and after the standardization were highly consistent, and,
therefore, we used the results of SAM-GS before the stand-
ardization for the comparisons with the other two meth-
ods. For Global Test and ANCOVA Global Test, p-values
changed appreciably. Notably, p-values of Global Test
and ANCOVA Global Test after the standardization agreed
closely with those of SAM-GS (Table 2, Figure 7). For
example, the p-values of p53hypoxia pathway changed
from 0.626 to <0.001 for Global Test and from 0.622 to
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The results of the simulation experiment, evaluating power of the three tests after the standardization, for correlation of 0.9

among 40 genes.

<0.001 for ANCOVA Global Test. Although the p-values
of the three methods agreed with each other after the
standardization, the p-values from SAM-GS tended to be
smaller than those from Global Test and ANCOVA Global
Test, in the lower range of p-values (gene sets that are of
the greatest interest) (Table 2, Figures 7 and 8): this is con-

sistent with the power-comparison simulation in which
SAM-GS showed slightly higher power than the Global
tests at small « levels, even after the standardization.

The same pattern was found in the analyses of the male-

vs.-female lymphoblastoid dataset and the ALL-vs.-AML
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Table 2: Gene sets in the p53 dataset with P-value < 0.001 by any of the three methods

Gene Set Before standardization After standardization VSN

Global Ancova SAM-GS Global Ancova SAM-GS Global Ancova SAM-GS
ATM <0.001 <0.001 <0.001 <0.001 0.002 <0.001 0.001 0.001 <0.001
Pathway*
BAD <0.001 0.007 <0.001 <0.001 <0.001 <0.001 0.004 0.004 <0.001
Pathway**
Calcineurin 0.068 0.084 <0.001 0.007 0.002 <0.001 0.004 0.005 0.011
Pathway$
Cell cycle 0.021 0.017 <0.001 0.002 0.001 <0.001 0.002 <0.001 0.003
regulator{
Hsp27Pathway 0.047 0.044 <0.001 <0.001 0.001 <0.001 0.011 0.005 <0.001
sk
Mitochondria 0.002 0.002 <0.001 0.007 0.007 <0.001 0.013 0.006 <0.001
pathway™**
p53 signaling 0.112 0.101 <0.001 0.003 0.003 0.001 0.006 0.005 0.006
pathway*
p53_UP* 0.003 0.004 <0.001 <0.001 <0.001 <0.001 0.019 0.018 <0.001
p53hypoxiaPat 0.626 0.622 <0.001 <0.001 <0.001 <0.001 0.044 0.041 <0.001
hway*
p53Pathway* 0.142 0.150 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001
Raccycd 0.177 0.181 <0.001 0.001 <0.001 <0.001 0.004 0.009 0.006
Pathwayt
Radiation_sen 0.119 0.135 <0.001 <0.001 <0.001 <0.001 0.014 0.020 <0.001
sitivity™
SA_TRKA_RE 0.254 0.252 <0.001 0.001 <0.001 <0.001 0.004 0.001 0.006
CEPTOR%
bel2family & 0.102 0.100 0.001 0.001 0.005 <0.001 0.010 0.014 0.001
reg.
networlc®*
Cell cycle 0.099 0.099 0.001 0.027 0.018 0.005 0.003 0.005 0.007
arrestf
Ceramide 0.002 0.006 0.001 0.004 0.004 <0.001 0.001 0.001 <0.001
Pathway**
CR_DEATH* 0.001 0.004 0.008 0.029 0.017 0.004 0.143 0.108 0.005

* pathway member
** apoptosis

$ p53-induced proline oxidase mediates apoptosis via a calcineurin-dependent pathway

T cell cycle
} integrated negative feedback loop between Akt and p53

dataset (See Figures S1, S2, S3 and S4 in Additional file 1,
comparing the results from the three methods). Before the
standardization, p-values from Global Test and ANCOVA
Global Test differed greatly from p-values from SAM-GS.
The p-values of Global Test and ANCOVA Global Test
changed markedly after the standardization and were very
close to those of SAM-GS. After the standardization, in the
male-vs.-female analysis, 21 gene sets had a p-value <0.15
by one or more of the methods; 17 of these had a SAM-GS
p-value smaller than, or equal to, those of Global Test and
ANCOVA Global Test. In the ALL-vs.-AML analysis, all sets
were statistically significant with p-values < 0.001 by all

three tests: which is unlikely to be of any biological
significance.

