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Abstract
Background: Biological information is commonly used to cluster or classify entities of interest
such as genes, conditions, species or samples. However, different sources of data can be used to
classify the same set of entities and methods allowing the comparison of the performance of two
data sources or the determination of how well a given classification agrees with another are
frequently needed, especially in the absence of a universally accepted "gold standard" classification.

Results: Here, we describe a novel measure – the Ranked Adjusted Rand (RAR) index. RAR differs
from existing methods by evaluating the extent of agreement between any two groupings, taking
into account the intercluster distances. This characteristic is relevant to evaluate cases of pairs of
entities grouped in the same cluster by one method and separated by another. The latter method
may assign them to close neighbour clusters or, on the contrary, to clusters that are far apart from
each other. RAR is applicable even when intercluster distance information is absent for both or one
of the groupings. In the first case, RAR is equal to its predecessor, Adjusted Rand (HA) index.
Artificially designed clusterings were used to demonstrate situations in which only RAR was able to
detect differences in the grouping patterns. A study with larger simulated clusterings ensured that
in realistic conditions, RAR is effectively integrating distance and partition information. The new
method was applied to biological examples to compare 1) two microbial typing methods, 2) two
gene regulatory network distances and 3) microarray gene expression data with pathway
information. In the first application, one of the methods does not provide intercluster distances
while the other originated a hierarchical clustering. RAR proved to be more sensitive than HA in the
choice of a threshold for defining clusters in the hierarchical method that maximizes agreement
between the results of both methods.

Conclusion: RAR has its major advantage in combining cluster distance and partition information,
while the previously available methods used only the latter. RAR should be used in the research
problems were HA was previously used, because in the absence of inter cluster distance effects it
is an equally effective measure, and in the presence of distance effects it is a more complete one.

Published: 7 February 2007

BMC Bioinformatics 2007, 8:44 doi:10.1186/1471-2105-8-44

Received: 4 October 2006
Accepted: 7 February 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/44

© 2007 Pinto et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/44
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17286861
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2007, 8:44 http://www.biomedcentral.com/1471-2105/8/44
Background
Grouping individual entities into sets with identical prop-
erties is a recurrent task in bioinformatics, taxonomy and
phylogeny studies. When there are a priori reasons that
allow the identification of properties that define each
group, it is possible to use classification algorithms to dis-
tribute individuals among the possible classes. In other
situations, different classes are defined without the abso-
lute knowledge of what properties (and values of those
properties) could identify "natural" classes. The usual pro-
cedure is the collection of data characterizing each indi-
vidual, relate every pair of individuals through a distance
measure computed from the data and perform clustering
algorithms to find a "natural" grouping structure of those
individuals based on the collected data. For simplicity,
most of the remaining manuscript will use the term clus-
tering, but the problems and methods presented are also
applicable to classifications.

In some well established fields, researchers may assume a
"gold standard" classification. If such gold standard is
available, clustering results based on a particular kind of
data can then be evaluated against it. False positives and
false negatives can be identified and counted, enabling
the computation of several related statistics. Even when
gold standards are not available, different clusterings still
need to be compared. Facing two different data sources
characterizing the same set of biological entities and pro-
ducing two different clusterings, one may wish to know to
what extent and under which conditions one can maxi-
mize agreement or disagreement between two clusterings.
This information may be useful to decide if it is worth-
while to collect and analyse both data sources since if their
results are in complete agreement, then it may be enough
to collect data from a single source. On the other hand, if
the two clusterings disagree, combining their results may
offer additional information and discriminatory power.
Additionally, if the two data sources carry independent
information, clusters that have a good match in both clus-
terings can be more reliable than clusters resulting from
one data source alone.

From previous measures to Ranked Adjusted Rand
Since the 70's researchers in statistics, psychology and
biology, have developed methods to compare clusterings.
If distance matrices between individual entities are availa-
ble for both clusterings, it may be possible to directly cor-
relate the pairwise distances [1]. But more frequently,
researchers are interested in knowing if the resulting
groups are similar or not. It is also possible to have highly
correlated distance matrices that give rise to very different
partitions due to scale heterogeneity in the distance val-
ues. Hence, the methods presented in the literature have
been focused in the comparison of partitions (also desig-
nated flat clusterings), neglecting the closeness relation-

ships between clusters. There are two main families of
methods comparing partitions. One evaluating pairwise
agreement (Rand, Adjusted Rand, Fowlkes-Mallows, Jac-
card and Wallace indices) [2-6], the other searching for
clusterwise agreement (Larsen, Meila's variation of infor-
mation and Van Dongen indices) [7-9]. In both families,
some methods are asymmetric, that is, the agreement of
clustering A with B is different of the agreement of B with
A [6,7]. This asymmetry can be helpful if the symmetric
methods are being effected by the different discriminatory
power of the two clusterings. Clusterwise methods are
computed from a contingency table (CT, Table 1) that
contains the dual classification of each individual entity
in both clusterings, while pairwise methods are computed
from a 2 by 2 mismatch matrix (MM, Table 2), derivable
from the CT. Each of the four cells of MM count the pairs
of entities that belong or not to the same cluster in either
of the two clusterings. None of the two matrices CT or MM
contain any information about the relatedness of the dif-
ferent clusters.

