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Abstract

Background: Peptides binding to Major Histocompatibility Complex (MHC) class Il molecules are
crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific
MHC molecule plays an important role in determining potential candidates for vaccines. The
binding groove in class Il MHC is open at both ends, allowing peptides longer than 9-mer to bind.
Finding the consensus motif facilitating the binding of peptides to a MHC class |l molecule is difficult
because of different lengths of binding peptides and varying location of 9-mer binding core. The
level of difficulty increases when the molecule is promiscuous and binds to a large number of low
affinity peptides.

In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA)
for predicting peptides binding to MHC class Il molecules. One uses the information from both
binders and non-binders for self-discovery of motifs. The other, in addition, uses information from
experimentally determined motifs for guided-discovery of motifs.

Results: The proposed methods are intended for finding peptides binding to MHC class Il I-Ag?
molecule — a promiscuous binder to a large number of low affinity peptides. Cross-validation results
across experiments on two motifs derived for |-Ag’ datasets demonstrate better generalization
abilities and accuracies of the present method over earlier approaches. Further, the proposed
method was validated and compared on two publicly available benchmark datasets: (1) an ensemble
of qualitative HLA-DRBI*040| peptide data obtained from five different sources, and (2)
quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and
thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets,
indicating that it is well suited for finding peptides binding to MHC class Il molecules.

Conclusion: We present two MOEA-based algorithms for finding motifs, one for self-discovery
and the other for guided-discovery by experimentally determined motifs, and thereby predicting
binding peptides to |-Ag7 molecule. Our experiments show that the proposed MOEA-based
algorithms are better than earlier methods in predicting binding sites not only on |-Ag” but also on
most alleles of class I MHC benchmark datasets. This shows that our methods could be applicable
to find binding motifs in a wide range of alleles.
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Background

Major histocompatibility complex (MHC) molecules play
a key role in initiating immune responses. They bind to
and expose an antigen (or short peptides) to T cell recep-
tors (TCR) triggering an immune response against the
infected cell or foreign agent. MHC molecules make mul-
tiple contacts with the side-chains of binding peptides,
which define the binding motif and determine the specif-
icity of binding [1]. Prediction of peptides binding to a
MHC class IT molecule is difficult due to different types of
side chains and because the length of the binding peptides
is longer than 9aa (approximately 11 to 22aa) [1,2]. It has
been previously observed that a core of 9aa is sufficient for
binding peptides to a MHC class II molecules [3], how-
ever, the exact location of the binding core (or motif)
within the peptide is usually unknown and vary.

A binding motif is usually represented either by a consen-
sus sequence or as a weight matrix [4]. The presence or
composition of a motif can be experimentally determined
from a large pool of putative binding peptides [3,5]. How-
ever, such wet-lab experiments are costly, time consum-
ing, and cumbersome. Amino acids at specific sites of a
motif, contributing significantly to the binding are
referred to as primary anchor residues and the correspond-
ing sites as anchor positions. By using such position-specific
information, earlier studies have found weight matrix
models elaborating the nature and strength of binding
motifs [6,7]. These models offer binding strengths of every
residue at specific sites in the form of a position specific
scoring matrix (PSSM).[7]

In general, MHC class-II prediction methods are catego-
rized into two main classes [8]: (1) quantitative prediction
methods that predict inhibitory concentration (ICs) val-
ues and (2) qualitative prediction methods that determine
the binding status (binder or non-binder) based on the
predictive score. Recent quantitative prediction
approaches include SVRMHC [8], PLS-ISC [9], ARB [10],
and SMM-align [11]. The ARB approach uses full length of
the peptide whereas both SVRMHC and PLS-ISC
approaches use a preprocessing step involving alignment
of sequences, based on anchor position-specific residues.
The underlying assumption of SMM-align is that amino
acids occupying the 9-mer binding core motif are suffi-
cient to determine the affinity of peptide-MHC binding,.
However, in some cases, the predictive performance could
be improved by incorporating terminal residues known as
peptide flanking residues (PFR) [11].