In the User Guides for Global Test and ANCOVA Global
Test, Variance Stabilization (VSN) was used to normalize
the data [10,11]. We also assessed the performance of the
three methods on the p53 dataset, male vs. female dataset,
and the ALL/AML dataset using VSN. The results for the
p53 dataset are shown in Table 2 and Figure 9. When VSN
was used for the normalization of the data, we observed:
(1) p-values of Global Test and ANCOVA Global Test
became similar to those of SAM-GS, but not as close as the
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P-values of 308 gene sets in the p53 data analysis: p-values of
Global Test and ANCOVA Global Test after standardization
vs. SAM-GS p-values before the standardization. The line

indicates equal p-values between SAM-GS and Global Tests.

p-values after the z-score standardization; and (2) in the
lower range of p-values, the p-values for SAM-GS tended
to be smaller than those of Global Test and ANCOVA
Global Test, (Table 2, Figure 9).

Discussion

From the simulation results, we suggest that, when Global
Test and ANCOVA Global Test are used for the analysis of
microarray data, permutations should always be used for
the calculation of statistical significance. In the documen-
tation included with the Global Test R package, Goeman
et al. noted that the asymptotic distribution with a quad-
ratic form is the recommended method for large sample
sizes and it can be slightly conservative for small samples.
In our simulation study, we used 10 and 25 samples for
each of the two groups. In each situation, the asymptotic
method with a quadratic form gave conservative p-values,
although the difference between asymptotic and permuta-
tion-based methods did decrease when the sample size
increased. Goeman et al. also noted that the scaled j?2
method can be slightly anti-conservative, especially for
large gene sets. Our simulation study showed that the
scaled y2 method can be markedly anti-conservative. This
is in accord with the manual of Global Test, which recom-
mends against using the scaled y? approximation.

We found that performance of the two Global Tests
changed greatly before and after standardization, but
SAM-GS performance remained unchanged. This can be

http://www.biomedcentral.com/1471-2105/8/431
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Lowest P-values in the p53 data analysis: p-values of Global
Test and ANCOVA Global Test after standardization vs.
SAM-GS p-values before the standardization. The line indi-
cates equal p-values between SAM-GS and Global Tests.

n
4
° x Global Test
©  Global Ancova
-
& x
o
S 2] % x
© o X X °
? o
o X
= °
3 2| ° x
S o . X
x o
x o
© °
3
o | ¥ ° X
x -]
= o
X2 ¥ 2
= o R ] H %
IS}
T T T T
0.00 0.01 0.02 0.03
SAM-GS P-value
Figure 9

Lowest P-values in the p53 data analysis: p-values of Global
Test and ANCOVA Global Test after the VSN normalization
vs. SAM-GS p-values after the VSN normalization. The line
indicates equal p-values between SAM-GS and Global Tests.

explained by: (1) the invariance of t-test statistics under
shifting and rescaling of data, that is relevant to SAM-GS;
(2) ANCOVA's explicit assumption that all genes in the set
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to have an equal variance, a violation of which would
clearly affect the performance of ANCOVA Global Test;
and (3) Global test's assumption that the regression coef-
ficients come from the same normal distribution, an
assumption that is met by the standardization of gene
expression. Therefore, some sort of standardization that
makes the variances of gene expression similar across
genes is needed before using Global Test and ANCOVA
Global Test. SAM-GS employs a constant in the denomi-
nator of its t-like test statistic to address the small variabil-
ity in some of the gene expression measurements and,
thus, effectively standardizes expression across genes; nei-
ther Global Test nor the ANCOVA Global Test addresses
this characteristic of microarray data. Both Goeman et al.
[4] and Mansmann and Meister [6] have stated that an
appropriate normalization is important. Note that not
many normalization methods would standardize the
expression across genes. It is only after applying z-score
standardization (1) or the VSN normalization, that the
results of the three methods became congruent. The simi-
larity between Global Test and Global ANCOVA Test has
already been commented upon in [6]. The similarity
between SAM-GS and Global Test may be inferred from
the construction of the latter as a weighted sum of squared
transformed t-statistics [12], which is similar to the SAM-
GS test statistic.

It should be noted that Global Test allows four different
types of phenotype variables: binary; multi-class; continu-
ous; and survival. ANCOVA Global Test allows binary,
multi-class, and continuous phenotypes. The ability to
handle different classes of phenotypes is a very important
advantage of Global Test and ANCOVA Global Test over
SAM-GS. It is also possible to use Global Test and
ANCOVA Global Test while adjusting for covariates (e.g.,
potential confounders). If covariates are incorporated, the
two tests assess whether the gene-expression profile has an
independent association with the phenotype that is above
and beyond what is explained by the covariates. The abil-
ity to adjust for covariates is another important advantage
of Global Test and ANCOVA Global Test over SAM-GS.