Although the research in this area has produced many dif-
ferent methods, the classical methods are the most fre-
quently referred, as an example, in a recent reference book
on microarray data analysis, the only presented method to
compare clusterings is equivalent to the Rand index [10].
On the other hand there is no general consensus on the
choice of the method to compare clusterings, and active
research on alternative methods was motivated by micro-
array and systems biology approaches [11]. It should be
noted that the methods discussed here are not evaluating
the quality or validating clustering algorithms. Instead the
aim is to confront information of clusterings obtained
from different data sources. It is also not a direct aim to
achieve a combined better clustering closer to a hypothet-
ical true classification. Nonetheless, these are possible sec-
ondary applications that are not tested in the present
report. Additionally, researchers comparing clustering
results should be aware that the measured levels of agree-
ment could be strongly influenced by the inherent quality
of the individual clusterings and by the type and quality
of the datasets that originated the analysed clusterings.

The motivation to develop a new method stemmed from
the observation that, for the available measures, when
pairs of entities are in the same cluster on one clustering,
and in different clusters on the other, it is considered irrel-
evant if these clusters are close neighbours or, on the con-
trary, very distant. A solution for such a problem was
developed in a related subject, the quantification of the
agreement of different observers performing a diagnostic
test [12]. When the test has multiple possible categories
with an ordinal relation (of disease severity, for example),
weights are attributed to different degrees of disagree-
ment. Minimal (when one observer chooses one category
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close to the one chosen by the other observer), intermedi-
ate and maximal disagreement (when the two observers
choose categories in the two extremes of the ordinal
scale), and these contribute proportionally to the overall
measure of agreement computed.

The use of a similar weighting strategy in the comparison
of clusterings is not directly applicable. First, and in con-
trast to the observer agreement case, the two clusterings
are not forced to have the same number of groups. Sec-
ond, there is no predetermined correspondence between
the clusters in both clusterings. Third, the closeness rela-
tionships between clusters are frequently more complex
(needing two or more dimensions to be correctly repre-
sented) than the simple ordinal scale of diagnostic catego-
ries (an unidimensional representation). The main
achievements of the proposed measure are the solutions
for these three problems. It consists on the definition of a
new way to record pairwise agreements in a Ranked Mis-
match Matrix (RMM), enabling the combined accounting
of partition and intercluster distance information in the
computation of an overall clustering agreement measure.
The new measure was named Ranked Adjusted Rand
(RAR), because it can be considered an expansion of the
previous Hubert and Arabie (HA) adjusted Rand index
and both measures are equivalent when there is no inter-
cluster distance information available for both cluster-
ings.

Results and discussion
Interpretation of MDD and RAR values
The Methods section describes how to compute RAR from
a Ranked Mismatch Matrix (RMM, represented in Table 3)

and the quantities Mean Diagonal Deviation (MDD) and
expected MDD under independence of clusterings
(MDDind). MDD can be interpreted as the expected change
in intercluster distance rank for a randomly chosen pair of
entities. Considering one entity pair (a, b). If in clustering
C, b belongs to the rth closest cluster to a's cluster, then it
is expected that in C', b is in the r ± (MDDind × K')th closest
cluster to a's cluster (K' is the number of clusters in C').
This kind of interpretation can be very useful if the aim is
to predict the clusters obtained with one technique or data
source using the clustering information obtained by a dif-
ferent technique or data source. MDD can take the value 1
only in a single situation: when in one clustering all enti-
ties are in the same clustering and in the other, every entity
is in its own cluster, and all clusters are equally distant
from each other. On the other hand, a MDD value of 0
corresponds to two clusterings with exactly identical par-
titions and equally ranked relative distances between clus-
ters. The RAR values compare the observed MDD values
with the theoretical MDD value if the assignment of enti-
ties to clusters was independent in both clusterings (the
agreement in both clusterings would only be due to
chance alone). The maximum value taken by RAR is 1,
when MDD is 0. If MDD <MDDind, the average entity pair
tends to have smaller intercluster distance rank changes
from one clustering to the other than it would have in the
independence situation. In this case RAR takes positive
values, meaning that the clusterings are more similar than
expected by chance agreement. If MDD > MDDind, RAR
takes negative values, meaning that the deviation from
perfect agreement is greater than expected by chance. The
two last situations imply a very similar interpretation to
the HA adjusted Rand case. RAR values are certainly less

Table 1: Contingency Table (CT).

C'

C'1 C' 2 ... C'K' C marginal totals

C C1 ct1,1 ct1,2 ... ct1,K' n1
C2 ct2,1 ct2,2 ... ct2,K' n2
... ... ... ... ... ...
CK ctk,1 ctk,2 ... ctK,K' nK

C' marginal totals n'1 n'2 ... n'K' n

Table used for the computation of cluster-wise measures of clustering agreement. ctij is the number of entities that are both in cluster Ci and C'j.