Qualitative prediction approaches use classifiers such as
artificial neural networks [12-16], hidden Markov models
[4,17], support vector machines [18-21], and their
hybrids [22], or profile analysis such as those using itera-
tive learning [23-26], stochastic approaches (MEME)
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[27,28], Gibbs motif sampler [29-32], profile motifs
(RANKPEP) [33,34], DNA microarrays and virtual matri-
ces (TEPITOPE) [35], and evolutionary algorithms (EA)
[36]. However, given a set of sequences of differing
lengths with known binding affinities, the location of the
binding core within each sequence must be first identified
before classification of sequences. Classical multiple
sequence alignment techniques often fail to detect bind-
ing cores in MHC class II binding peptides because of
weak instances of binding motifs.

All methods predicting peptides binding to MHC mole-
cules have their pros and cons; most show good perform-
ance only for datasets upon which they were developed.
Therefore, there is a need for new algorithms that perform
well on previously unseen data. We propose to use MOEA
to align a set of experimentally determined binding pep-
tides at their binding cores and subsequently derive the
consensus motif. The methods are especially useful when
molecules are promiscuous and bind to a large number of
low affinity peptides. The preliminary results of our work
have been presented in [37].

[-A87 is the MHC class I molecule of the NOD mouse, crit-
ical for the development of insulin-dependent diabetes
mellitus (IDDM) and other autoimmune disorders [38-
43]. Knowledge of peptides binding to 1-A87 is important
in understanding the molecular basis of development of
IDDM in NOD mice. Experiments have demonstrated
that I-A87 binding peptides are 9-30aa long [44]. Finding
motifs in peptide binding to 1-A8” is a non-trivial problem
[45,46]. Despite numerous attempts, no consensus has
been reached on the rules of peptide binding to I-A8” mol-
ecule [38-48]. However, computational analyses on mul-
tiple datasets indicate that experimental motifs satisfy
only a subset of rules describing the optimal motif.

To demonstrate the utility in predicting peptides binding
to other MHC molecules, our method is tested on two
benchmark datasets comprising of peptides of number of
different HLA (human MHC) and mouse alleles. The first
dataset, referred to as BM-Setl here onwards, consists of
different combinations of peptides of HLA-DRB1*0401
allele, and the second dataset, BM-Set2, consists of data-
sets from thirteen different HLA alleles and three mouse
alleles.

Multi-Objective Evolutionary Algorithms (MOEA)

Evolutionary algorithms (EA) are based on the principles
of biological evolution and have often been successful in
solving complex search and optimization problems.
Majority of bioinformatics applications of EA have been
in the discovery of motifs such as transcription factor
binding sites [49-53]. Yet, only a few researchers have
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used EA for the prediction of peptides binding to protein
sequences [36].

An EA consists of (1) representing input variables as indi-
viduals or chromosomes (binary or real valued) in a pop-
ulation, (2) formulating the fitness (objective function) to
evaluate individuals, (3) generating a new population by
genetic operations (such as reproduction, crossover, and
mutation) on the current population, and (4) determin-
ing if the population has reached the optimal fitness. The
algorithm begins with an initial population and evolves
over time. At a particular instance of evolution, every indi-
vidual is evaluated by its fitness. New populations (off-
spring) are produced from highly fit individuals (parents)
selected, which undergo genetic operations. Each off-
spring is paired and compared to its parents. Highly fit
individuals are retained in the population while less fit
individuals are discarded. Search mechanisms such as elit-
ism, constraint-handling, and multi-objective optimiza-
tion are available for finding a better spread of solutions,
depending on the needs of the optimization problem [54-
57].

Multi-objective evolutionary algorithms (MOEA) are used
to solve problems which require simultaneous optimiza-
tion of a number of competing objective functions [58-
61]. MOEA maintains a set of solutions ranked by their
dominance at a given instant of the evolution. A solution
is said to dominate another if it is better or equal with
respect to all objectives and strictly better in at least one
objective [58]. Often, there are more than one non-domi-
nated solutions, representing the best ones, collectively
known as the Pareto front. MOEA algorithms result in a
Pareto optimal set of solutions.

Non-dominated Sorting Genetic Algorithm II (NSGA-II)
was recently introduced to incorporate several new genetic
mechanisms for better convergence, such as non-domi-
nated sorting, elitism, diversity preservation, and con-
straint handling [58]. In NSGA-II, a population is
subjected to several rounds of non-dominated sorting.
That is, all the non-dominated individuals are identified
and assigned the same fitness value until a new set of non-
dominated solutions is found. The solutions found in
subsequent rounds are assigned fitness values lower than
those in the previous rounds. This process continues until
the whole population is partitioned into non-dominated
fronts with diverse fitness values. The elitism prevents the
loss of fit individuals encountered in earlier generations
by allowing earlier solutions to survive in the subsequent
generations. The diversity of Pareto-optimal solutions is
maintained by imposing a measure referred to as crowding
distance. A solution that satisfies the constraints defined by
the objective functions is called a feasible solution.

http://www.biomedcentral.com/1471-2105/8/459

Peptide Binding to MHC Class Il I-Ag?

