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Abstract

Background: An appropriate choice of the modeling formalism from the broad range of existing
ones may be crucial for efficiently describing and analyzing biological systems.

Results: We propose a new unifying and incremental formalism for the representation and
modeling of biological interaction networks. This formalism allows automated translations into
other formalisms, thus enabling a thorough study of the dynamic properties of a biological system.
As a first illustration, we propose a translation into the R. Thomas' multivalued logical formalism
which provides a possible semantics; a methodology for constructing such models is presented on
a classical benchmark: the A phage genetic switch. We also show how to extract from our model
a classical ODE description of the dynamics of a system.

Conclusion: This approach provides an additional level of description between the biological and
mathematical ones. It yields, on the one hand, a knowledge expression in a form which is intuitive
for biologists and, on the other hand, its representation in a formal and structured way.

Background

Often, modeling approaches in biology try to fit the data
into the Procrustean bed of a particular modeling formal-
ism [1-5]. However, if the area of interest changes, the
modeling process has to be continued (or even restarted)
using a different modeling language, more adapted to the
new area. An appropriate choice of the modeling formal-
ism may be crucial for efficiently describing biological sys-
tems, avoiding to change the description language and
permitting to reuse the previous work.

In this paper, we propose a modeling formalism for the
biologists that enables the expression of various types of
biological knowledge in a formal manner and its transla-
tion into target formalisms for analysis or simulation. It
aims at satisfying the following requirements:

¢ universality: the integration of various kinds of biologi-
cal data available today;

¢ parsimony: the simplest possible representation of the
data;
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¢ incrementality: the construction of more complex mod-
els from simpler ones;

e precision: expression of relations in a non-ambiguous
(mathematical) way;

e transposability: formal rules for the translation of the
information contained in the model into commonly used
(target) modeling formalisms.

In such a formalism, the model can be seen rather as a
well-organised knowledge base of information about the
biological system. Every unit of information (which has
no biological sense when divided) inside the model can
be called a data. In this approach, we assume that there is
neither contradictory nor "bad" data. In other words,
every measurement, every observation may be true in
some context.

Our approach, called Modular Interaction Network
(MIN), is a formalism designed to represent biological
data, having a bipartite network structure and admitting a
graphical representation, even if not focused on it. MIN
enables the integration of microscopic (molecular interac-
tions) and macroscopic (system states) data, thus allow-
ing to provide the desired level of abstraction. This
abstraction allows to avoid the rather common problem
of explosion of the model complexity [6]. MIN has a lim-
ited number of node and edges types, which enables to
represent biological networks in a simple way, even if
more detailed information can also be stored and recov-
ered. MIN suits for the representation of genetic regula-
tion as well as of metabolism with multi-molecular
biological processes, in a natural and incremental man-
ner. MIN is also provided with algorithms enabling a
translation to two classical modeling formalisms: multi-
level logical modeling [7] and differential equations.
These translations can be performed at any stage of the
modeling process.

The paper is structured as follows. After recalling the biol-
ogy of the 4 phage, which will be used as a running exam-
ple, the formal MIN model is introduced. Next, the multi-
level logical approach is first recalled and then used as a
semantics of MIN. In Results section, the translation from
MIN into multi-level logical approach is presented and
extensively illustrated on the A phage example. A transla-
tion to ordinary differential equations is then sketched.
Finally, comparison with previous work, perspectives and
some concluding remarks are presented.

Biology of . phage
In order to illustrate our approach, we shall use as a run-
ning example a classical biological benchmark: the
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genetic switch of the A4 phage, which will be presented
first.

The A phage is a virus which infects the Escherichia coli bac-
teria. It turns out that a lot of quantitative and qualitative
information is now available on it, so that it has become
a benchmark organism and plays a central role in mode-
ling [8,1,5,9,3,4,10].

When a 4 phage encounters a bacterium, it can attach
itself to specific receptors on the bacterial membrane. At
this moment, the virus genome enters the bacterium.
Then, two alternative pathways are possible:

e lytic pathway: the virus uses the host machinery in order
to replicate its genetic material and create new viruses.
This phase takes about 45 minutes, then the bacterium is
destroyed and about one hundred viruses are released in
the external media (Figure 1(a)).

e lysogenic pathway: the virus integrates its genetic material
in the bacterial genome. There is no production of viruses.
The bacterium is said to be lysogenised. The virus can stay
indefinitely in the genome of its host. But there exists an
escape mechanism: in some cases, the virus can extract
itself from the bacterial genome and enter a lytic phase as
a response to some stimuli (Figure 1(b)).

A small region of the viral genome controls the decision
between lytic or lyso-genic pathway. This region is com-
posed of two genes and their two promoters (sites of reg-
ulation of the gene expression) and is referred to as the
genetic switch region (see Figure 1). The decision results
from the competition between two major proteins:

o the first one is referred to as CRO, encoded by gene cro,
and expressed during lytic phase.

¢ the second one is called A repressor, referred to as CI. It
is encoded by gene cl, and it can activate other genes,
including itself, and repress others. cI is expressed during
lysogenic phase.

Note that the competition between CI and CRO is also
influenced by the host environment. The host environ-
ment is captured through CI and CRO and their influence
on the regulator region, i.e., the genetic switch.

Methods

Modular Interaction Network (MIN)

Modular Interaction Network (MIN) formalism considers
two types of entities: variables (chemical species and reg-
ulatory sites) and influences (IRCs and ICRs). Every
model entity (site, species, influence) is characterised by
its attributes which can be any data concerning the biolog-
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(a) The situation in a Iytic infection. CRO pro-
tein occupies OR3, preventing RNA Polymerase from
initiating transcription from the ¢/ promoter. RNA
Polymerase transcribes the cro gene, producing more
CRO protein, which silences CI transcription.

Figure |
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(b) The situation in a lysogenic cycle. CI protein in-
duces cl gene transcription and cro gene silencing.
The CI repressor protein binds OR2 and OR1, pre-
venting RNA Polymerase from transcribing the cro
gene, and promoting ¢/ transcription. Unlike CRO,
CT has an activation domain that promotes RNA Poly-
merase binding to its own promoter.

The genetic switch of the A phage. The cl and cro genes lie on opposite sides of the operator region, containing three operators
(ORI, OR2, OR3). The two genes are transcribed in opposite directions from their respective promoters, which overlap in the

middle operator, OR2.

ical object or interaction represented by this entity; for
example:

¢ physical attributes: size and shape for a protein, position
in DNA for a genomic sequence;

e Jocalization in space (cell compartments: nucleus,

cytosol);
e expression pattern (cell types, tissues etc.);

e observable values of the activity level for the biological
object;

¢ velocity, force, speed, amplification factor, cooperativity
increase, energy of the interaction.

From the very beginning, for any bit of information added
to the model, the link to the source (the set of references to
papers, databases, etc.) of it should be specified. This will
be important in later steps of the modeling, for example
in order to estimate the data quality. We assume that all
the data in the model has a representation which allows it
to be compared (it may be, for instance, a textual "string"
representation).

Variables

Both species and regulatory sites may represent biological
objects of some abstraction level (molecules or parts of
them, complex processes like regulatory pathways, com-

plex systems like sensors, or even an entire organism). As
our knowledge about biological systems is based on obser-
vations and experiments, the observable level of activity of bio-
logical objects can change in different states of the
biological system. These objects can influence the levels of
activity of the other biological objects. So, every species
and site in MIN will be assumed to have a set of observable
values, corresponding to the observable levels of activity of
the corresponding biological objects.

The formal definition of a MIN variable reflects the pres-
ence of various features (attributes) in biological objects.
Also, in different sources a biological object can have dif-
ferent names (hence the name set of a variable). Moreo-
ver, the measurement methods used to observe the
activity level of this object yield a set of possible values for
the variable, usually (partially) ordered.

Definition |
A variable V is an entity characterized by a tuple (N, W, P, L)
where:

o N is a non-empty set of known names of the variable;

e W is a partially ordered (by <) set of observable values
representing the activity level of the biological object associated
to the variable. We shall assume that this set has at least the
default value undef, unordered with respect to the other values,
and two defined values, meaning that the variable is not a con-
stant;
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e P is a set of attributes, having a type, a value and the
boolean unique field. unique = 1 indicates that this attribute
can not be present in P more than once. Otherwise, several
attributes of the same type can have different values;

e L is a non-empty set of links to (bibliographic) sources of the
information about the variable. This set of attributes will always
include the kind of the variable (which is unique and can be
either "regulatory site" or "chemical species").

Chemical species

A species represents a biological object with catalytic or
binding capabilities, which influence one or more regula-
tory sites. These influences have a chemical nature: associ-
ation/dissociation reactions, electron transfers, etc. A
species may have one or more influence capabilities, that
will be called affinities.

An affinity is the ability of a biological object to interact
with (potentially) a set of other biological objects through
a particular regulatory site. Thus, an affinity may corre-
spond to a protein domain for a protein or a surface mol-
ecule (receptor) for a cell.

Definition 2
An affinity a is a tuple (1,, P,, L,) where:

e | is a label representing the affinity name (which is indeed
the label of the binding regulatory site);

e P, is a set of attributes of the affinity, having a type and a
value (not necessarily unique);

e L, is a non-empty set of links on sources of the information
about this affinity (bibliographic references).