Table 2: Mismatch Matrix (MM).

c'

Match Mismatch

c Match a b
Mismatch c d

An auxiliary matrix for the computation of pair-wise measurements of clustering agreement. a, b, c and d represent counts of unique entity pairs.
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intuitive than interpreting simple Rand, but RAR provides
more rich information about clustering agreement. RAR
will be especially useful to distinguish situations in which
HA or other measures are almost or completely identical.
For these reasons we are proposing to use RAR in addition
to previously available measures.

RAR in the absence of intercluster distance information
When both clusterings being compared are flat, that is,
when there is no intercluster distance information for any
of them, two entities can only be either in the same cluster
or in equally dissimilar clusters. RMM becomes identical
to MM. In that situation, 1-MDD is equal to the Rand
index. Analogously, RAR becomes HA, since the correc-
tion for chance agreement is similar for both measures in
the absence of any intercluster distance information.
Proof of this equivalence is presented in Additional file 1.

RAR with incomplete intercluster distance information
A major potential application of RAR is the comparison of
a flat clustering with other for which interclusters distance
information is available. One can use previously devel-
oped partition comparison measures to do this but the
distance information available is neglected. However,
RAR is able to compare both clusterings including the par-
tial distance information available. The resulting RMM
will have 2 × (q+1) (or (p+1) × 2) dimensions and it is
possible to evaluate if the mismatches of the flat clustering
tend to originate mismatches with larger rank differences
in the other clustering than the flat matches.

This and the previous sections discussed the use of RAR
when there is a partial or total absence of distance infor-
mation. However, in most of the situations that Rand or
Adjusted Rand indexes have been used, information
about distance was indeed available. For an example see
reference [11]. This is the most frequent situation when
the partitions compared where produced by clustering
algorithms. The clustering algorithm needs an inter-entity
distance matrix, and this matrix is sufficient to derive the
intercluster distances used for RAR computation. When
the partitions are defined by classification methods, it

may still be possible to have distance information,
depending on the properties used to classify entities.

RAR with ties in intercluster distances
A positive feature of the R(i, j) is that it is unnecessary to
define rules to deal with rank ties. If a cluster has two
neighbour clusters at the same distance, they will have the
same intercluster distance rank. The only consequence is
that the maximum intercluster distance rank (p+1 or q+1)
decreases with the number of ties. RMM will have p+1 = K
rows and q+1 = K' columns in the absence of ties in inter-
cluster distance ranks. Each tie in C will reduce one row
and each tie in C' will reduce one column to RMM. A
higher number of ties can be due to a more discrete inter-
cluster distance function and will produce a reduced RMM
that is more similar to MM. The existence of ties is then
responsible for the approximation of RAR to HA. This is
consistent with the fact that more ties are a consequence
of a lower resolution of the metric used to define the inter-
cluster distance function. The minimal resolution corre-
sponds to a binary distance function that can be 0 (same
cluster) or 1 (different cluster) – that is, when RAR is equal
to HA, as discussed previously.

Design of small scale examples
To clearly show the desirable properties of the RAR meas-
ure compared with previously available methods, four
theoretical simple clusterings were created (Figure 1). One
of the four, clustering A, is the original one, with 9 entities
divided in 3 clusters. The position of the points in each
clustering is relevant. Two points that are more distant are
less similar. Clusterings B to D were originated from A by
splitting the {1, 2, 3, 4} cluster in two. One of the result-
ing clusters kept the same location, while the other varies
in size and location in the different clusterings. The coor-
dinates and cluster identity of every corresponding nine
entities in the four clusterings were used to compute RAR
and other ten measures of clustering agreement between
A and each of its transformed clusterings. The description
and formulas of these additional measures are available in
the corresponding references given in Table 4, together
with the values computed for these examples.

Table 3: Ranked Mismatch Matrix (RMM).

C'

Match Mismatch 1 Mismatch 2 ... Mismatch q

C Match rmm1,1 rmm1,2 rmm1,3 ... rmm1,q+1
Mismatch 1 rmm2,1 rmm2,2 rmm2,3 ... rmm2,q+1
Mismatch 2 rmm3,1 rmm3,2 rmm3,3 ... rmm3,q+1

... ... ... ... ... ...
Mismatch p rmmp+1,1 rmmp+1,2 rmmp+1,3 ... rmmp+1,q+1

An auxiliary expanded matrix for the computation of pair-wise measurements of clustering agreement, accounting for intercluster distances. The 
mismatch row i indicates that the two entities are in different clusters Cx and Cy, and Cy is the ith closest cluster to Cx. Column meaning is analogous.
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Analysis of the small scale examples
The first point that these theoretical examples demon-
strate is that RAR, contrary to the previous partition com-
parison measures, is able to detect a greater disagreement
between clusterings if the entities causing the disagree-
ment, besides changing the composition of the clusters

change also the proximity relationships between clusters.
That is shown by the difference in RAR value for the com-
parisons of A with B and A with C (Figure 1). All the other
ten comparison measures consider B and C equally simi-
lar to A. In fact, the change in cluster composition from A
to B is identical to the change from A to C. The difference
is that the newly formed clusters in B are the closest neigh-
bours, while in C they are the most distant clusters. As the
discussed clusterings involve a small number of entities
and clusters, and considering that the distance between
points is proportional to the dissimilarity that was used to
generate the clusterings, observation of Figure 1 clearly
indicates that clustering B is more similar to A than C is.