In this paper, we attempt to find an optimal motif describ-
ing peptide binding to MHC class II molecules, using
experimentally determined binding data. There are several
factors that impede the derivation of such a consensus
motif. The first is the strong resemblance among the pep-
tides isolated in a single experiment and the second is the
diversity among different datasets. A motif derived from a
dataset lacking diversity indicates a bias towards the data-
set used in deriving the motif. Such motifs are difficult to
generalize on other experimental or previously unseen
datasets. The MOEA based motif detection algorithm is
designed to find a consensus motif on I-A8’ datasets,
which alleviates the influences arising from biased data-
sets and thereby predicts binding peptides more accu-
rately in new datasets.

Results

Predicting Peptides Binding to MHC Class Il

We use our approach to find a consensus motif on seven
experimental datasets of peptides binding to I-A87 mole-
cules, obtained from literature [40-43,62-64]. The motif'is
validated using an independent testing set generated from
the Stratmann dataset [46]. The overall quality of predic-
tion was measured using area under curve (AUC) of the
receiver operating characteristics (ROC) curve [65-67].
AUC values of all feasible solutions in the final popula-
tion of EA were evaluated and the solution with the high-
est AUC was chosen as the consensus motif (see
Additional file 1).

Table 1 shows the information of the datasets extracted
from literature, which were used in the training. A blank '-
'indicates the unavailability of a particular information.
As an example, the details of the experimental motif of
Reizis et al are given in Table 2. Table 3 shows the per-
formance when an experimental motif is used to predict
peptide binders in other datasets. As seen, a motif of a par-
ticular experiment does not characterize peptide binding
of 1-A87 molecules in other datasets. Table 4 shows the
cross-validation performance of two motifs (by self-dis-
covery and guided-discovery) derived using MOEA; in a
particular cross-validation run, one experimental dataset
was excluded and the motif was derived using the infor-
mation of the remaining datasets. The motif was tested for
predicting binders and non-binders of the left-out dataset.
The self-discovery approach uses only the binding infor-
mation whereas the guided-discovery uses both binding
information as well as information associated with exper-
imental motifs. As seen in Table 4, by achieving AUC val-
ues greater than 0.7 for all cross-validation runs, MOEA
derived motifs demonstrate better generalization capabil-
ities compared to experimentally determined motifs. The
binding motifs derived from self-discovery and guided-
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Table I: I-Ag7 datasets and experimental motifs
Dataset Experimental Motif Non-binders Binders Reference

Reizis m(Reizis) 21 33 [40]

Harrison m(Harrison) 19 157 [41]

Gregori m(Gregori) 31 109 [43]

Latek m(Latek) 8 37 [42]

- m(Rammensee) - - [44]

- m(Reich) - - [38]

- m(Amor) - - [39]

Corper - 35 13 [62]

MHCPEP - - 176 [63]

Yu - 16 10 [64]
Brusic - 37 - [unpublished]

Information on |-A¢ related peptide binding datasets and motifs. Unavailable information is indicated by

discovery are illustrated as sequence logo plots [68] in the
Additional file 2.

To compare the performance of our method with earlier
methods, a training dataset was created by combining all
the experimental datasets given in Table 1. Motifs derived
on the training dataset were tested on an independent test
dataset - a balanced set generated from Stratmann data-
set. The Stratmann dataset was balanced by adding ran-
domly generated non-binders. Twenty five such balanced
test datasets were assembled by generating random sam-
ples starting from different seeds and adding them to the
Stratmann dataset. The results reported are based on the
average AUC values over all balanced test sets. Figure 1
shows comparison of performances of motifs derived by
MOEA and by earlier motif prediction approaches such as
MEME and RANKPEP. An increase of 4-10% in predictive
performance is observed with MOEA over the other
approaches.