We focused on p-values in this paper because we were
comparing the three methods that test "self-contained
null hypotheses" via. subject sampling. To account for
multiple comparisons when multiple gene sets are tested,
one might consider False Discovery Rate (FDR) instead of
Type I error probability. For example, SAM uses a g-value,
an upper limit of the FDR, for each gene, which could be
extended here to each gene-set using the method of Storey
[13]. The g-values of the 17 gene sets listed in Table 2 are
displayed in Additional file 2.

We have considered, but did not report detailed compari-
son results of two other methods, Tian et al. [14] and
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Tomfohr et al. [15], that test self-contained hypotheses
via. subject sampling, in addition to the three methods we
highlighted above. Tian et al. [14] tests the significance of
a gene set by taking the mean of t-values of genes in the
gene set as a test statistic and evaluating its significance by
a permutation test. Tomfohr et al. [15] reduces the gene
set's expression into a single summary value by taking the
first principal component of expressions of genes in the
gene set and performs a permutation-based t-test of the
single summary. The two methods gave appreciably differ-
ent results when compared to Global Test and ANCOVA
Global Test, and SAM-GS. Of the 17 gene sets in Table 2
for the p53 analysis, for instance, Tian et al. and Tomfohr
et al. identified only eight and one gene sets, respectively,
with p-value < 0.10: the ATM pathway, for example, was
identified by Global Test, ANCOVA Global Test, and
SAM-GS with p-value < 0.001, while the methods of Tian
et al. and Tomfohr et al. gave p-value = 0.61 and 0.99,
respectively. The main reasons for their large discrepan-
cies from the results of the three highlighted methods are
as follows. Tian et al. sums up the t-values for all the genes
in a gene set, which will result in cancellation of large pos-
itive t-values and large negative t-values. Among the 11
up-regulated and 8 down-regulated genes in the ATM
pathway, for example, two up-regulated genes had large
positive t-values (about 2 or greater) and three down-reg-
ulated genes had large negative t-values (about - 2 or
smaller): these large positive and negative t-values cancel
each other when summing up all t-values in the Tian et al.
test statistic, leading to reduced power for detecting gene
sets that contain both significantly up-regulated genes and
significantly down-regulated genes. The method of Tom-
fohr et al. summarizes the |S|-dimension gene-expression
vector of genes in the gene set S by the first principal com-
ponent without considering the phenotype: if the direc-
tion of the first principal component does not correspond
to the direction that separates the two phenotypes, their
method does not capture the differential expressions even
when they exist, leading to markedly reduced power.

Although we focused on the comparison of the "self-con-
tained null hypothesis" approaches, it is also of method-
ological interest to see how "competitive null hypothesis"
approaches compare. We, therefore, applied three "com-
petitive null hypothesis" approaches to the analysis of the
p53 dataset: Gene Set Enrichment Analysis (GSEA) [2]; the
Significance Analysis of Function and Expression (SAFE)
[16]; and Fisher's exact test [17]. The results are shown in
Additional file 3. The results from the three "competitive
null hypothesis" approaches were greatly different from
those of SAM-GS and the Global Tests. Most of the gene
sets identified as being significantly associated with the
p53 mutation by SAM-GS and Global Tests were not iden-
tified as such by the three "competitive null hypothesis"
approaches. The only gene set additionally identified as
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being significantly associated with the p53 mutation (with
p < 0.001) was HUMAN_CD34_ENRICHED_TF_JP: for
this gene set, the Fisher's exact test p-value was < 0.001,
but all the other five methods gave p-values > 0.37.
Known biological functions of p53 are clearly more con-
sistent with the results of the "self-contained null hypoth-
esis" approaches. The differences observed between "self-
contained null hypothesis" and "competitive null hypoth-
esis" approaches can be attributable, at least partly, to the
fact that the significance of a gene set depends only on the
genes in the set under the "self-contained null hypothesis"
testing, while, under the "competitive null hypothesis"
testing, the significance of a gene set depends not only on
the genes in the set but also on all the other genes in the
array.

In summary, the primary advantage of SAM-GS may be
the slightly higher power in the low a-level region that is
of highest scientific interest, whereas, despite the need for
appropriate standardization, Global Test and the
ANCOVA Global Test can be used for a variety of pheno-
types and incorporate covariates in the analysis.

Conclusion

In conclusion, Global Test and ANCOVA Global Test
require appropriate standardization of gene expression
measurements across genes for proper performance.
Standardization of these two methods and the use of per-
mutation inference make the performance of all three
methods similar, with a slight power advantage in SAM-
GS. Global Test and the ANCOVA Global Test can be used
for a variety of phenotypes and incorporate covariates in
the analysis.

Methods

In this section, we describe the three gene-set analysis
methods. The phenotype of interest is assumed to be
binary.