NC = {CI, Rep} )
WC = {«absent»,«low»,«high»} k

YOR\

P_= {string => <<homodimer>§}

A \
/ \,
/ \,
% \

L.= {«Ptashne»}

(a) Chemical species named CI or
Rep, with two affinities (among which
the wild-card), a bibliographic link, an
attribute (besides Kind and Affinities)
and three observable values.

Figure 2
Representation of a chemical species and of a regulatory site.
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Now we are able to formally introduce chemical species:

Definition 3

A chemical species C is a variable (N, W, P¢, L) whose set
of attributes P contains (Kind, "chemical species", 1) and
one or more data (Affinity, a, 0), where different a's enumerate
the influence abilities of the species C.

Chemical species are graphically represented by rectangu-
lar boxes. Various affinities can be represented inside the
species (by named triangles) omitting all the details
except for their label. The nature of the interaction
between two biological entities can be unknown. So, a
wild-card affinity, labeled "*", may be defined for every
species, standing for an unknown mechanism of regula-
tion (see Figure 2 for an example of a chemical species).

Regulatory sites

A regulatory site regulates species activity in a manner
which cannot be represented by a chemical reaction, like
for example by three-dimensional conformation changes
in a molecule or cooperativity effects. A regulatory site
may represent a genome region or a protein domain that
changes its state after a chemical reaction.

A regulatory site has a label which characterizes its capabil-
ities of being influenced through affinities. If a regulatory
site and an affinity of a species have the same label, it
means that the interaction is possible between the biolog-
ical objects corresponding to the site and the species. A
regulatory site represents an "input" for a species and reg-
ulates its activity through integration of several influences
on it.

NR = {«OR1»}
W_ = {«OR1'», «OR1"CI»}

\ {string => «next to Pr promoter»}
' L, = {«Ptashne»} g

(b) Regulatory site named OR1, with a
label OR, two observable values, an at-
tribute (besides Kind and Label) and a
bibliographic link.
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Definition 4

A regulatory site R is a variable (N, Wy, Py, Lg) with the
attributes (Kind, "regulatory site", 1) and (Label, I, 1) in the
set Py, where I is a label representing the site type.

Regulatory sites are graphically represented by ellipses
containing the label I, inside a triangle. An example of a
regulatory site is given on the Figure 2. The presented site
has two different states: free (OR1-) and regulated
((OR1-CI)). This means that the corresponding biologi-
cal object can participate in binding with another object.
The label of this site is OR, so it can be influenced by a spe-
cies having an affinity labeled OR, like the one repre-
sented on Figure 2.

In the MIN representation, different biological objects are
associated to different entities in the model. The attributes
of sites and species may have types like "position", "size",
"location" etc. expressing a knowledge about these bio-
logical objects. For example, if a gene has more than one
regulatory site of the same type in its regulatory region,
several sites will be present in the model, having the same
label but with different positions (mentioned in the
attribute set); clearly, in this case, the corresponding vari-
ables will not be compatible. All these sites will influence
the species corresponding to the gene. However, several
species with the same name may be present in MIN, if they
have attributes with different values. So, we can represent
a molecule of the same protein in free or dimerised state,
or the same gene at its natural location and translocated
in a different place in the genome.

Influences

Biological objects, represented by species and sites in
MIN, may interact and play specific roles in these interac-
tions. For example, they can take part in a chemical reac-
tion, one object modifying, creating or destroying another
one. We assume that every interaction happens through
an affinity and a regulatory site. More formally, a chemical
species C; having an affinity a with a label I, can influence
a chemical species C, if there is a regulatory site R labeled
by the same label (I, = 1,) which influences the species C,.
An influence is defined between two MIN variables as fol-
lows:

Definition 5
An influence I between variables is a tuple (V, V', P, L) where:

¢ V is the influencing variable;
o V' is the variable influenced by V;

o P is the set of influence attributes, having a type and a value
(not necessarily unique);

http://www.biomedcentral.com/1471-2105/8/433

o L is the set of links to sources of the information about the
influence.

The influence (ICR) of a species on a regulatory site of
another species represents the chemical interaction
between two biological objects in which the state of the
regulatory site is modified by the species through an affin-
ity. Symmetrically, a regulatory site can influence the value
of a species, through the influence (IRC) of a regulatory
site on a chemical species. In this case the interaction
between corresponding biological objects cannot be rep-
resented by a chemical reaction, and there is no specific
affinity associated to such an influence.

Definition 6

e An influence ICR of a Chemical species C . on a Regulatory
site Rycg is an influence (Cicp, Ricpe Picrs Licg) with an
attribute (Affinity, a;cg) € Picg which is the affinity involved
in the interaction of the species C,qp and the site R;cp, hence
with (Affinity, ajcp, 0) € P, and either 1, —=1g  orajcg

*
¢ An influence IRC of the regulatory site Ry on the species
Circis an influence (Rigc, Cirer Pirer Lirc) with the attribute
(Kind, IRC) € Pjpc.

An influence has a set of attributes, which should
describe, in particular, the relationship between the values
of the species and those of the regulatory site, like the
parameters of the corresponding chemical reaction:
kinetic rate or speed, or stoichiometric coefficients. Sev-
eral examples of the IRCs and ICRs are shown on the Fig-
ure 3, by dashed and plain arcs, respectively.

The network

After presenting the species and the regulatory sites, the
influences between them, we can now give a formal defi-
nition of the MIN for the modeling of a biological system.
The information about the possible connections between
species of the system is already coded in the labels of the
regulatory sites and affinities. We consider that the states
of the model are expressed through observable values of
species and sites, so that Q denotes the set of functions
associating a value of its value set to each species of the
model, Qp is the same for the sites of the model, and Q is
the set of all possible observable states of the model. In the
following, @ € Q stands for any given observable state of
the system and (V) will stand for the value of the varia-
ble V in the state w.

In general, in a single biological experiment (an observa-
tion), the values of only a subset of biological objects are
measured. In this case, the observable values of non

Page 5 of 25

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:433

ICR

- e |

Figure 3

http://www.biomedcentral.com/1471-2105/8/433

Relation F
CI OR1

absent free
low free
low Cl_bound

high | CI_bound

A small interaction network representing the chemical species Cl and the (regulatory) site named ORI. Left. The influence ICR
links the affinity labeled OR of species Cl with the site ORI, and the influence IRC links the site ORI and the species Cl. In the A
switch, the regulatory site ORI corresponds to the regulatory region in the DNA molecule coding for the protein Cl. Thus, CI
can influence the regulatory site ORI, and the activity of Cl can be regulated through the regulatory site ORI. Right. The cor-
responding relation ¥ indicating the biologically observed states of the network.

observed species and sites take the special value "undef"
and the state of the system will be considered as "partly"
defined.

In the set Q of observable system states a subset ¥ < Q of
observed system states will yield all the partly defined system
states which were really observed in biological experi-
ments and described by biologists. F plays the role of a
databank from which the parameters of the dynamics of
the system interactions could be inferred. If some of these
parameters (as, for example, kinetic rates for biochemical
reactions) are known (were measured in biology), they
will be directly mentioned in the attributes of the corre-
sponding influences (there will be some attribute of the
kind (Kinetic_rate, 15) belonging to P,z or Py for
instance).

Definition 7 (MIN)
A Modular Interaction
(V,ICR,IRC,F L) where:

Network ~ Mis a tuple

o V=CUR is the set of variables of the model; it is partitioned
in a set C={C;|i=1..|C|}of chemical species and a set

R={R; | j =1..|R[} of regulatory sites;

,j =1..R|, (Affinity, a,0) € P } is

a set of influences from chemical species to regulatory sites
through an affinity of the former and there is no more than one

influence between such a pair of variables through the same

affinity;

® TRCc{IRCj | j=1..[R|,k=1..|C|}is a set of influences

from regulatory sites to chemical species and there is no more
than one influence between such a pair of variables;

o ¥ < Qis a set of observed partly defined states of the biolog-
ical system;

e L is a set of links to sources of the information about those
observations.

In figures, species will be represented by boxes, affinities
by triangles inside the boxes of species, regulatory sites by
ellipses, influences of a species on a regulatory site by
plain arcs, and influences of a regulatory site on a species
by dashed arcs. A small example of an interaction network
is presented in Figure 3.

A MIN model having a highest level of detail has the prop-
erty that each regulatory site corresponds to a (single)
chemical reaction. We present an example of such a
model in Figure 4. It illustrates the CI protein synthesis
from the CI gene regulated by the OR1 regulatory site in
function of the presence of CI protein dimer.

The corresponding chemical species are represented by
chemical species of the MIN model. The biochemical reac-
tions of this example are represented by regulatory sites,
because a reaction is possible when all the substrates are
present. This reaction regulates the level of activity of a
chemical species by increasing or decreasing its quantity
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Aminoacids

e

stoichiometry = CI prot =

stoichiomgtry = 0

Ribosome
T . stoichiometry = 0
_~ProtSynth ~~__ ry

Figure 4

=1
=l
stoichigmetry = 1
OR1-CI2 stomhlomctry N w
il ——

stoichiometry = 1 @S il stoichiometry = C1 RNA
v 20 e

stoichipmetry = 0 stoichigmetry = 1

ORl‘$A

L Nucleotides
stoichigmetry = 0 P
,/1ﬂ§l’Asynl\h Y
RNA pol
_RiAsynth ™

A MIN model representing the enzymatic reaction of Cl synthesis. The reactions Cl_dimerisation and ORI _binding are reversi-
ble, so they have the appropriate attribute. The reactions CI_RNA_synth and Cl_synth are non reversible and have the appropri-

ate attribute.