On the contrary, RAR indicates that clustering D is more
similar to A than B is. This arises because in D only one
entity has a different location comparing with A. From A
to B three entities changed position, although to the same
relative location of the one entity cluster in D. Again, only
RAR detected this difference, while all the other measures
remained unchanged. This happens because RAR uses the
intercluster distance ranks. The RMM comparing A with B
will have more point pairs out of the diagonal than the
comparison of A with D. In the first comparison three
points changed their relative position, affecting the RMM
position of 3 × 6 pairs of points. In the second compari-
son, only one point moved, hence, only 1 × 8 pairs of
points can have different intercluster distance ranks than
they would in a perfect match comparison. Consequently,
RAR attributes more weight to the change from A to B
than from A to D. From the point of view of partition
comparison measures, B and D have equal differences rel-
atively to A. They both result from A by splitting a cluster
of 4 entities into one with 3 and other with 1 entity alone.
This is the reason why the 10 partition comparison meas-

Small clusterings example of RAR's unique propertiesFigure 1
Small clusterings example of RAR's unique proper-
ties. Clustering A divides 9 points (numbered circles) in 
three clusters identified by rectangles. By splitting the {1, 2, 3, 
4} cluster, the clusterings B, C and D were formed. One of 
the child clusters kept the same location. The second child 
cluster moved away from the original location. In B and C, the 
second child cluster has only one entity, while in D it has 
three. In B and D the two split clusters are nearest neigh-
bours, while in C they are maximally separated. The two 
dimensional coordinates of the points in the figure were used 
to compute average distances between clusters and to calcu-
late RAR and other clustering comparison measures. The 
results are presented in Table 4.

Table 4: Comparison of RAR with other measures applied to the small example of Figure 1.

Clusterings compared

Clustering comparison measures 
[reference]

A-B A-C A-D

Rand [2] 0.92 0.92 0.92
HA [4] 0.77 0.77 0.77
Jaccard [5] 0.70 0.70 0.70
Wallace forward [6] 0.70 0.70 0.70
Wallace reverse [6] 1.00 1.00 1.00
Larsen forward [7] 0.95 0.95 0.95
Larsen reverse [7] 0.81 0.81 0.81
MH [8] 0.89 0.89 0.89
Variation of Information [8] 0.11 0.11 0.11
Van Dongen [9] 1.00 1.00 1.00
RAR 0.38 0.29 0.67

Coordinates of the points in the four clusterings (A, B, C and D) of Figure 1 were used to compute RAR and other 10 measures of clustering 
agreement.
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ures in Table 4 are not able to distinguish between the
similarity of A with B and of A with D.

Simulation of large scale clusterings
The two small comparisons of the previous section are
extreme cases where the advantages of RAR were demon-
strated, since it was able to detect differences between
clusterings that none of the previously available methods
where able to detect. But in realistic data sets, it is expected
that a variable number of entities change their cluster
membership and their relative position simultaneously.
Additionally, some entity changes may contribute to
make clusterings more similar while others may differen-
tiate them. For these reasons, larger clusterings where sim-
ulated, also with more extensive entity shuffling. A
complete description of these simulations is provided in
Additional file 2. Briefly, five factors were systematically
varied in simulated clustering comparisons: 1) number of
entities, 2) number of clusters, 3) cluster size distribution,
4) fraction of entities changing cluster membership and
relative position and 5) extension of change in relative
position. The only factor that had an effect on the final
RAR values was the fraction of entities changing cluster
membership and location, producing a linear correlation
coefficient of r = -0.918. The number of entities (r =
0.077), number of clusters (r = -0.109), and the cluster
size distribution (r = -0.032) had negligible impact on
RAR values. These low correlations support the conclu-
sion that RAR values are not systematically influenced nei-
ther by the number of entities and clusters being
compared nor by the distribution of cluster sizes. As the
entities changing cluster membership were randomly
selected from every possible cluster, the change in relative
position of some entities could be balanced by entities
moving in the opposite direction. Consequently, varying
the extension of change in relative position produced
highly variable results and a low correlation with RAR val-
ues (r = -0.016). To evaluate more precisely the influence
of this factor on RAR values, a partial correlation analysis
was performed on the relation between RAR values, HA
values (that can be interpreted as RAR values without
intercluster distance information) and the net change in
entity relative position (measured by the correlation coef-
ficient between the distance matrices of the two cluster-
ings being compared). The results, presented in detail on
supplementary material, show that RAR integrates inde-
pendent information contained in the HA Index and in
the correlation coefficient between distance matrices. The
partial correlation of RAR with both factors are strong and
positive (0.758 and 0.720), which means that both a
higher fraction of entities changing cluster membership
and a higher net change in entity relative position inde-
pendently induce higher RAR values.