Table 2: Representation of an experimentally derived I-Ag7 motif

Position ~ Well-Tolerated =~ Weakly-Tolerated Non-Tolerated
Pl VEQMHLPD - R
P2 - -
P3 - - -
P4 ILPV HY QEK
P5 - - -
P6 ATSNV - LYQK
P7 QVYLHINRF - -
P8 - - -
P9 ED SM LYTQK

The description of experimentally determined I-Ag7 9-mer peptide
binding motif by Reizis: each position accommodates a well-tolerated,
weakly-tolerated, or non-tolerated amino acid. The positions P4, P6
and P9 are the primary anchor positions where binding is highly likely
to occur.

nn

Comparison of performances of MOEA derived motifs for
BM-Set1 (see Table 5) with enhanced Gibbs sampler [32],
TEPITOPE [35], SVRMHC [8] and ARB [10], is given in
Table 6. As seen, MOEA shows comparable or superior
performance with Gibbs sampler on all datasets except for
the Southwood dataset. Out of the ten non-redundant
(NR) datasets, the MOEA outperformed Gibbs sampler,
TEPITOPE, SVRMHC and ARB by seven, nine, eight and
ten datasets, respectively.

The performance of MOEA on BM-Set2 (see Table 7) was
compared with Gibbs sampler [32], TEPITOPE [35],
SVRMHC [8], ARB [10] and NetMHCII [11]. Each allele
dataset was subjected to five-fold cross-validation and the
results are given in Table 8. The present method shows
comparable or superior performance on majority of allele
datasets compared to Gibbs sampler, SVRMHC,
TEPITOPE, and NetMHCII. A fair comparison of ARB
method cannot be drawn because the method has been
trained on quantitative data obtained from IEDB [10].

Discussion

We proposed two approaches using MOEA for deriving
motifs (1) when the information of only the binders and
non-binders are known (i.e., self-discovery) and (2)
when, in addition, the information of experimentally
(wet-lab) determined motifs are available (i.e., guided-
discovery).

Since 1-A87 molecule is known to bind to a large number
of peptides of low affinity and appears to be a promiscu-
ous binder, the prediction of peptides binding to 1-Ag?
molecule has been nontrivial. This has lead to the defini-
tion of a number of suboptimal consensus motifs specific
to the datasets. MOEA derived motifs had superior gener-
alization capabilities to those derived with MEME and
RANKPEP techniques as well as to the experimentally
determined motifs on other datasets. The performances
evaluated on two benchmark datasets indicate that the
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Table 3: Validation of I-Ag’ experimental motifs

Experimental Motif AUC value
Datasets
Reizis Harrison Gregori Latek Corper MHCPEP Yu

m(Reizis) 0.95 0.68 0.74 0.95 0.50 0.59 0.48
m(Harrison) 0.75 0.88 0.69 0.64 0.53 0.72 0.33
m(Gregori) 0.64 0.68 0.71 0.73 0.40 0.64 0.61
m(Latek) 0.66 0.72 0.80 0.95 0.64 0.52 0.75
m(Rammensee 0.49 0.64 0.76 0.82 0.60 0.48 0.43
m(Reich) 0.55 0.64 0.69 0.58 0.56 0.47 0.50
m(Amor) 0.69 0.54 0.66 0.70 0.56 0.66 0.40

Performance measured by AUC of experimentally determined I-Ag7 motifs on their own datasets and other experimental datasets.

Table 4: Performance of I-Ag” MOEA derived motifs

AUC value

MOEA-derived Motifs Datasets

Reizis Harrison Gregori Latek Corper MHCPEP Yu
self-discovery 0.75 0.75 0.77 0.93 0.70 0.75 0.75
guided-discovery 0.77 0.74 0.81 0.83 0.72 0.77 0.71
Seven-fold cross-validation accuracies of MOEA derived motifs on training dataset.

Table 5: Description of peptides in BM-Set|

BM-Set| Original NR
DRB1*0401 Binders Non-binders Binders Non-binders
Setl 694 323 248 283
Set2 381 292 161 255
Set3a 373 217 151 204
Set3b 279 216 128 197
Set4a 323 323 120 283
Set4b 292 292 120 255
Set5a 70 47 65 45
Set5b 48 37 47 37
Southwood 16 6 15 6
Geluk 22 83 19 80