(concentration). Each reaction has an attribute "reversi-
ble" or "not reversible". For instance, if a reaction is revers-
ible, this means that all the species connected to this
reaction can be either products or substrates of the reac-
tion. Another attribute of the regulatory site is a kinetic
rate, which is in general a function of other mensurable
parameters of the system such as concentrations of species
catalyzing the reaction or even non participating directly
in the reaction but influencing its kinetics. For example,
such species can sequestrate one or more substrates or
products or catalyze intermediate reaction steps. Another
natural parameter of the kinetic rate function is the tem-
perature: biochemical reactions go faster when the tem-
perature increases.

On each influence adjacent to the regulatory site, an
attribute corresponding to the stoichiometric coefficient is
indicated. It may have 3 qualitatively different values:

e 0, which means that the corresponding species is an
enzyme, i.e., it is not consumed or produced in this reac-
tion, even if its presence is necessary for the reaction takes
place;

¢ a numerical value, which corresponds to the number of
molecules implicated in the reaction, generally one or
two;

¢ any other label, standing for a vector of coefficients say-
ing how many molecules of each of the 20 types of ami-
noacids (a,, a,,...,d,,) or each of the 5 types of nucleotides
(ny, ny, ns, ny, ns) is needed to synthesize the macromo-
lecular product of the reaction.

For example, the stoichiometric coefficients for Nucle-
otides and Aminoacids in Figure 4 are labels, and each label
represents the composition of the corresponding macro-
molecule: CI RNA or CI protein. In general, the opposite
reaction of the biochemical synthesis is degradation, and
it liberates the same quantities of the corresponding sub-
strate residuals. The stoichiometric coefficients for
RNA_pol or Ribosome are 0, which means that these are
enzymes in the reactions of CI RNA synthesis and of CI
protein synthesis. The stoichiometric coefficient for CI is
2 for the reaction of the dimerisation of CI, meaning that
two molecules of CI are needed to form a dimer.

Compression of MINs

In order to simplify MIN models, it may be interesting to
find the variables representing the same biological object
and to combine them. So, the following defini-tion intro-
duces the syntactic compatibility and the union of variables.
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Definition 8 (Compatibility and union of variables)

Let {V;|i=1,2,..,k} be the set of variables of the MIN M,
with V;= (N;, W,, P;, L;). The variables in this set will be said
to be compatible if they have the same names (VV, V;
Ny =N v, ), their unique attributes are compatible ((x, y, 1)

€ P;A (x,2,b) € P;=y =z Ab=1), if their partial orders are
compatible ((Uf=1 <y, ) is acyclic) and their observed values
are compatible (VV;, VY (... w;...w;...) € F either w; = undef

or w; = undef or w; = w;). In such a case, their union

k k k k k
i Vi = ( Ui:INi’Uizl Wi’Ui=1 Pi’Ui=1 L )
k *
<Uk V»: (Ui:1<vi ) .

i=1 !

with

As the values of variables come from different biological
experiments, in order to compare them we need to use the
same approximations as generally accepted by biological
science. This means that the "equality" of values w; = w;
should be confirmed by a biologist when it is not obvious.
Notice also that chemical species may only be compatible
with other chemical species, and similarly for regulatory

sites.

This definition will sometimes allow to reduce the repre-
sentation of a MIN, by replacing compatible sets of varia-
bles by their union. Moreover, the translation of MIN
representation in other formalism can allow further com-
pression of variables depending on the capability of the
formalism to distinguish between different biological
objects.

Thus, the simplification is an operation on MIN M which
produces MIN M in a following way:

e First of all, the compatible variables of the MIN M are
combined;

e then, the ICRs (IRCs) of a variable V; on V, of the MIN
M are linked to the variables V] and V; of M, where

V] is compatible with V, and V;, is compatible with V;

e the relation # is updated: the entries containing a pair
of combined variables with different observed values are
splitted in two entries where only one value at a time is
listed for the combined variable.

The formal definition of MIN simplification is presented
below.

http://www.biomedcentral.com/1471-2105/8/433

Definition 9 (Simplification of MIN)

If M =(V,ICRIRC,F,L)isaMIN, V'=C'UR is a par-
tition of V into sets of compatible variables in M, then the
compressed form of M through the partition V' is the MIN
M= (V' ICR ,IRC'F',L) defined as follows:

e cach variable V' € V' represents the union of compatible
variables composing the set V' (V' = ---,,.,V);

def
ICR' = UC'eC'Ua:[Afﬁnuy,a,O)e p ICRc 4
where
[CR,C’,H = {(C’, R,P, Ll) | ReR, X 7
={(C,R,P,L)e ICR|Ce C,Re R, (Affinity,a) € Pic g p 1)} * D, P’

= UICREX Picg, L= UICReXL’CR}

def
IRC ={(R,C, P, L)[ReR,CeC X
¢ ={(R,C,P,L)e IRC|Ce C,ReR}#Q,P"’

— ’ —
- UJRCeX Pire, L= UIRCEX Lirc}

def
o F={o" =W wjq) [ Fwy, Wy ) € F,

Vi(VV;e Viw;, =w; = undef v 3V; € Viw; = w; # undef )}

Composition of MINs

One of the main characteristics of MINs is that they are
modular and enable an incremental construction of mod-
els of biological systems. The operation of composition of
two MINs includes establishing new, composed, sets of
species, sites and influences. The species set of the result-
ing MINs is the union of species of the composing MINs,
and the new sites set is the union of regulatory site sets of
composing MINs. All the information about the interac-
tions in composing systems must be also preserved. That
means that a particular attention should be paid on the
conversion of influences from composing MINs to the
resulting one. If source MINs do not contain common
species, there is no transformation to perform; the data
from these MINs should be just put together.

Definition 10 (Union of MINs)
If M;=(C;R;, ICR; IRC;F;)fori=1,2 are MINSs, their
M=M,®@M,is  the MIN

union such that

def
M={C,UC, R UR,, ICR{UICR, TRCVIRC ,, F 1 xU , VU XF ,} ,
where U ;is the state of model M ;where all variables have
the value undef.

This means that MIN models can be composed from parts
that share the same species or are completely independ-
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ent. This can be very useful at the first construction stages
of biological regulatory networks where the data is incom-
plete and is not necessarily connected.

In case of presence of equivalent regulatory sites or species
in the resulting MIN, the union of these sites or species
must replace them. In this case the in-fluences between all
sites and all the species, which were influencing one
another in the source MIN, must be established (see Fig-
ure 5). If there are in the source MIN two different influ-
ences between the same affinity of a species and the same
regulatory site, they must be replaced by only one influ-
ence carrying the union of all possible attributes of both
connections. In a same way, if there are two different
influences from a regulatory site on a given species, it
must be replaced by the influence carrying the union of all
possible data, using the previously defined operation of
simplification of MIN.

Multivalued logical formalism (MLM): basics

The multivalued logical approach is designed to express
the interdependency between activity levels (often con-
centrations) of biological objects, e.g., proteins. It applies
when this interdependency can be represented by a sig-
moidal curve, which is approximated by a multivalued
logical function. This function can distinguish between

http://www.biomedcentral.com/1471-2105/8/433

different levels of activity of a biological object, so it may
be multivalued (see Figure 6). The multivalued logical
model (MLM) consists of two parts: a directed graph of
interactions and a table of dynamic parameters.

The goal of modeling genetic regulatory networks in the
multivalued logical formalism [7] is to obtain a state
graph representing the behaviour of a biological system
from a qualitative point of view. This means that an
observable sequence of states of a biological system is rep-
resented by a path in the state graph of the model.

The multivalued logical formalism, which has been
shown very useful for genetic networks study [11,12], is
composed of a directed labeled regulatory graph and a table
of dynamic parameters. The state of the regulatory graph,
expressed through the labels of its vertices, can evolve
according to dynamic parameters. The possible traces of
this evolution can be represented in the form of a state
graph. The nodes of the state graph represent the different
states of the system and the arcs of the state graph repre-
sent the possible activity modifications of the biological
objects.

For dynamic systems with saturation (like genetic regula-
tory networks) one can approximate the sigmoid curve,

Figure 5

CRO

Union and compression of interaction networks. Three networks sharing species and regulatory sites can be combined into
one by a composition and compressed by collapsing equivalent species and sites. All existing interactions are preserved.
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r R |

' = [CI]initial

-¢=—= |0gical levels of CI

Figure 6

The multivalued logical approximation of the level of activity
of biological objects. The axes represent input (abscissa) and
output (ordinate) protein concentrations. The dashed thin
sigmoid curve represents [Cl] — the measured concentration
of the protein Cl at the equilibrium point. This curve is
approximated by the thick dashed multivalued logical func-
tion with the threshold 8,. The solid curve corresponds to
the influence of [CI] on [CRO] and its approximation by the
multivalued logical function with the threshold 6,. In this case
the activity of the protein Cl has three logical levels: 0, | and
2, indicated in the bottom part and separated by the thresh-
olds.

http://www.biomedcentral.com/1471-2105/8/433

representing the level of the activity of a variable as a func-
tion of the level of another one, by a multivalued logical
function. This approximation is called logical abstraction
because it allows to distinguish between only two activity
states of the system: below the threshold level and above
1t.