1) Global Test

The Global Test is based on a regression model that pre-
dicts response from the gene expression measurements of
a gene set [4]. Generalized linear models are used to
model the dependency of response Y (an n x 1 vector) on
gene expression measurements X (an n x m matrix) of a set
of m genes on n samples:

m

h(E(Y;]B)) =a+2xijﬁj, i=1,2,..m,

=

where h denotes the link function and « and f's are
parameters. If the genes are not differentially expressed,
the regression coefficients (4's) should be zero. Under an
assumption that all regression coefficients are sampled
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from a common distribution with mean zero and variance
72, the null hypothesis of no differential gene-expression
is reduced to 72 = 0. Using the notation r; = Zx;43, the
model simplifies to a random-effects model: E(Y;|r;) = h'!
(a + ;). The null hypothesis can then be tested, based on
a score test statistic discussed in Le Cessie and Van Hou-
welingen[18] and Houwing-Duistermaat et al. [19]:

Q= (Y—u) R(Y-u)
H2

where R = (1/m)XX', u = h'l(«), and g, is the second cen-
tral moment of Y under the null hypothesis. It can be
shown that Q is asymptotically normally distributed (a
quadratic form which is non-negative). However, when
the sample size is small, a better approximation to the dis-
tribution of Q is a scaled y2 distribution. The p-value can,
therefore, be calculated based on an approximate distribu-
tion of the test statistic, i.e., the asymptotic distribution
with a non-chi-squared distributed quadratic form or the
scaled y2 distribution, or permutations of samples.

2) ANCOVA Global Test

The null hypothesis of the Global Test is in the form of
P(Y|X) = P(Y). The ANCOVA Global Test changes the roles
of gene expression pattern X and phenotype Y, and the
null hypothesis becomes P(X|Y = 1) = P(X]|Y = 2), or, for
each gene j in a gene set of interest, ;= 1,;, where y; is
the mean expression of gene j in phenotype group i, i =
1,2. A linear model of the form, M= 1+ o+ ,B] + % with
group effects o, gene effects 5, and the gene-group interac-
tion y, is then used to test the null hypothesis. The condi-
tions ;= X = L7, = L;7; = 0 ensure identifiability of the
parameters. The null hypothesis under the parameteriza-
tion of the linear model is Hy: @; = y; = 0. The test statistic
is the F-test statistic for linear  models:

F={(SSRy, =SSRy, ) /(dfus, —dfy, )} /{SSRy, [ dfu,}

where SSR;; and df;; denote the sum of squares and
degrees of freedom, respectively, under the hypothesis H.
The p-value can be calculated by a permutation distribu-
tion of the F statistic or an asymptotic distribution of the
test statistic.

3) SAM-GS

SAM-GS extends SAM to gene-set analysis. SAM-GS tests a
null hypothesis that the mean vectors of expression of
genes in a gene set does not differ by the phenotype of
interest. The SAM-GS method is based on individual t-like
statistics from SAM, addressing the small variability prob-
lem encountered in microarray data, i.e., reducing the sta-
tistical significance associated with genes with very little
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variation in their expression. For each gene j, the d statistic
is calculated as in SAM:

- *¥10)-%203)
=" Gyso

where the 'gene-specific scatter' s5(j) is a pooled standard
deviation over the two groups of the phenotype, and s, is
a small positive constant that adjusts for the small varia-
bility [1]. SAM-GS then summarizes these standardized
differences in all genes in the gene set S by:

5
SAMGS = de

i=1

A permutation distribution of the SAMGS statistic is used
to calculate the p-value. We note that even though the
recalculation of s, is needed for each permutation, practi-
cally the implication is small, and both SAM and SAM-GS
excel add-ins do not recalculate s,,.

Each of the three methods provides a statistically valid test
of the null hypothesis of no differential gene expression
across a binary phenotype.

For the purpose of methodological comparisons, we also
applied three "competitive null hypothesis" approaches
to the analysis of the p53 dataset: Gene Set Enrichment
Analysis (GSEA) |2]; the Significance Analysis of Function
and Expression (SAFE) [16]; and Fisher's exact test [17].
Both GSEA and SAFE employ a two-stage approach to
access the significance of a gene set. First, gene-specific
measures are calculated that capture the association
between expression and the phenotype of interest. Then a
test statistic is constructed as a function of the gene-spe-
cific measures used in the first step. The significance of the
test statistics is assessed by permutation of the response
values. For GSEA, the Pearson correlation is used in the
first step, according to Mootha et al. [2] and the Enriched
Score is used in the second step. For SAFE, the student t-
statistic is used in the first step and the Wilcoxon rank-
sum test is used in the second step, both of these being the
default options. For the Fisher's exact test, the list of signif-
icant genes is obtained from SAM [1]. An FDR cutoff of
0.3 assigned significance to 5% of the genes in the entire
gene list.
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