Biological examples
To substantiate the general applicability of RAR, three
examples with biological data are presented that compare
1) two microbial typing methods, 2) two gene regulatory
network distances and 3) microarray gene expression data
with pathway information. The first example is presented
in the main text while the other two are included in Addi-
tional file 3.

Typing methods are major tools for the epidemiological
characterization of bacterial pathogens, allowing the
determination of clonal relationships between isolates
based on their genotypic or phenotypic characteristics.
Since typing schemes analyze different phenotypic or gen-
otypic properties of bacteria, if some congruence between
the methods is found, it suggests that a phylogenetic sig-
nal is being recovered by both methods, allowing greater
confidence about evolutionary hypothesis or clonal dis-
persion of the strains under study. The same collection of
bacterial isolates can be typed by different methodologies
and it becomes of great epidemiological and evolutionary
importance to understand the relationships between the
clusters of isolates defined by the different methods. To
this end we have recently evaluated the usefulness of a set
of measures to quantitatively describe these relationships
[13].

Data handling
We analyzed the data generated by the characterization of
a collection of 325 macrolide-resistant Streptococcus pyo-
genes [14,15]. This collection was characterized by emm
sequencing, that generates groups of isolates differing by
less than 92% in their DNA sequence and by comparison
of the patterns generated after digestion of total DNA with
the SmaI endonuclease and separation by pulsed-field gel
electrophoresis (PFGE). Dice coefficient was used to com-
pute dissimilarity between PFGE band patterns, enabling
the subsequent hierarchical clustering with average link-
age. Measurement of the agreement between the emm clas-
sification and PFGE clusterings for the same data set has
already been done using HA and Wallace indices (W)
[13]. Wallace index of clustering A relatively to B is the
probability that two entities are in the same cluster in B,
knowing they were in the same cluster in A. It is a pairwise
asymmetric clustering agreement measure [6]. For the
present work, PFGE clusterings were produced for 70 dif-
ferent Dice dissimilarity thresholds, covering all the possi-
ble values. Each of these clusterings was compared with
the emm classification through RAR, HA and Wallace indi-
ces.

Practical example results and discussion
The dendrogram built with PFGE and emm type classifica-
tion data is shown in Figure 1 of the Additional file 3.
Although major agreements for half of the emm types (1,4,
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9, 11, 12 e 22) are identifiable within the dendrogram, it
becomes a hard task to quantify the overall concordance
including the other types. In order to compare the emm
classification and the clustering with PFGE it is first
required to define the threshold that maximizes the agree-
ment for the two microbial typing methods. Figure 2
shows the values of RAR, HA and Wallace indices for the
range of Dice dissimilarity thresholds used on the PFGE
clustering.

Wallace index
As the threshold increases, the number of PFGE clusters
diminishes, resulting on a set of larger clusters. On this
process, the Wallace index of emm classification relative to
PFGE increases, meaning that the probability that two iso-
lates are grouped in the same PFGE cluster if they share the
same emm type increases. Also, the fact that PFGE clusters
are larger raises the probability that any two isolates
belong to the same cluster. The step like increases on the
ascending curve corresponds to the collapse of clusters
that had many isolates with the same emm type. The Wal-
lace index of PFGE relative to emm type, which matches
the probability that two isolates have the same emm type,
knowing that they are on the same PFGE cluster, shows
the opposite behaviour. On this case, the step like
decreases on the curve correspond to the collapse of clus-
ters rich in different emm types.

HA index
The HA curve reflects a compromise of the patterns of the
two Wallace index curves, with a maximum around a 29%
Dice similarity threshold, where both Wallace index
curves present simultaneously relatively high values. HA is
therefore similar to an average of the two Wallace indices,
corrected by chance agreement.

RAR
RAR shows a distinct behaviour from the other measures.
In opposition to HA and Wallace indices, RAR variation is
not dominated by large regions of no or low variability of
the measure, meaning that RAR is sensitive to factors that
are not influencing the other measures. The RAR curve
presents two similar maxima for thresholds at 20% and
29% Dice dissimilarity, with values of 0.2185 and 0.2178
respectively. These two points limit a window where RAR
is nearly constant. The RAR threshold at 29% corresponds
to the maximum value of HA, 0.9111. On the HA curve,
this point marks the beginning of a low-variation region
between Dice dissimilarity thresholds of 28% and 41%.
This window is actually where the two measures, RAR and
HA, disagree the most: HA is nearly constant while RAR is
decreasing considerably. To clarify this different behav-
iour, RMM compositions for thresholds 20, 29 and 41 are
shown on Figure 3.