The following definition describes an instance of MLM as
introduced by R. Thomas. It is composed of a regulatory
graph (U, E) and a table K of dynamic parameters (see Fig-
ure 7). Each node u of the graph corresponds to a variable
with integer values between 0 and the boundary b, of the
variable, which drives the topology of the corresponding
state graph. The influences between variables in MLM can
be positive (inducing) or negative (inhibiting).

Definition 1| (Instance of a Multivalued logical model)
An instance M of an MLM of a genetic regulatory network is
a pair (G, K) where:

e G = (U, E) is a labeled directed graph:

- each vertex u € U is called a variable of the genetic regulatory
network, and is provided with a strictly positive integer b, called
the boundary of u;

- each arc (uy, u,) € E is labeled by a pair (6, &) where 6, called

the threshold, is an integer between 1 and b, , and &, called

CI | CRO || CIdynamic parameter | CRO dynamic parameter
0 0 Kercroy =1 Kcro,(c1,crO} = 2

0 1 Kerp =0 Kcro,(c1,crO} = 2

0 2 Kerp =0 Kcro,icry =0

1 0 Kericroy =1 Kcro,(cro} =0

1 1 Kerp=0 Kcro,icro} =0

1 2 KC'I,{} - 0 KCRO,{} == 0

2 0 Ker cr,croy =2 Kcro,icro} =0

2 1 Kercry =0 Kcro,scroy =0

2 2 Kercry =0 Kcro 3 =0

Figure 7

An MLM instance: its regulatory graph (left, top), the corresponding state graph (left, bottom) and the table of its dynamic

parameters (right).
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the sign, belongs to {+, -}. When &=+, u, is called an inducer
of u,. When & = -, u, is called an inhibitor of u,. The set of

predecessors of u, is denoted G -'(u,).

*K={K,,|lueUrwc G (u)}isafamily of integers such
that 0 < K, ,< b, for any variable u and any subset @ of pred-

u,m—

ecessors of u in the graph G, called the dynamic parameters

of u.

The dynamics of an MLM instance M is defined through
the notion of states and transitions. A state of M is a map-
ping 1 : U — N such that, for any variable u € U, 0 < g(u)
< b,. The value p(u) is then called the level of the variable
u. For example, an MLM instance with two variables u,

and u, with b, =b, =2has9 states corresponding to the

following mappings ; = (0, 0), 4,=(0, 1), 13=(0, 2),..., 4,
=(2,0), 3= (2, 1), gy= (2, 2). In this case the level of var-

iable u, in state 1, is 1, (u,) = 1.

In order to unify the treatment of different influences
between variables, the definition of resources of a variable
is introduced in MLM. The variable u, influencing the var-
iable u, is a resource in some state if u; helps the variable
u, in that state, meaning that u, acts to increase the activity
level of u,.

Definition 12 (Resources of a Variable)

Given a state u and a variable u € U of a MLM M, the set of
resources of u is the set w,(u) containing all the variables u'
of M such that:

e u' € G-1(u) is a predecessor of u in the underlying directed
graph G of M;

o the arc (u', u) is labeled by (6, &) and
-if e="+"then p(u') > 6,

-if e="-"then u(u') < 6.

The set of variables @, () is consequently the subset of G-

1(u) containing both inducers of u whose expression level
has reached the threshold and the inhibitors of u whose
expression level has not reached the threshold.

The dynamics of the MLM reflects the dynamics of a "con-
tinuous" biological process, so the model variables can-
not "skip" values: going from "1" to "3", for example,
without passing by the value "2". So, the multivalued logi-

http://www.biomedcentral.com/1471-2105/8/433

cal function is introduced to describe the evolution of a
variable level in a given system state.

Definition |13 (Multivalued Logical Function)
Given a state p and a variable u of an instance M of MLM, the
multivalued logical function () is defined as follows:

o if w(u) <K, o, () then x,(u) = p(u) + 1
o if p(u) = Ku,cou(,u) then &, () = p(u)
° if:u(u) > Ku,cau(y) then Ku(;u) = ,u(u) -1

The function «, represents a "step by step" evolution of
the expression level of u from its current expression level

#(u) to its dynamic parameters K ) - The state graph

w0, (1
of a MLM is often called asynchronous because only one
variable can evolve at a time. Then, the evolution of the
model can be represented as a state graph, where the sys-
tem can move on a graph of system states according to its
multivalued logical function.

Definition 14 ("Asynchronous" State Graph)

The state graph of a MLM M is the directed graph SG whose
vertices are all the possible states of M and such that there is an
edge from p to p' if and only if there exists a variable u satisfy-
ing:

o 1'(u) = x,(u) # pu(u) where x,(u) is the multivalued logical
function for u;

e for any variable u' # u we have u'(u") = p(u').

An arc of the state graph from gz to y'is usually denoted as
(1 — 1) and is called a transition. This is illustrated in Fig-
ure 7(right).

Results

Translation of a MIN into an MLM

This section presents the translation algorithm of MIN
into MLM formalism. It is structured in a following way.
First of all, we note that multiple translations of MIN
model into MLM formalism are possible, and the impact
that it has on the translation algorithm. After that, the
translation itself is described, starting with the construc-
tion of the MLM regulatory graph topology, then deter-
mining the dynamic parameters. At the end, this section
contains an example of a translation of a small MIN net-
work into MLM.
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The obtained by translation MLM model will be called the
translated network. As in many cases, the values of all
parameters of the MLM model cannot be deduced pre-
cisely from the experimental data; the set of all possible
parametrisations consistent with biological observations
must be considered as a model which can be studied and
later be refined by adding other information.

The biological information presented in MIN is much
richer than that of an MLM instance, so one MIN can have
multiple semantics expressed through a set of MLM
instances. In other words, an MLM may be assimilated to
the set of its instances. The topology of the regulatory net-
work, as well as the boundaries, will be the same for all
instances (deduced from that of MIN). However, dynamic
parameters, as well as arc labels can be different since an
arc of an MLM regulatory graph may correspond to several
arcs of a MIN (one by affinity). As the observable values
of a variable of a MIN are partially ordered (see Definition
1), the different ways of enumerating values of u (topolog-
ical sort) will be considered as yielding different instances
of the MLM. So, in the following, we will consider every
combinations of possible parameters as one instance of
MLM, and the translation procedure of MIN into MLM
will give all these possible parameters that can be deduced
from MIN data.

Now, let us introduce the construction of the MLM regu-
latory graph from the MIN model. First, the translated var-
iables of the MLM must be defined. They are obtained
from the species of the MIN, keeping only one (arbitrarily
chosen) name and providing it with a boundary corre-
sponding to the number of observable values of the MIN
variable. Unless two species share a same name, due to
unfortunate choices in independent sources; we shall
assume it is always possible to choose those names in
such a way that no two different nodes have the same
name.

Definition 15 (Translated variables of a MIN)

Let C € V be a chemical species of the MIN M, let |W| be
the number of different observable values of C and N € N be
a name of C. The translation of C is a vertex u € U labeled
with N and provided with a boundary b, = |W|. The species C
is then called the original species of u.

The arcs of the regulatory graph of the MLM are deduced
from the MIN structure in the following way: there is an
arc between the translated variables u, and u, iff there is a
pair (ICR, IRC) in MIN such that R, = Rjz, and C;; and
Circ are the original species of variables u, and u,, respec-
tively (see Figure 8).

http://www.biomedcentral.com/1471-2105/8/433

Vercro

‘ ' ‘ absent | absent
CI B .@ CRO 4h absent | high
\ T— ’ low absent

W -  high

absent

Relation F
CI CRO OR1 OR2 OR3
absent | absent free free free
low CI_bound free free
low CI _bound CI bound free
low free free free
absent | CI_-bound
low free
high CI_bound CI_bound CI_bound
low CRO bound
absent CRO bound
absent Cl_bound
present free
absent | CI_-bound
absent | CRO bound
high free
high | CRO.bound | CRO-bound | CRO_bound
Figure 8

Translation of dynamic information from a MIN to an MLM
model. Top, Left The species Cl regulates the species CRO
through the sites ORI, OR2 and OR3. Top, Right The rela-
tion W cpo comprises three lines characterizing the regula-
tion of CRO by Cl through the regulatory site OR|. Bottom
The relation ¥ shows undef values as white spaces.

The MLM regulatory graph is not complete yet, as we need
to find the arc labels. These labels depend on the observed
values of MIN variables. The information on the possible
combinations of observed values of variables is contained
in the relation ¥ . The same type of knowledge enables us
to determine also the dynamic parameters of the MLM
model. However, the influences are defined in MIN
between chemical species and regulatory sites, but the
MLM model encompasses the regulatory sites inside the
variables representing the species, as shown in the previ-
ous definition. Thus, we need to reconstruct the parame-
ters of influ-ences of species on species from ¥ and the
MIN topology.

In order to find the arc labels of the translated regulatory
graph and the corresponding dynamic parameters K, we
introduce the relation ¥;, between values of the species C;
and the species C,, called interspecies regulation relation.