The number of binders and non-binders in the original and non-redundant (NR) datasets in BM-Set|.
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Table 6: Comparison of performance on BM-Set|
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Dataset AUC
TSVRMHC Gibbs ARB TEPITOPE MOEA
Orriginal setl 0.711 0.799 0.666 0.760 0.760
set2 0.652 0.766 0.653 0.736 0.765
set3a 0.626 0.740 0.652 0.730 0.733
set3b 0618 0.751 0.666 0.750 0.752
set4a 0.706 0.788 0.668 0.748 0.748
set4b 0.664 0.770 0.661 0.748 0.770
set5a 0.553 0.604 0.539 0.653 0.777
set5b 0.606 0.621 0.579 0.679 0.748
Southwood 0912 0.862 0514 0.490 0.784
Geluk 0.697 0.723 0.682 0.710 0.786
NR setl 0619 0.673 0.572 0.594 0.587
set2 0.581 0.665 0.640 0.653 0.685
set3a 0.578 0.598 0.600 0.598 0.660
set3b 0.577 0.692 0.669 0.699 0.713
set4a 0.597 0.671 0.575 0.573 0.599
set4b 0.577 0.669 0.651 0.655 0.690
setba 0.544 0.601 0.536 0.646 0.790
setSb 0.593 0610 0.572 0.671 0.743
Southwood 0917 0.850 0.671 0.505 0.770
Geluk 0.655 0.697 0510 0.670 0.768

Comparison of AUC values of the BM-Set| (DRBI1*0401). 1 These values are based on smaller dataset sizes as SYRMHC didn't predict values for
some of the peptides. The values from the Gibbs sampler were estimated from the matrix provided by the authors in [32].

present MOEA based algorithm is applicable in deriving
motifs on other class I MHC alleles as well.

The likelihood of finding an optimal motif by MOEA is
higher than by a local or greedy search because of the sto-

Table 7: Description of peptides in BM-Set2

Type Allele Binders Non-binders
Mouse I-Ab 43 33
I-Ad 56 286
I-As 35 91
HLA DRBI-0101 920 283
DRBI-0301 65 409
DRBI-0401 209 248
DRB1-0404 74 94
DRB1-0405 88 83
DRBI-0701 125 185
DRBI-0802 58 6
DRBI-0901 47 70
DRBI-1101 95 264
DRBI-1302 101 78
DRBI-1501 188 177
DRB4-0101 74 107
DRB5-0101 112 231

The number of binders and non-binders in each of the dataset in BM-
Set2. The datasets in BM-Set2 were obtained from [77]. The DRB3-
0101 allele dataset was excluded from the performance comparison
due to significant imbalance in the dataset (3 binders and 99 non-
binders).

chastic nature of EA. The proposed approach learns from
the characteristics of both binders and non-binders in the
training set whereas other methods use information only
from binders to determine motifs [27,32]. Moreover,
ranges of the parameters involved in MOEA are known, so
the parameters of the fitness functions are quickly esti-
mated in a few cross-validation runs. Furthermore, unlike
the earlier methods, the present method does not rely on
any prior information such as anchor positions to obtain
an alignment, prior distributions, etc., [8,9]. Given suffi-
cient data samples representing both binders and non-
binders, the method could be applicable to find motifs in
other types of molecules. A future direction of this
research would be to integrate additional information
such as peptide length [69] and PFR [70] as such informa-
tion has been shown to have the potential to enhance
motif detection [11,69]. This would lead to further
improvement of the performance of the present algo-
rithm.

Even though EAs are generally known to be computation-
ally intensive, training for derivation of scoring matrices
can be performed off-line and the prediction engines can
be provided through web services. As seen in Tables 6 and
8, a single method does not always perform well on all
types of allele datasets. Nevertheless, the present method
showed higher accuracy in detecting motifs on majority of
MHC alleles in the benchmark datasets. Therefore, we

Page 6 of 12

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:459

Table 8: Comparison of Performance on BM-Set2
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Type Allele AUC