RMM analysis for specific thresholds
Due to the fact that the emm classification does not offer
distances between the different types, two isolates can
only be labelled as being of the same emm type or not.
This being so, RMM holds two colums (one with the iso-
lates pairs with the same emm type and another with the
isolates pairs with different emm types) and a number of
lines corresponding to the maximum value of the PFGE
inter cluster distance rank for each threshold. Figure 3
shows three plots where each of these two columns is rep-
resented by a curve. On these plots, the frequencies of the
isolates pairs are relative so that the sum of all the repre-
sented points, including both curves, is 1. For the three
studied thresholds, the frequency distributions of isolate
pairs with the same emm type for different cluster distance
ranks are very similar. The major difference is that the
plots for thresholds 29% and 41% show a higher fre-
quency for isolate pairs with the same emm type and a
cluster distance rank of 0, meaning that the pair is in the
same PFGE cluster. It is this fact that is responsible for the
higher values of HA for these thresholds. On the other
hand, HA is not able to detect the differences in the fre-
quency distribution of isolate pairs with different emm
types for different cluster rank distances. Compared with
thresholds 29% and 41%, this distribution for threshold
20% is flatter, meaning that isolate pairs with different
emm types are more homogeneously distributed through-
out the cluster distance rank scale. For the higher thresh-
olds there are stronger peaks in this distribution, and they
occur in the first half of the cluster distance rank scale.
This contributes to a weaker agreement. For the threshold
29%, the increase in the frequency of pairs with the same
emm type and in the same PFGE cluster balances the effect
of the peaks in the distribution of pairs with different emm
type, thus RAR is practically identical to the one for the
threshold of 20%. For the threshold 41% the peaks are
stronger, occur at lower values of cluster distance rank and
there is no counteracting effect, causing a significant
decrease in RAR value that is not observed for HA. In fact,
to compute HA the frequencies of isolate pairs with differ-
ent emm type and cluster distance rank greater than 1 are
grouped in just one class. This is not the case for RAR that
uses all the values in the RMM for its computation. One
can argue that the higher peaks in the frequencies of iso-
late pairs for higher thresholds are due to the lower
number of clusters. Fewer clusters correspond to fewer
degrees of freedom in clustering formation. With more
clusters it becomes easier to build clusterings with a more
perfect agreement. As RAR computes a weighted average
over all isolate pairs, in all RMM positions, it is more sen-
sitive to the shape of the distribution of frequencies along
the different matrix elements than to the actual frequency
values. If for the different thresholds studied, the fre-
quency distributions of isolate pairs for different cluster
distance ranks were the same, RAR would give similar
Page 7 of 13
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Ranked Adjusted Rand (RAR), Adjusted Rand (HA) and Wallace (W) indices for the comparison of emm type with PFGE cluster-ings using different Dice dissimilarity thresholdsFigure 2
Ranked Adjusted Rand (RAR), Adjusted Rand (HA) and Wallace (W) indices for the comparison of emm type 
with PFGE clusterings using different Dice dissimilarity thresholds. Dice dissimilarity is in a 0–100 scale. The plot in 
the top indicates the number of PFGE clusters originated with the respective threshold, while the number of emm types is 
always 12. The minimum threshold studied, 1, does not originate 325 clusters because there are sets of isolates whose PFGE 
band patterns have a Dice dissimilarity of 0. W(emm-PFGE) is the probability that a pair of isolates is in the same PFGE cluster 
knowing that they have the same emm type. Analogously, W(PFGE-emm) is the probability that a pair of isolates has the same 
emm type knowing that they are in the same PFGE cluster. HA reflects the evolution of both Wallace indices. The plateau of 
maximum HA, between the thresholds of 28 and 41, is a region of compromise where both Wallace indices are high. The curve 
of RAR values shows a more complex behaviour, with a plateau of maximum values between the thresholds of 20 and 29, and a 
significant decrease between 29 and 41, where HA is nearly constant.
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Ranked Mismatch Matrix (RMM) composition at different Dice dissimilarity thresholds for PFGE clusteringFigure 3
Ranked Mismatch Matrix (RMM) composition at different Dice dissimilarity thresholds for PFGE clustering. 
The RMMs for the comparison of emm type with PFGE clusterings have dimensions p × 2, where p depends on the number of 
PFGE clusters and the two columns correspond to isolate pairs with the same or with different emm type. The PFGE interclus-
ter distance rank is represented in the horizontal axis. The isolate pairs with the same emm type are represented with full lines 
while for pairs with different emm type a dashed line was used. The frequencies plotted in the vertical axis are relative, meaning 
that the content of each RMM element was divided by the sum of all RMM elements. It corresponds to the fraction of isolate 
pairs contributing for the respective RMM element. RMM composition was studied at three different thresholds (T = 21, 29 and 
41) because, 21 is an optimal threshold for RAR but not for HA, 29 is an optimal threshold for both measures and 41 is a slightly 
sub-optimal threshold for HA (it is at the end of the maximal plateau of HA in Figure 3) and a bad threshold for RAR. The fre-
quency distributions of isolate pairs with the same emm type are similar for the three thresholds. This is not the case for isolate 
pairs with different emm type. Here, as the threshold increases, the frequency peaks become larger and occur at lower cluster 
distance ranks, contributing in this way for a weaker agreement.
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results to HA, which is expectable since RAR is an exten-
sion of the HA method. The main difference is that RAR is
sensitive to changes in the discussed distributions, or, in
other words, it is sensitive to different levels of disagree-
ment when a pair of isolates is not in the same class or
cluster. This practical example shows the power of using
RAR jointly with clustering comparison measures that
only evaluate partition divergence, like HA or the Wallace
coefficients. Using HA alone, it would be difficult to
choose a Dice dissimilarity threshold in the interval of 28
to 41%. Between those values the partitions compared are
almost equally similar, and the gains in W(emm-PFGE)
are compensated by lower W(PFGE-emm). But RAR values
are clearly higher for the 29% than for the 41% threshold.
As the HA partition similarity is practically the same for
both thresholds, it is safe to say that the change in RAR is
due to an intercluster distance disagreement effect. Com-
paring the variation of RAR values with the corresponding
variation of HA or other measures provides an easier way
to infer the meaning of RAR values. RAR has another max-
imum at 20% dissimilarity threshold, and the corre-
sponding HA value is not in the maximal plateau. This
means that looking only at partition information, a 20%
threshold would be inferior to 28% or 41%, but at 20%
the entity pairs have a stronger tendency to be in equally
separated clusters in both clusterings, which increases the
RAR value. The existence of a RAR maximum at this value
is actually confirming the empirically accepted Dice dis-
similarity threshold of 20% to define PFGE clusters
[13,15-17], a value that does not correspond to the HA
maximum.