This relation is defined if there is a site R such that there

is an ICR;; with (Affinity, a) € Picg, and (Affinity, a, 0) €
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P¢, and there is an IRC;,in the MIN, i.e., the species C; reg-

ulates the species C; through the site R;. For example, on

Figure 8, the species CI regulates the species CRO through
the sites OR1, OR2 and OR3.

In order to translate the information about the dynamics
of the biological system, contained in ¥, we need to
define the choice operation o, which we will call a selection,
as presented in following definition. For each pair of var-

iables V;, V;, the selection ov,v, (¥) returns the observed

system states in which both values of variables i and j were
measured.

Definition 16 (Selection of observed states for a pair of MIN
variables)

The selection of observed states F of a biological system

M for a pair of variables V;, V;is the subset oy,v, &F such
that we ov.v, if and only if o(V;) and o(V;) are both
defined.

The selection will be used in the next definition in order
to formally define the interspecies regulation relation ¥;,
which links the values of species i and k which could be
observed experimentally at the same time. This relation
lists the values coming from ¥ lines where states were
observed for species i, species k and the regulatory site R,
influenced by i and influencing k. That means that the
interaction of species i and k is transmitted by the regula-
tory site R.

Definition 17 (Interspecies regulation relation)

An interspecies regulation relation ¥;, c W XxW¢ is a
. i k

relation between values of the species C;and C, of a MIN M,

defined when the species C; regulates the species
def
Cp:¥y ={(wy,w,)|(C;,R,P,L)e ICR,(R,C}, P, L)€ TRC, 0,0, .

€ F 1wy =0(C;), 01(R) = ,(R), 0,(Cy,) = w,}

Thus, the ¥ relation lists the pairs of values (w;, w,,) of spe-
cies C; and C,, such that the value w; of the species C; and
the value w), of the species C, where observed simultane-
ously or when the regulatory site linking them was in the
same state (for an example see Figure 8).

The next definition uses the interspecies regulation rela-
tion in order to add the missing labels on the arcs of MLM
regulatory graph, translated from MIN. The observed val-
ues, returned by the interspecies regulation relation, are

http://www.biomedcentral.com/1471-2105/8/433

sorted by the first value, and then the algorithm tries to fit
them to a sigmoid curve, an ascendant or a descendant
one. If such fitting is possible, the algorithm tries to deter-
mine the threshold for this sigmoid curve. The first fact is
translated by the sign, "+" or "-", in the arc label. The
threshold value is also mentioned on the corresponding
arc, when found.

Definition 18 (Translated regulatory graph)

If M =(V,ICRIRCT L) isaMIN with V=CUR, its
translated regulatory graph G = (U, &) (representing a set
of genetic regulatory graphs) is a directed graph where:

e U is a set of translated variables of M ;

o &is the set of arcs (uy, u,) between variables of U such that:

- (uy, uy) € Eif u;is a translated variable of C;e C,i=1,2
and 3ICR € ICR, 3IRC € IRC such that C;cp = Cy, Rjcp =
R = Rz and Cppe = C,. For each pair (ICR, IRC) satisfying
these conditions we will use the notation (ICR + IRC) € (u,

U,).

- the arc (uy, u,) is labeled with a set of pairs (6, &) such that:

*if JwieWe, i =1,2 (w, w) € ¥, such that
MW, W (wywy)e Wipand  V(wy,wh)e Wy, if
wi=c,wy = WH=c wyand if wy <o wi = w, <o whH,
then (w, +) is in the set. (In this case w = w, is a threshold,

and (w,, w,) is a positive threshold pair of MLM interaction

(11, uy));

*if JwieWe, i =1, 2 (w, w) € ¥, such that:
I, ¥ (wywy)e Wy and  V(wy,why)e W, if
wy ¢, Wy = wy ¢, whand if

wy =S¢, W = w) 2, wy, then (w, -) is in the set. (In this

case w = wy is a threshold, and (w,, w,) is a negative thresh-
old pair of MLM interaction (uy, u,));

The translated regulatory graph G looks very much like a
MLM model, but there are still some differences. It may
contain several labels by arc, and these labels contains
observed values, which are not necessary numerical ones.
Thus, the next definition describes how to obtain a family
of well formed MLM models from G .
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Definition 19 (Labeled directed graphs)
The family of labeled directed graphs compatible with the trans-
lated regulatory graph G = (U, &) is the set of graphs G = (U,

E) constructed in the following way:

o (u,u') € Eiff (u, u') € Eand it is labeled with at most one
of pairs (0, &) from the set labelling (u, u') € &, if any.

® For each node u of the so constructed translated regulatory
graph, let us consider the set ©,, of all thresholds occuring on the
arcs originating from u. The bound b, associated to u will be the
|®,| + Nua, where Nua is the number of unlabeled arcs origi-

nating from u. For each topological sort (6,,...,0, ) of ©, the

numerical values 1 <t < b, are associated to the corresponding

variable values (0,,..., 0, ), and each label (6, ¢) is replaced by

the corresponding (t, ) in arc labels.

o If (u, u') € Ehas an empty label, (u, u') € E should be
labeled with (t, &) such that 1 <t <b,and &=+ or -.

A state y of such a graph G € G associates then to the
node u a numerical value in {0,...,b,} identifying an inter-
val between two successive thresholds.

The MIN representation of biological systems is richer
than that of MLM, already because the last does not take
into account states of regulatory sites. So, several states of
the MIN may be represented by only one state of the
MLM. In order to establish the connection between
dynamic parameters of both systems, the correspondence
between states of them must be introduced: one MLM
state corresponds to a domain of states in MIN.

Notation | (Translation of system states of MIN in MLM)

If M =(V,ICRIRCF,L)isaMIN, and G = (U, E) is
one of the family of labeled directed graphs compatible with the
translated regulatory graph of M, pis a state of G, O ,is the
set of states @ € Q such that Vu € U if C € C is the original
species of the variable u then (¢(u) =0 A @(C) < 6,) v (0
<p(t) <by A Gy < A(C) A O(C) < Gyy1) v (1(1) = by A
0, < @(C)). pis called the translated state of the domain

O, and O ,is the set of original states of 4.

In order to obtain the MLM translation of a MIN, we still
need to define the dynamic parameters K associated to the
possible states of the graphs G compatible with G . The

dynamic parameters for a variable are composed of
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observed states found in ¥ at lines determined by possi-
ble values of this variable's resources.

Definition 20 (MLM translation)
If M =(V,ICR,IRC,F,L)isaMIN, its MLM translation
is a family of instances M = (G, K) such that:

e G is one of the family of labeled directed graphs compatible
with the translated regulatory graph of M;

K = {Kyo (u) } are the dynamic parameters of the MLM

instance M where K ) is a set of observable values that the

w0, (1
variable u (see Definition 12), the translated variable of C, €
C , can have when the MIN state of the system @ is an original
state of the state y of G: if C,. € C is the original variable of u'

€ G_l(u)’ Ku,wu(,u) € Uu'eG"(u) ( UweO(,u) \Pcu"cu (a) ) ) ’

Numerical values are associated to dynamic parameters
using the partial order on values of the original species or
other information, preserving the order obtained after the
threshold ordering.

The Figure 9 illustrates the dynamic parameters transla-
tion from MIN model which is presented in Figure 3.

Application to the L phage genetic switch

Modeling the interacting entities

The chemical species of the model are associated to the
chemically active molecules of the system: proteins CI and
CRO, which are able to bind the regulatory sites of the 1
switch. The regulatory sites named OR1, OR2 and OR3
can be distinguished in the regulatory region of the A
switch. Both proteins can bind these regulatory sites. This
binding capability will be represented by the affinity
labeled OR. The regulatory sites will be labeled with the
same label OR.

The corresponding regulatory DNA regions OR1, OR2 and
OR3, controlling the expression of CI and CRO, are shared
by two genes: ¢l and cro. It means that the same regulatory
site is used to control both genes, and that its state deter-
mines the activity level of both proteins simultaneously.
So, the influences of CI and CRO on regulatory sites OR1,
OR2 and OR3, and of these sites on the proteins' activity
can be added into the model.

The static information about the biological system
includes the information about observable values of vari-
ables. The observable states of regulatory sites OR1, OR2
and OR3 are "CI_bound, CRO_bound" or "free". Three dif-
ferent observable levels of activity (concentrations) of
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Verer

absent | absent V) € | threshold

absent | low pairs

low absent low | + | (low, low),

low low (low, high) C '

low high low | — | (low, absent)

high absent high | + | (high,low),

high low (high, high)

high high high | — | (high,absent)
abs | abs || abs | abs abs | abs abs | abs abs | abs abs | abs
low | abs || low | abs low | abs low | low || low | low || low | low
high | abs || high | low || high | high || high | abs || high | low || high | high
abs | abs abs | abs abs | abs abs | low | abs | low || abs | low
low | high || low | high || low | high || low | abs | low | abs || low | abs
high | abs high | low high | high || high | abs || high | low || high | high
abs | low || abs | low || abs low abs | low abs | low abs | low
low | low || low | low || low | low low | high || low | high || low | high
high | abs || high | low || high | high || high | abs high | low high | high
Figure 9 7

Translation of dynamic parameters from ¥ to MLM. Left For the small network, represented on the Figure 3, the interspe-

cies regulation relation ¥, is constructed. Right The obtained translated regulatory graph and its labels (8, &) with corre-

sponding threshold pairs (shown in bold for positive pairs and in italic for negative ones in bottom tables). Bottom Ordering
the Cl values as absent <. low <, high enables to produce several fully ordered subset of ¥, .

proteins can be measured: "absent", "low", "high" for CI
and "absent", "present", "high" for CRO.