SVRMHC Gibbs ARB TEPITOPE NetMHCII MOEA

Mouse I-Ab - - 0.662 - 0.908 0919
I-Ad - - 0.819 - 0.818 0.855

I-As - - - - 0.898 0.889

HLA DRBI-0101 0.623 0.676 0.666 0.647 0.716 0.651
DRBI-0301 - 0.722 0.799 0.734 0.765 0.778

DRBI-0401 0.739 0.759 0.737 0.754 0.758 0.725

DRB1-0404 - 0.743 0.788 0.829 0.785 0.786

DRB1-0405 0.701 0.724 0.724 0.790 0.735 0.756

DRBI-0701 - 0.695 0.749 0.768 0.787 0.735

DRB1-0802 - 0.721 0.803 0.769 0.756 0.773

DRBI-0901 - 0.734 0.711 - 0.775 0.712

DRBI-1101 - 0.715 0.727 0.710 0.734 0.759

DRBI-1302 - 0.716 0917 0.720 0.818 0.820

DRBI-1501 0.730 0.672 0.792 0.726 0.736 0.743

DRB4-0101 - 0.742 0.800 - 0.736 0.759

DRB5-0101 0.649 0.618 0.677 0.653 0.664 0.660

Comparison of AUC values from five-fold cross-validation of allele datasets given in BM-Set2. "-" indicates that the allele is unavailable for testing

with the respective prediction method.

believe that MOEA-based methods could provide a gen-
eral framework for efficiently determining motifs in a
wide range of MHC molecules.

In immunology, accuracy and speed in predicting binding
peptides is of paramount importance. Computationally
predicted binders do subsequently need to be validated
with wet-lab experiments. By using computational predic-
tions as an initial step, high cost involved in initial screen-
ing and time-consuming clinical testing can be
significantly reduced. Towards this end, the proposed
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Comparison of Performances. Comparison of perform-
ance of MOEA based algorithms — self-discovery and guided-
discovery — against MEME, RANKPEP, and experimental
motifs on the balanced |-A#’ test datasets (the performance
was averaged over 25 test datasets)

MOEA methods present a promising way to predict pep-
tides that bind to MHC class II alleles including promiscu-
ous and low affinity peptide binders.

Conclusion

We present two MOEA-based algorithms for finding
motifs, one for self-discovery and the other for guided-dis-
covery by experimentally determined motifs, and thereby
predicting binding peptides to [-A87 molecule. Our exper-
iments show that the proposed MOEA-based algorithms
are better than earlier methods in predicting binding sites
not only on I-A87 but also on most alleles of class I MHC
benchmark datasets. This demonstrates the applicability
of our methods to find binding motifs in a wide range of
MHC alleles.

Methods

Datasets

Several 1-A87 datasets were extracted from literature [40-
43,62-64] and from Brusic, V.(unpublished data). The
numbers of binders and non-binders in each dataset are
given in Table 1. The datasets consist of short peptides
ranging from 9-30aa in length. Their binding affinities
had been experimentally determined by independent
studies and classified as binders or non-binders based on
IC;, values according to the following scheme [41]: good
binder (IC5,= 100 nM); weak binder (IC5;, = 2000 nM);
non-binder (IC5;,= 50000 nM). The datasets in [40-43,62-
64] were combined into a single training dataset and
curated by removing duplicates and redundancy as fol-
lows: if a binder is a subsequence of another binder
sequence, the longer binder sequence is discarded; if a
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non-binder is a subsequence of another non-binder, the
shorter subsequence is discarded. Let the curated whole
dataset be referred to as training dataset here onwards and
itbe denoted by D = {(x; v,):i=1, 2,.... N} where N is the
number of total peptide sequences and x; is the i-th pep-
tide sequence with the label v; ¢ {b, nb} indicating
whether the sequence x; is a binder (b) or a non-binder
(nb). The number of peptides in the training set N = 438
in which the number of binders N}, = 304 and the number
of non-binders N, = 134.

The set of experimentally validated I-A87motifs [38-44]
derived largely from uncorrelated datasets [40-43] was
extracted and is illustrated in Table 1 with the distribution
of binders and non-binders in each dataset. Table 2 illus-
trates an experimentally validated motif of I-A8” reported
by Reizis et al [40]. Experimental motifs are described by
the anchor positions and binding affinities of amino acids
of the motif. The residues which contribute significantly
to the peptide binding are called primary anchor residues
and positions they reside are called anchor positions. An
amino acid occupying a specific position within a motif is
characterized as well tolerated, weakly tolerated, or non-
tolerated based on its involvement in the binding process.

An independent dataset was generated from binders of
Stratmann dataset [46], consisting of a diverse set of 1-A87
binding peptides with their binding affinities, to find the
test accuracies in predicting binders and non-binders. The
Stratmann dataset was balanced with randomly generated
9-mer non-binders so that for testing dataset, Ny, = N, =
112.