Conclusion
As previously stated, comparing different clusterings for
the same set of entities is a recurrent task. Hubert and Ara-
bie's Adjusted Rand (HA) index is still commonly used to
quantify these comparisons [11,13,18,19]. The new
method described here, the Ranked Adjusted Rand (RAR),
can be useful in all instances where HA is applicable. RAR
is an extension of HA, and produces identical results when
there is no intercluster distance information. The novelty
introduced by the RAR measure is the way the Ranked
Mismatch Matrix (RMM) is built. The fact that the contri-
bution of each entity pair in RMM is determined by the
intercluster distance rank function allows the recording of
different levels of disagreement circumventing the prob-
lem of pre-ordering clusters and of difference of number
of clusters in both clusterings.

The artificial small examples highlighted the situations
where HA and other available measures are not able to
discriminate while RAR is. Namely, when from one clus-
tering to another, a cluster is split in two and one or two
of the child clusters change their localization relatively to
the remaining clusters, only RAR is sensitive to differences

in the relative distances of these new clusters as compared
with the original clustering.

When applied to the comparison of larger clusterings,
RAR proved to be robust to factors like number of entities
and clusters, and also to different cluster density patterns.
From the viewpoint of computation time needed to exe-
cute RAR no special problems are anticipated even with its
application to very large clusterings. Simulated clustering
comparisons clarified that the distance information that
RAR integrates is not the same that is already implicit in
the partition information. For constant partition informa-
tion RAR is still sensitive to distance information changes.
Analogously, for constant correlation between distance
matrices, RAR is still sensitive to changes in partitions.

RAR was tested with experimental data from the field of
molecular epidemiology. The test case was a comparison
between one flat classification, without interclass distance
information, the emm types, and a hierarchical clustering,
from PFGE data, where there was inter cluster distance
information for several clusterings originated from the
same dendrogram. RAR produced different results from
HA and Wallace indices. Analysis of RMM content proved
to be helpful in the detection of what disagreements or
agreements were causing changes in RAR and HA values.
In conclusion, use of the RAR measure lead to a more
informed decision on the best threshold to generate a
PFGE clustering with a maximum agreement with the
emm type classification. Although measures like Rand, Jac-
card and Wallace indices continue to be useful, especially
because the numbers generated have an associated intui-
tive meaning, we argue that RAR supersedes the previous
indices when measuring the overlap between clusterings
or classifications. The foundation of this argument lays in
the fact that RAR is sensitive to the same partition differ-
ences that previous methods also detected, but in addition
it is also sensitive to intercluster distance changes.

Methods
RAR description
A clustering C is a partition of the set of objects D, with n
elements (identified below by the letters i and j), into sets
(clusters) C1, C2,...CK, with n1, n2,...nK number of entities,
all greater than 0. The task of measuring clustering agree-
ment arises when, for the same set D, two different meth-
ods are used to produce two different clusterings, C and
C', with K and K' clusters each. To evaluate the overlap of
the two partitions, a contingency table is built, where
every element of D contributes to the cell of the corre-
sponding clusters in both C and C' as shown in Table 1.
Focusing on the pairwise agreement, the information in
CT can be further condensed in a mismatch matrix repre-
sented in Table 2, where a, b, c and d represent the counts
of entity pairs that fall in each of the four possible catego-
Page 10 of 13
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ries. For example, entity pairs in the b category are in the
same cluster in C but in different clusters in C'. The sum
of a, b, c and d is n(n-1)/2, the total number of unique
entity pairs.