Dynamics of the system

The dynamic description of the biological system in MIN
is expressed through the attributes of influences and in
relation ¥ (see Figure 8).

The "affinity of CI for OR1 is tenfold higher than for OR2
and OR3" [1] can be translated in our formalism by plac-
ing the entry (CI = low; OR1 = CI_bound, OR2 = free, OR3
= free) in F .

The property of the cooperativity between interacting mol-
ecules such as "CI bound to OR1 increases the affinity of
OR2 for another tenfold" can be represented in MIN

through the refining the information about observabale
states by adding the new entries {(CI = low, OR1 = free,
OR2 = free) and (CI = low, OR1 = CI_bound; OR2 =
CI_bound)} in F .

The next type of information concerns the influence of
regulatory sites on the protein activity level. The fact that
the "Polymerase binding to the CRO promoter is disabled
if CI is bound to OR1" can be translated in our formalism
by the fact that the protein CRO is absent when the OR1
site is bound, so we add the entry (OR1 = CI_bound; CRO
= absent) in F .

In the same way the cooperativity could be represented in
the expression of CI. Its promoter is naturally weak, but it
can produce important quantities of CI if the site OR2 is
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occupied. This information provides two new entries for
the relation F : (OR2 = free, CI = low), (OR2 = CI_bound,
CI = high).

The highest binding affinity of CRO is for OR3, so that
CRO rapidly shuts off CI production by excluding the
RNA polymerase from CI promoter, so, another condition
for CI production is that OR3 remains vacant. It can be
represented by entries (OR3 = CRO_bound, CI = absent)
and (OR3 = free, CI = present) in F .

Pr, the CRO protein promoter, is inherently a strong one,
so as soon as the site OR1 is vacant, CRO protein is pro-
duced, which is represented in MIN by entries (OR1
CI_bound, CRO = absent), (OR1 = CRO_bound, CRO
absent) and (OR1 = free, CRO = high) in F .

The resulting MIN is represented in Figure 10.

In order to transform the MIN representation of the A
switch in MLM we need to obtain the corresponding inter-
action graph and the dynamic parameters.

http://www.biomedcentral.com/1471-2105/8/433

Translated interaction graph

The choice of variables of MLM is obvious: variables CRO
and CI will represent the interacting molecular species of
the MLM.

We can also follow in the MIN all described interactions
between these two variables: CI regulates its own expres-
sion and the expression of CRO through sites OR1, OR2
and OR3. In the following, the ICR; ,; notation means the
ICR from the variable V; to the variable V; of MIN through
the affinity a, and IRC;;means the IRC from the variable V;
to V.

(CI,CI) =
{UCR¢; 0r0r1 + IRCoRy 1)
(ICR¢,0r,0r2 + IRCopa 1)
(ICRcy0r,0r3 + IRCops.cr) }:

(CI,CRO) =
{UCR¢; 0r,0r1 + IRCop1,cRO):
(ICR¢y,0r,0r2 + IRCopa,crO)/
(ICRc;,0r,0r3 + IRCop3,cro) }-

CRO regulates its own expression and the expression of CI
through the same regulatory sites:

(CRO, CRO) =
{(ICRcRo,0r,0r1 + IRCoR1cRO)

(ICRcgo,0r,0r2 + IRC R, cRO):
(ICRcro,0r,0r3 + IRCoR3,crO) }i

(CRO,CI) =
{UCRcro,0r,0m1 + IRCoR1,C),
(ICRcro,0r,0r2 + IRCopa,cr)s
(ICRcro,0r0r3 + IRCop3,cr)} -

S EEEEEEREEY

Partial orders of variable values:
for CT :

absent <1 present,

absent <1 low <1 high;
for CRO :

absent <cro low <cro high;
for ORi :
free; CI _bound; CRO _bound.

¥
! )

Figure 10

A MIN representing the genetic switch of the A phage. Species CRO and Cl represent proteins which bind with the affinity OR to
the regulatory sites ORI, OR2 and OR3. These sites are present in the regulatory regions of genes encoding both proteins, so
that they influence the corresponding species Cl and CRO. The relation 7 is the same as in Figure 8.
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Table I: \Pcv C, relations calculated from the relation ¥
1’ R
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\PCI,CI LIJCI,CRO

\FCRO,CI LPCRO,CRO

(absent, absent)
(absent, low)
(low, absent)
(low, low)
(low, high)
(high, absent)
(high, low)
(high, high)

(absent, absent)
(absent, high)
(low, absent)
(high, absent)

(absent, absent)
(absent, low)
(absent, present)
(absent, high)
(low, absent)
(high, absent)

(absent, absent)
(absent, high)
(high, absent)

In order to obtain the labels of arcs of the MLM model, the
corresponding W, ¢, relations are calculated from the

relation # , as shown in Table 1.

Using the Definition 18 of the translated regulatory graph,
we can obtain the subsets of W, , relations in which the

values of C; are fully ordered.

For W cro and W o cro two fully ordered subsets can be
constructed (see Table 2).

Thus, the corresponding arcs of the translated regulatory
graph will be labeled with 6, cro = low, &6 cpo = "-" and

; n
Ocro,cro = high, &cro,cro="-"-

For the relation ¥ 3, ¢, four fully ordered subsets can be
constructed, as presented in Table 3.

Three of four cases lead to the same threshold pair, and
the fourth does not have one. So, the arc (CRO, CI) of the
translated regulatory graph should be labeled with 6o ¢
= low and &cpp o = -

For the relation W, ., 18 fully ordered subsets are possi-
ble, and they are presented in Figure 9, as well as four
labels of the arc (CI, CI).

Here we can take an assumption that the MLM can not
distinguish between the variable values "present" and
"low" and we will attribute the same numerical values to

them. Replacing the MIN value "absent" by MLM value 0
and thresholds "low"/"present" and "high" by numerical
values {1 and 2}, the family of interaction graphs of the
translated MLM of the 4 switch is obtained (see the Figure
11).

Dynamic parameters for every instance of the obtained
MLM can be derived from the relations ¥ according to
definition of translated parameters.

Dynamic parameters for the variable CRO are the same in
all three instances and are shown in Table 4.

Dynamic parameters for the variable CI can have different
values according to the chosen MLM instance. The sets of
possible values are shown in Table 5.

This example illustrates the construction of the MIN
model from the biological data and shows that this model
can be automatically translated in the MLM formalism. In
the worst case, the interaction graph of the MLM is con-
structed from the MIN representation, but no constraint is
found on the dynamic parameters (as for parameters
KC,I% in networks C and D, Figure 11). In the best case,

only one value for each dynamic paramter will be pro-
duced (as for K¢ (croy)-

From MIN to ODEs
An important part of the biological knowledge comes
from biochemistry. It covers information about the

Table 2: Fully ordered subsets for Y, cpo and V' cpo,cro- Here and after, positive threshold pairs are shown in bold, negative threshold

pairs are shown in italic

1 2
\PCI,CRO lIICI,CRO

1 2
k4 CRO,CRO k4 CRO,CRO

(absent, absent)
(low, absent)
(high, absent)

(absent, high)
(low, absent)
(high, absent)

(absent, absent)
(high, absent)

(absent, high)
(high, absent)
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Table 3: Four fully ordered subsets for the relation Y cgo ¢

http://www.biomedcentral.com/1471-2105/8/433

1 2
¥ CRO,CI ¥ CRO,CI

3 4
¥ CRO,CI ¥ CRO,CI

(absent, absent)
(low, absent)
(high, absent)

(absent, present)
(low, absent)
(high, absent)

(absent, low)
(low, absent)
(high, absent)

(absent, high)
(low, absent)
(high, absent)

dynamics of chemical reactions, which are treated in the in
silico models through the device of ordinary differential
equations (ODEs).

Differential equations aim at expressing the concentration
of a chemical species as a function of time, knowing its
production and degradation rates:

P =471 - Zki]j[[sijl“‘ﬁ - k,ljl[slj]%

where Fk; is the reaction rate for the i-th P-production
chemical reaction, ¢; is the stoichiometric coefficient of
the j-th substrate in this reaction, Sj; is this substrate, [S;]
is the concentration of the latter, and k;, o, [S;] denote the

corresponding elements for the I-th P-degradation reac-
tion and its co-substrates.

In order to translate the MIN model in ODEs, we need to
write the set of chemical reactions in the biological sys-
tem, and to deduce (if possible) the reaction rates from
the parameters of the influences of the MIN model. In a
case where the mechanism of the reaction is unknown, it

may be written in Michaelis-Menten form: S—E—P,

where E is an enzyme catalyzing the reaction but not con-
sumed in it. The translation of this reaction into differen-
tial equations is a known issue.

Kcro,e = 0,Kcrocny € 10,2}, Kcro,{croy € 10,2}, Kcro {c1,cr0} = 2.