Binding Score Matrix

A k-mer motif of amino acids is characterized by a PSSM
Q = {qi.} 1« 20 Where g;, denotes the binding strength of the
site i when it is occupied by amino acid a. The binding
score of a putative motif is computed by adding the bind-
ing scores assigned to each amino acid at the respective
positions. The binding score indicates the likelihood of
the motif binding to the molecule. The binding score s; of
sequence x; = (x; ;, X; 5,...x; ,) of length n is determined by
the maximum value of binding scores computed for all k-
mer subsequences in x;:

si=max{s;:j=12,-n-k+1} (1)
j

where s;; denotes the binding score of the subsequence
beginning at location j of the sequence i, which is given by

Sij = 2 q(j+1)r Xi(j+1) 2)

1=1,2,--k

and assuming that only one motif instance exists in every
sequence, the location j* of the motif is given by

http://www.biomedcentral.com/1471-2105/8/459

j*:argmax{sijZj=1,2,"'”_k+1} (3)
J

That is, the most likely motif instance of sequence x;, say
m;, is given by the sequence m; = (Xjj - Xjjs | 1,00 Xjje 4 1)

Self-discovery of Motif

We derive a consensus motif from the training dataset
which consists of peptides from several experiments and
of varying lengths. The positions of binding cores within
the peptides are unknown. The elements of the PSSM are
represented as 20k-tuples (¢;,, : 1= 1,... k; a £ Q) where Q
represents the amino acid alphabet. Each element in the
k-tuple is converted to a real number representation using
a binary word of size 0 so that g;, € [0, 2¢-1]. The k-mer
motif is therefore represented by an individual of 20k8
long string in the EA. Let the population at t-th iteration
of the evolution is denoted by ¢(t) = {q,(t), 9,(t),.....
(1)} where g;(t) represents an individual in a population
of size M.

The fitness function is designed to arrive at an optimal
consensus of the motif, by using the training dataset. A
solution is evaluated based on its ability to maximize the
accuracies in identifying true binders (TP) and true non-
binders (TN) as well as to widen the gap between the total
score for binders and non-binders. This is achieved by two
fitness functions: f; to minimize the sum of false positives
(FP) and false negatives (FN), and f, to minimize the ratio
between the average cumulative scores of non-binders
and binders:

1=FEN + x, FP (4)

N
3. s(mj)é(vj=nb)

Np =1
fz = (5)
Nob & ()6 (vi=b)
i=1

Egs. (4) and (5) are minimized and subjected to following
two constraints:

s (6)
Npp o
N1 -
Np

where s(m;) denotes the score computed for the most
likely motif instance m; of sequence x; of the training data-
set, and Kronecker &is one when the argument is satisfied
and otherwise is zero. N, and N, are the total counts of
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binders and non-binders in the dataset. The constant x;
(>Ny/N,, for Ny > N, or vice versa) was empirically
determined to minimize the number of false positives.
The two parameters o (<<N,;,) and «, (<<N,,) are set to
minimize FP and FN rates, respectively. If none of the
individuals satisfies the above constraints, MOEA reports
no feasible solution. Given the training set, a few trial runs
with different initializations are necessary to determine
the best values of ¢, and «,.

Scoring of Experimental Motifs

The description of an experimental k-mer motif conveys
three kinds of information at each site: (1) the amino acid
occupied, (2) the tolerance level of the amino acid, and
(3) the strength of binding. Let us denote a k-mer motif
validated in experiment "e" by m(e) and the tolerance
level of the residue at site j by p, where p; € {well, weak,
unknown, non - tolerated}. The binding strength of site j
is expressed by o; € {primary - anchor, secondary -
anchor, other}. Then, the binding score for a k-mer exper-
imental motif is given by

k
s(m(e) =Y p;-0; (8)
j=1

Guided-discovery of Motif

In this algorithm, we assume that experimentally deter-
mined motifs are available along with the experimental
datasets. An MOEA is proposed to determine a motif
closer to experimental motifs. An objective function f; is
proposed to best represent the characteristics of the motif
that is close to the knowledge embedded in the experi-
mental motifs:

fi= | Q-Qm(e))| 9)

e

where Q denotes the estimated PSSM of the motif. We
use the same objective function in Eq. (4) to accurately
predict binders of the training dataset. The MOEA mini-
mizes the objective functions given in Egs. (4) and (9),
subjected to the two constraints given in Egs. (6) and (7).
The summation in Eq. (9) is taken over all the experimen-
tal motifs and | Q - Q(m(e))| is the sum of squares of dif-

ferences between individual elements of weight matrices
Q and Q(m(e)). The knowledge of the experimental
motif is incorporated to the consensus motif adaptively
with the distance function used in f;. Further, the fitness f;
optimizes the specificity and sensitivity of the prediction
of binders.