Adjusted Rand, the RAR predecessor
Hubert and Arabie proposed an adjusted Rand index to
quantify clustering agreement [4]:

Where nc is the correction for chance agreement, corre-
sponding to the expected sum of a and d if C and C' where
totally independent clusterings:

Milligan and Cooper [20] and more recently Steinley [21]
performed comparative studies of several pairwise cluster-
ing agreement criteria. They found HA the criterion with
the most desirable properties, especially the zero expected
value in the case of independent clusterings and the
robustness to changes in cluster number and cluster size
heterogeneity. The basic principle of HA is to compute the
fraction of entity pairs in the diagonal of MM, because
those pairs are the ones contributing to the general agree-
ment. The pairs in b and c have a null contribution to the
agreement. This fraction must be corrected for the
expected chance agreement.

Ranked Mismatch Matrix (RMM), a new format for the 
presentation of clustering data
To include the intercluster distance information, the
entity pairs in a should continue to have a maximum con-
tribution to the overall agreement, but b, c and d entity
pairs should have different contributions according to the
degree of mismatch in each of the two clusterings. First an
intercluster distance rank function R is defined for every
pair of entities (i, j) of a data set D (expression 3).

R(i, j) = (x, y): i, j ∈ {1,2,...n}; x ∈ {1,2,...K - 1}; y ∈
{1,2,...K' - 1}  (3)

R(i, j) = (x, y), means that in clustering C, entity j is in the
xth cluster closer to the one of entity i, and in clustering C',
the cluster of entity j is the yth closer to the cluster of i. In
the case i and j are in the same cluster in C, x will be 0. If
i and j are in the same cluster in C', y will be 0. The dis-
tance between two clusters is here measured as the average
distance between their entities. This is only possible when
distances between every pair of entities are available.
According to the problem, other intercluster distance

function can be defined. For instance the standard single,
complete or other linkage functions of hierarchical clus-
tering can be used. In the absence of any distance informa-
tion, the distance between a cluster and itself is 0 and
between two different clusters is 1. Additionally, the inter-
cluster distance definition does not have to be the same in
the two clusterings being compared. These definitions
allow the RAR method to be applied to any pair of cluster-
ings. With the help of the intercluster distance rank func-
tion the Ranked Mismatch Matrix (RMM), represented in
Table 3, can be computed, with the general element rmmx,y
defined as:

H(x) is a Heaviside step function that takes the value 1
when x is true and 0 otherwise. The double sum includes
the equal entity pairs of type (i, i) and the repeated entity
pairs of types (i, j) and (j, i). The pairs of the first type do
not contribute to the final sum due to the Heaviside func-
tion H(i≠j). The repeated pairs (differing only by the order
of the entities inside the pair) need to be accounted in the
sum because, for each of the individual clusterings, the
intercluster distance rank is not necessarily symmetric. As
an example, cluster A may be the closest neighbour of
cluster B, but the closest neighbour of cluster B may be C
and not A. In RMM, intercluster distance rank information
for every pair of entities is recorded without identifying
which clusters are separated at what rank distance. This is
important because for each cluster, the ith neighbour clus-
ter can be different. In this way, the intercluster distance
information can be integrated with the partition compar-
ison without the need of a strict ordinal relationship
between clusters (like the example of disease severity
referred in the introduction), of a known cluster corre-
spondence between clusterings or of an equal number of
clusters in both clusterings.

Measuring clustering agreement
For two very similar clusterings, the majority of the entity
pairs would contribute for elements close to the matrix
diagonal. Even if RMM is not square, an alternative geo-
metrical diagonal can be traced, linking the centre of the
rmm1,1 element (with coordinates (0,0)) with the center of
the rmmp+1,q+1 element (with coordinates (p, q)) If, on the
contrary, the clusterings disagree to a large extent, most
entity pairs will be far from the diagonal, concentrated
around rmmp+1,1 and rmm1,q+1. From these considerations
it immediately follows that a good measure of cluster dis-
agreement is the Mean Diagonal Deviation (MDD) for all
the entity pairs in RMM.
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The quantity inside the modulus is the normalized dis-
tance of the element (i, j) to the RMM diagonal, such that
for the more distant elements (rmm1,q+1 and rmmp+1,1) it
takes the value of 1. Consequently, the maximum value of
MDD is also 1. The modulus implies that MDD is always
greater or equal to 0. To obtain a measure of agreement
between clusterings it is enough to compute 1-MDD,
although this quantity is not yet corrected for chance
agreement. To perform this correction, the expected MDD
value under independence of clusterings C and C' (condi-
tional on the marginals of CT and on the intercluster
ranked distances) must be known. To compute this
MDDind it is first necessary to build RMMind according to:

MDDind is then computed like MDD (expression 5),
changing RMM elements by those of RMMind. RAR is the
correction of (1-MDD) for chance agreement and is the
result of the following expression:

Functions to compute the RAR measure for any two clus-
terings were implemented in MATLAB (Release 14), and
are available in Additional file 4 or at the toolbox's web-
page [22].
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