MLMA | MLMB | MLMC | MLM D
Kol 0,12} {017 | {0.1.2} | {0,1,2}
Kor (o {0,1} | {o,1,2} | {0,1,2} | {0,1,2}
Kecr{croy {0,1,2} | {01} | {0,1,2} | {0,1,2}
Keorgercroy | {01} | {0,1,2} | {0.1,2} | {0,1,2}

Figure 11

A translation of a MIN from Figure 10 into MLM. The variables Cl and CRO of the MLM are obtained from the species Cl and
CRO of the MIN combined with the regulatory sites ORI, OR2 and OR3. The MLM interactions are obtained from pairs (ICR +
IRC) present in the MIN. For example, there is an arc (Cl, CRO) in the MLM because there is a pair (ICR + IRC) = (Cl, CRO) in the
MIN presented in Figure 10. The dynamic parameters and arc labels of the MLM are calculated from the relation ¥ of the

MIN.
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Table 4: Dynamic parameters for the variable CRO in the MLM translation

Keroo Kerogen

K cro,icroy Kerocicroy

Weicro(Cl = high) U W po(Cl =
low) U W cro.cro(CRO = high) =
{absent} ~~ {0}

¥ ¢ cro(Cl = absent) U
¥ cro,cro(CRO = high) = {high,
absent} ~~ {0, 2}

Wi, cro(Cl = high) W W cro(Cl =
low) U ¥ ro cro(CRO = absent) =
{absent, high} ~~ {0, 2}

W ¢ cro(Cl = absent) U
¥ cro.cro(CRO = absent) = {high}
~~ {2}

A MIN model detailed enough to be directly translated to
ODE:s is presented in Figure 4. For each chemical species
in Figure 4 we can write a differential equation summing
its consumption and production in chemical reactions the
species is participating (see Figure 12). If the additional
information is available and encoded in MIN in attributes
such as k; and K4 they will be used in the translation to
ODEs procedure. If this information is not available, a
free constant denoted in a standard way will be generated.
The stoichiometric coefficients give the o; power coeffi-
cients in the formula, and the k; reaction rates come form
the corresponding reaction attributes.

For example, in the third equation describing the produc-
tion of the CI RNA from nucleotides, CI_RNA corre-
sponds to the quantities of each of the four nucleotides
composing the CI RNA: A, U, C and G (the last one, T,
being absent from the RNAs). The RNA polymerase
(RNA_pol in Figure 4) is the enzyme which catalyzes the
CI RNA synthesis without being consumed in this reac-
tion, so its concentration influences the reaction rate
kei_rna_gmen @nd it is taken into account in the function
f-OR1 - Cl, stands for the DNA information source for the
CI RNA synthesis, and it acts also as a catalyzer: without
this species the CI RNA synthesis is impossible. One mol-
ecule of CI_RNA species is produced from all the neces-
sary nucleotides on the matrix OR1-CI, and under the

Table 5: Dynamic parameters for the variable CI translated from MIN to MLM. K¢, g, K¢ (s Keigcrop Keiger,crop

I, -

I, +

2,-

2, +

KCI,Q

Keigen

Keigeroy

Kegeicroy

W€l = low) U W o(Cl
= high) U ¥ ¢zo,ci(CRO =
low ) U W czo.(CRO =
high) = {absent, low, high}
~~ {0, 1,2}

W, c(Cl = absent) U
¥ cro,cl(CRO = low ) U
¥ cro,ci(CRO = high) =

{absent, low} ~~ {0, 1}

W a,a(Cl = low) U ¥ q(Cl
= high) U ¥ zo o(CRO =
absent) = {absent, low,
high} ~ {0, 1, 2}

Ya,a(Cl = low) U ¥ o(Cl
= high) U W¢ro,i(CRO =
low) U ¥ cpo c/(CRO = high)

= {absent, low} ~~ {0, I}

W ¢(Cl = absent) U
W ro,ci(CRO = low) U
W ro,ci(CRO = high) =

{absent, low} ~~ {0, I}

Y aa(Cl = low) U ¥ q(Cl
= high) U Wz (CRO =
low ) U ¥ roc(CRO =
high) = {absent, low, high}
~~ {0, I, 2}

W ¢,q(Cl = absent) U
¥ cro,ci(CRO = absent) =

{absent, low} ~~ {0, I}

Yaa(Cl = low) U ¥¢q(Cl
= high) U W¢po o(CRO =
absent) = {absent, low,
high} ~~ {0, 1, 2}

Y q(Cl = high) U

Y cro,c(CRO = low ) U

¥ ero.ci(CRO = high) =
{absent, low, high} ~~ {0,
1,2}

W ¢(Cl = absent) U

Y q(Cl = low) U

¥ cro.cl(CRO = low ) U

W croa(CRO = high) =
{absent, low, high} ~~ {0,
1,2}

Y q(Cl = high) U

¥ cro,ci(CRO = absent) =
{absent, low, high} ~~ {0,
1,2}

W q(Cl = absent) U

Y q(Cl = low) U

Y cro.ci(CRO = absent) =
{absent, low, high} ~~ {0,
1,2}

W q(Cl = absent) U

W a(Cl = low) U

W ro,cl(CRO = low ) U

¥ cro,ci(CRO = high) =
{absent, low, high} ~~ {0,
1,2}

W q(Cl = high) U

¥ ro.ci(CRO = low ) L

W cro,ci(CRO = high) =
{absent, low, high} ~~ {0,
1,2}

W q(Cl = absent) U

Y q(Cl = low) U

W cro,ci(CRO = absent) =
{absent, low, high} ~~ {0,
1,2}

¥ ¢,a(Cl = high) U

¥ cro,ci(CRO = absent) =
{absent, low, high} ~~ {0,
1,2}
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( d[gg . = b dimerinmon O |2 —= By go o [OD]
% = koR1 binding|[CI2)[OR1] — kppy pinging[OR1 - CI3]
: CI;:]ENA] = kcr RN A_synth[Nucleotides],
where kcr rvasynth = f([RNA_pol],[OR1 - Cl3)
J % = ko gimerisation C12] — KCI_dimerisation[CI]? + kI _synth|Aminoacids],
where kcr synth = g([Ribosome], [CI_RN A])
% —0
W il
w = —kc1 RN A_synth [N ucleotides]
L w = —kcr1_synth[Aminoacids]
Figure 12

Differential equations obtained by an automatic translation of the MIN model in Figure 4. Functions fand g come, on one hand,
from the MIN topology and the information on the stoichiometry of the reaction, and on the other hand, from the reaction
attribute. At this stage, the coherence of both informations should be checked by an expert. In these equations fand g have a

definite signature reflecting the impact of the catalyzers and inhibitors on the reactions.

action of the RNA_pol. The first equation describes the
concentration of the CI protein dimer CI,. The right part
represents the synthesis of one molecule of CI, from 2
molecules of CI (first term) minus the dissociation of the
CI, species on 2 CI proteins (second term).

More generally, any MIN model can be translated into dif-
ferential equations with an automated procedure, even if
it was not explicitly constructed to represent a set of bio-
chemical reactions. In some cases, it may be necessary to
first demulti-ply MIN regulatory sites in order to translate
the model directly as for the example in Figure 4.

While the states of a chemical species may characterize the
degree of its activity, through a discrete indication like
"absent", "low", "high", or through a quantitative infor-
mation like the concentration, leading quite directly to a
representation in ODEs, the states of a regulatory site may
potentially be more difficult to interpret. In the simplest
case a regulatory site represents a single chemical reaction.
The regulatory sites modeling to single chemical reac-
tions, like "CI RNA synthesis", "CI protein synthesis" or
"CI dimerisation" in Figure 4, correspond to such a situa-
tion, and are easy to translate in ODEs.

However, in a more complex case, a regulatory site may
encompass through its different states a family of bio-
chemical reactions, making a direct translation difficult.
Actually, the concentrations of participating species for a
single chemical reaction are sufficient to find out its activ-
ity rate, thus represented by a function. For a family of
reactions, the reaction rate is not always a function (but a
relation) of the concentrations of each species, and this is
precisely the difficulty of the translation to ODEs.

Let us consider the example in Figure 13. The MIN model
looks very much like the one in Figure 3, but the IRC and
ICR are provided with additional properties such as k;, K5
and production_rate which reflect the kinetic properties of
the corresponding biochemical reactions. If the regulatory
site "OR1" in Figure 13 is in the state OR]1, it means that
neither of the two reactions ("CI RNA synthesis" and "CI
protein synthesis") take place in the cell. When the same
site is in the state OR1 - CI, it means that both "CI RNA
synthesis" and "CI protein synthesis" take place. Thus, it
is possible to reduce this complexity by demultiplicating
the regulatory sites as a first step of the translation of a
MIN model in ODEs. The demultiplication of a regulatory
site R replaces it by a set of (new) species associated to the
states of R and a set of (new) regulatory sites associated to
the chemical reactions. In other words, every regulatory
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=f([CI],[OR1])

Cl AR

k_=g([OR1-CI])

production rate =1 pM/s

Figure 13

K_=1mM/l

state ¢ {OR1-,0R1-CI}

The same MIN model as the one used for genetic regulation modeling, enriched with complementary information allowing the

translation into differential equations.

state of R will now give a chemical species participating in
a defined set of chemical reactions, represented by newly
generated regulatory sites. After the demultiplication,
each regulatory site represents a single chemical reaction,
which means that the species connected to it may poten-
tially be produced or consumed, and may be automati-
cally translated to ODEs. Some optimizations may be
performed at this stage, for instance, if one knows if the
species are consumed or produced, which may be indi-
cated in the attributes (such as "stoichiometry", "produc-
tion rate", "degradation rate" or "kinetic rate") of the
corresponding influences ICRs and IRCs.