http://www.biomedcentral.com/1471-2105/8/459

The elements in the PSSM of experimental motifs are set
to values within the same range [0, 2¢-1] as before. The
following procedure is adopted to determine the elements
of Q(m(e)): awell tolerated amino acid at an anchor posi-
tion of the motif receives the highest possible score of 2¢-
1; the lowest score of zero is assigned to a non-tolerated
residue; weakly tolerated residues and residues at second-
ary anchor positions receive of (2¢-1)/2; and all the other
unknown positions receives a score of (2¢-1)/3.

Performance Comparison

The binding scores of [-A87 experimental motifs were com-
puted using Eq. (8) by assigning the following values for
binding strengths: primary = 4, secondary = 2, and others
= 1, and for anchor positions: well = 4, weak = 2, non-tol-
erated = -4, and unknown = 0. The experimentally deter-
mined motifs were used with peptide data in the guided-
discovery of motifs.

We used AUC to compare performance of the proposed
methods with earlier approaches [28,34] and experimen-
tal motifs [38-44]. Whether a peptide is a binder or a non-
binder is determined by a threshold of the binding score.
By varying this threshold, the ROC curve was plotted,
from which AUC value was obtained. A comparison of
performances of the methods is given in Figure 1.

In order to compare to the MEME method, only binders
in the 1-A#7 training set were submitted to MEME motif
discovery tool at the prediction server [71]. The motif of
9-mer length was obtained with the following options:
zero or one motif per sequence, minimum and maximum
width = 9. The performance accuracy of RANKPEP
approach on the testing dataset was carried out by upload-
ing the dataset to the online prediction server at [72] with
a 4% binding threshold [34].

Benchmark Datasets

The proposed self-discovery approach was tested on BM-
Setl, i.e., HLA-DRB1*0401, which consists of one train-
ing set and 10 testing datasets and had been earlier used
to benchmark a number of motif finding algorithms
[25,26,32,73]. The performance of MOEA was compared
with earlier methods [8,10,32,35].

The training set consisting of binders and non-binders
was assembled as follows: an ensemble of 532 unique
binding peptides were extracted from SYFPEITHI [44] and
MHCPEP [63] databases and a set of 177 unique non-
binders were extracted from the MHCBN database [20].
The datasets were pre-processed by removing peptides
that did not allow a hydrophobic residue at P1 position of
all putative 9-mer binding cores and unnatural peptides
containing more than 75% alanine [32]. The preprocessed
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binder set has 456 unique peptides with a length distribu-
tion ranging from 9 to 30 amino acid residues.

Of the 10 testing datasets, 8 datasets were taken from the
MHC-bench as described in [74]. The other 2 datasets
were extracted from experiments described by Southwood
[75] and Geluk [76]. An affinity of (IC5, = 1000 nM) was
taken as the threshold for peptide binding as described in
[75]. Homology reduction had been carried out on all
datasets in order to reduce the chances of over-fitting due
to the redundancy of datasets. The peptides in the non-
redundant (NR) datasets had sequence similarities less
than 90%. The number of binders and non-binders in the
original and NR datasets are given in Table 5.

We tested our method on BM-Set2 comprising of 3 mouse
alleles and 13 HLA alleles made available at [77]. These
quantitative peptide datasets had been extracted from the
IEDB at [78]. The number of binders and non-binders in
each dataset is given in Table 7. The DRB3-0101 allele
dataset was excluded from the benchmark dataset because
of the significant imbalance between binders and non-
binders (3 binders and 99 non-binders). With this dataset,
we compared our method with [8,10,11,32,35].

Parameters of MOEA

The range of positional scores was set with §= 7. For each
run of MOEA, the population size M = 500, crossover
probability p, = 0.9, and mutation probability p,, = 0.005
were used. The process was terminated after 300 genera-
tions as no significant improvement in the convergence
was observed during the experimental trial sessions. The
parameters of the fitness functions were empirically deter-
mined for optimum performance within the following
ranges: k; = 1~2.5, o = 5.0-6.0, and «, = 1.0-2.0. The
parameters x; = 2.5, ¢, = 6.0, and a, = 2.0 were found to
work well empirically for both datasets.
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