Discussion

The MIN representation proposes a rich formal descrip-
tion of biological interaction networks. The methodology
of modelling biological systems in an incremental MIN
representation is illustrated by a case study on the A switch
system. The formalisation of biological data is independ-
ent of any given modeling or simulation approach. The
main goal of MIN is to contain as many different data
about interacting entities as possible in order to make
them accessible to any particular modeling approach. A
translation into R. Thomas' formalism allows the modeler
to obtain an MLM model from the available data, and the
MLM is consistent with other models of the same system
[11]. While the translation from MIN into MLM is rather
complicated, it can be easily automated using the algo-
rithm presented in this paper. However, without the
expert intervention, the number of MLM models can be
high. The modeler can act on the data put into the MIN
model, changing and refining it, and this change will have
an impact on the produced MLM translated models. How-
ever, there is no need for an expert to deeply understand
the algorithm itself. The translation of MLM instances can
be further continued into Petri nets as studied in [2] and,

thus, provides an access to the available Petri net tools for
analysis. Each formalism has its advantages and fits the
description of a certain data type, the complete and effi-
cient description of biological systems is possible only by
combining these tools. A formalism forces an interpreta-
tion of available data in order to fit them in its framework.
Some data which are incompatible with the chosen frame-
work will inevitably be lost. Sometimes the same model
represented in different formalisms can hardly be recog-
nized [13,1,5,4].

The situation where a MIN variable have a high number
of observed (quantitative or qualitative) values may
occur. However, this is not necessarily a problem, as the
fact of having a lot of observations for the same variable
means that the corresponding biological object plays an
important role in the biological process being studied. In
this case, every species regulated by this object through a
regulatory site is supposed to generate a logical threshold
of action. In addition, the fact that several quantitative
values are not significantly different is the additional
information, which, if available, may be encoded in the
partial order for the variable values as a class of equiva-
lence for several variable values.

The representation of regulatory sites and affinities sepa-
rately from chemical species helps to represent in a "for-
mal" way large proteins with many functional domains,
or a complex set of regulatory sites in a protein or in a
gene. The specificity of the A phage genetic switch is that
the promoter region of two different genes is represented
by the same biological object (DNA region). This fact is
represented in our formalism by having only one set of
regulatory sites of the A switch which influence two differ-
ent species: CI and CRO.
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Figure 14

Examples of Kohn Maps building blocks and their MIN representations.

MIN enables an incremental model construction through
the composition of MINs and the storage (in the species
affinities and regulatory site labels) of the information
about possible interaction capabilities of biological enti-
ties. Thus, MIN can help in the model construction by a
rational choice of new variables to be added to the model:
with compatible regulatory sites or affinities.

Experimental techniques in biology collect massive
amounts of information on the behavior and interaction
of thousands of genes and proteins across diverse condi-
tions. These techniques are used to question complex bio-
logical systems that use highly intricate regulatory
mechanisms and control schemes. One cannot fully char-
acterize such complex cellular systems by focusing on a
single control mechanism, as measured by a single exper-
imental technique. In MIN, the data coming from differ-
ent experimental techniques are all stored in ¥ . To gain
a deeper understanding of the system, it is pertinent to
analyze heterogeneous data sources in a truly integrated

fashion and to shape the analysis results into one body of
knowledge [14,15].

We proposed a new paradigm for the modeling of biolog-
ical systems, in which all available experimental data are
considered as a set of snapshots of the real system and
stored in ¥ without any interpretation. The information
about the system is added and refined incrementally. The
current state of knowledge in MIN can be automatically
translated into a given formalism framework for the anal-
ysis of the dynamics of the system; it could also be used in
the future by an inference system applying artificial intel-
ligence techniques [16] to solve complex biological prob-
lems.

Over the last few years, some work has been carried out in
the field of integration of biological and, in particular,
biochemical data which includes rich but informal visual-
isation conventions [17,18]. Even if MIN is not designed
as a graphical model, it provides a quite simple visualisa-
tion convention with two types of nodes and two types of
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Table 6: Examples of representations of biological objects in MIN according to their biological function, either of a catalytic or

regulatory nature

biological object Role Model entity
Gene information storage and propagation species
regulatory sequence of DNA regulation of gene activity regulatory site
Protein catalysis species

phosphorylation or cleavage site
metabolic pathway
receptor on a cell surface

regulation of protein activity
transformation of molecules
detecting environmental state

regulatory site
regulatory site
regulatory site

links. However, combined with textual information
encoded in the attributes of links and nodes, it can repre-
sent biological features encoded as Kohn Maps [17], as it
is illustrated for three examples of Kohn Maps building
blocks in Figure 14.

Recently, a method for representing and communicating
biological networks in both human and machine readable
form has been presented in [19]. The ambition of this
work is obtaining a semantically and visually unambigu-
ous diagram scheme, but this leads to a very low level rep-
resentation of processes and the use of many kinds of
nodes and links. Compared to this, MIN does not require
an equivalent degree of details and enables to adjust the
abstraction level of the model. Another approach, based
on formal but not very expressive exchange formalisms,
like SBML [20], attempts to standardize the expression of
ODE based models of cellular systems, concentrating on
chemical reactions. Obviously, existing SBML models can
be wrapped in a MIN description. In the same standardi-
sation effort more abstract and universal meta-modelling
approaches [21-24] tend to create a general visual lan-
guage for systems biology, similar to UML. For instance,
BioUML [24] provides an abstract layer to present struc-
ture of any biological system as a clustered graph. MIN
should be expressed in this language to use the infrastruc-
ture based on BioUML, to access to the biological data-
bases and to automatically generate the executable
models.

Thus, the proposed new formalism, MIN, can play the role
of an intermediate level between insufficiently formalized
"natural language" and too specialized "mathematical
descriptions" of biological systems. The MIN construction
is a process of inference of the biological interaction net-
works from the biological observations of microscopic
and macroscopic levels. Its underlying structure provides
a skeleton for the understanding of "first principles" of the
organisation of biological systems. A computer analysis
tool to study the properties of MIN models, to perform
automatically their composition and translation into dif-
ferent formalisms, is currently under developed and
should soon become available for download. The study of

the relation between the information available in MIN
and the best suited model is on of the perspectives of this
project.

Conclusion

The description of a biological system is often obtained by
constructing an interaction network. Intuitively, as biologi-
cal interactions are considered to always rely on so called
regulatory sites, the network construction starts by their
identification. Every regulatory site has a set of regulating
and regulated chemical species and their role is expressed
by influences. Sometimes, and in particular when the
abstraction level is high, the choice of representing a set of
biochemical reactions by a species or by a regulatory site
is rather arbitrary. However, at the base level the chemical
reactions are represented by regulatory sites and chemical
species by species of MIN. Furthermore, both species and
regulatory sites are fully characterized by their levels of
activity indicated (as string value) in the modeler's
description of the states of a biological system. For the
translation into other formalisms the values of the level of
activity may be interpreted, if allowed by the target for-
malism, or ignored. As a consequence, regulatory sites and
chemical species form the set of variables of the interaction
network (see Table 6 for some examples of variables).
Thus, two main classes of abstract entities are chosen to be
components of interaction networks: variables and influ-
ences between them. We consider two kinds of influences
between the variables of the model: Influences of Chemical
species on Regulatory sites (ICR) and Influences of Regulatory
sites on Chemical species (IRC). We also assume that there
is no influence between variables of the same kind. The
whole representation is called Modular Interaction Net-
work (MIN).

Such models may be composed. The trivial case of a com-
position is the union of models having no common spe-
cies or sites. The union of data contained in these models
is the new, composed, model. In the case of models shar-
ing common entities, the repeated nodes of the resulting
network are collapsed.
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MIN being an abstract formalism, its semantics is not
intended to be defined directly, but rather as a translation
into a target model. In this paper, we first define a transla-
tion of MIN into the Multivalued Logical modeling for-
malism (MLM) [7].

The multivalued logical representation of genetic regula-
tory networks [7] is one of the closest to the biological
intuition. The major problem of this formalism is that it
is not incremental, which means that updating an existing
model (by adding or removing nodes or edges in the reg-
ulatory graph, for instance) leads to the situation where
the set of dynamic parameters changes in an unpredicta-
ble way, as well as the dynamics of the system. In order to
cope with this problem, the idea is to describe the biolog-
ical system in MIN and translate it automatically, when
needed, at any modeling step, into the multivalued logical
formalism. This translation should preserve as many as
possible of the biological properties already expressed in
MIN. The dynamics of the translated MIN is then based on
the information available in the attributes of its influ-
ences. The interaction graph can be obtained more or less
directly from the MIN presentation of a biological regula-
tory network. The variables of the MLM (nodes of the
graph) are obtained from the species of the MIN. The
influences of MLM (edges of the graph) are obtained from
pairs of (ICR, IRC) present in the MIN and having a com-
mon regulatory site. The dynamic parameters of MIN
indicated as attributes of its influences will serve to con-
strain possible dynamic parameters in the obtained mul-
tivalued logical model.

In order to further illustrate the flexibility of the MIN
approach, we have also shown how to extract the dynam-
ics of the associated chemical reactions in terms of ordi-
nary differential equations, either directly or through a
demultiplication of the regulatory sites which may repre-
sent various different reactions.
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