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Abstract
Background: Computational analysis of gene regulatory regions is important for prediction of
functions of many uncharacterized genes. With this in mind, search of the target genes for
interferon (IFN) induction appears of interest. IFNs are multi-functional cytokines. Their effects are
immunomodulatory, antiviral, antibacterial, and antitumor. The interaction of the IFNs with their
cell surface receptors produces an activation of several transcription factors. Four regulatory
factors, ISGF3, STAT1, IRF1, and NF-κB, are essential for the function of the IFN system. The aim
of this work is the development of computational approaches for the recognition of DNA binding
sites for these factors and computer programs for the prediction of the IFN-inducible regions.

Results: We developed computational approaches to the recognition of the binding sites for
ISGF3, STAT1, IRF1, and NF-κB. Analysis of the distribution of these binding sites demonstrated
that the regions -500 upstream of the transcription start site in IFN-inducible genes are enriched
in putative binding sites for these transcription factors. Based on selected combinations of the sites
whose frequencies were significantly higher than in the other functional gene groups, we developed
methods for the prediction of the IFN-inducible promoters and enhancers. We analyzed 1004
sequences of the IFN-inducible genes compiled using microarray data analyses and also about
10,000 human gene sequences from the EPD and RefSeq databases; 74 of 1,664 human genes
annotated in EPD were significantly IFN-inducible.

Conclusion: Analyses of several control datasets demonstrated that the developed methods have
a high accuracy of prediction of the IFN-inducible genes. Application of these methods to several
datasets suggested that the number of the IFN-inducible genes is approximately 1500–2000 in the
human genome.

Background
Computational analysis of the genomes in combination
with large-scale expression studies becomes increasingly
important for detailed functional annotation of the
eukaryotic and prokaryotic genomes. Analysis of regula-

tory regions of protein-coding genes is an important
aspect of functional annotation. The most frequently used
approach to the study of the regulatory regions of genes
relies on search of the so-called transcriptional regulatory
modules. These modules are the gene regions enriched in
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the binding sites (BSs) for a set of particular transcription
factors (TFs). The underlying idea is that a specific tran-
scription of a particular group of genes is regulated by
multiple interactions of a set of TFs. At present, several
methods for the identification of the transcriptional regu-
latory modules are available. These include, for example,
ModuleSearcher and ModuleScanner [1], CONFAC [2],
MSCAN [3], Composite Module Analyst [4].

A biomedically important aspect of the functional anno-
tation of the human genome is the identification of the
interferon (IFN)-controlled genes. The IFNs are cytokines
that possess diverse biological properties. IFNs of the type
I, IFNs-α and IFN-β activate cells of the immune system
and modulate cell differentiation [5]. The IFN of the type
II, IFN-γ, is important for the development of antibacterial
and antiparasitic immune responses [6]. It has been also
shown that it is involved in the development of some
autoimmune diseases [7]. The interaction of the IFNs with
cell surface receptors activates the JAK-STAT signal trans-
duction pathway resulting in the activation of the TFs
ISGF3 (the type I IFNs) and STAT1 (the type II IFN)
[5,8,9]. Some members of the IRF family of TFs [10] are
also critical for functioning of the IFN system [11]. These
IRFs regulate the cell cycle; they also affect antigen presen-
tation and production of nitric oxide [12]. Interactions of
the ISGF3, STAT1, and IRFs with their BSs in the regula-
tory regions of the IFN-stimulated genes (ISGs) enhance
their transcription.

Despite the long-standing studies of the IFN system, the
intricate mechanisms of its function and the contribution
of individual ISGs to the development of the immune
response remain unclear in many aspects. Moreover, by
far not all the ISGs have been identified as yet. In particu-
lar, support for this comes from the discrepancy between
the reported estimates of the ISG number in the human
genome, more than 1000 [13,14], and the dozens well
studied.

The goal of this study was to reveal the transcriptional reg-
ulatory modules that are most specific to the ISGs of three
types: the arbitrary IFN-inducible genes (stimulated by
any IFN), the genes induced by the type I IFNs, and the
genes stimulated by the type II IFNs. We chose a way dif-
ferent from the currently used approaches, which are
based on universal descriptors applicable to diverse gene
families. MSCAN [3] and Composite Module Analyst [4]
are good examples of bioinformatics tools that use such
methods. We abandoned universality for a more detailed
analysis of IFN-stimulated genes through identification of
their most specific BS patterns. Instead of the sophisti-
cated methods for a universal description of the transcrip-
tional regulatory modules, we preferred relatively simple
recognition methods adapted for analysis of specific

classes of IFN-inducible modules. The improved detection
of the potential ISGs by the computer-assisted approaches
might provide a better understanding of their underlying
mechanisms and side effects of the popular IFN therapy.

Results and discussion
Distribution of the IRF1, ISGF3, STAT1, and NF-κB binding 
sites in the ISG sequences
We developed methods for the recognition of the 20 BSs
including BSs for TF IRF1, ISGF3, STAT1, and NF-κB, the
key regulators of the IFN system. For each BS type, we
included all available experimentally verified sites. Each
sample contained at least 30 BSs. To develop the methods,
we chose only those site types that are known to have the
strongest effects at the transcription level of ISGs. Using
the developed methods (described in the Methods sec-
tion), the localization patterns of the putative BSs in the
regions spanning from -5000 to +2000 bp with respect to
the TSS in the training sample of the ISGs (training-ISG
set) were analyzed (Fig. 1a). It is generally accepted that
the promoter regions are enriched in BSs for various TFs.
For IRF1, ISGF3, and STAT1, the density of the putative
BSs in the region from -200 to +1 bp with respect to the
TSS is twofold higher than in the rest of the region. In this
region, the putative BSs for IRF1 and ISGF3 were present
in the majority of genes (85% and 77%, respectively) and
STAT1 BSs were detected in 20% of the genes. By contrast,
no considerable increase in the density was observed in
the region near the TSS for the putative NF-κB BSs. In rec-
ognition of the putative BSs here and further, in addition
to the common threshold, we used the additional thresh-
old values a2* needed for statistical simulation (see Meth-
ods). They were adapted in a way to maximally reduce the
number of false positives by omitting not more than half
of the actual sites of the training samples. Stating it other-
wise, reliability of the predicted sites was provided by rea-
sonable omission of actual, but weak, sites.

It should be noted that the experimentally confirmed BSs
for IRF1, ISGF3, and STAT1 were identified in 39%, 29%,
and 13% of these genes, respectively (Fig. 1b). This disa-
greement between the number of the putative and experi-
mentally confirmed BSs suggested that a substantial
fraction of these genes have been poorly studied, thus
many of their BSs remain unknown. This applies not only
to the ISGs, novel BSs are increasingly revealed in the reg-
ulatory regions of many genes. A number of undetected
BSs may be especially large for regulatory regions located
in great distances from the TSSs. To confirm this, we refer
to the results of ChIP-chip data [15] analysis. It has been
found that only 15% of the experimentally detected BSs
for TF MYC are at a distance of <200 bp from the TSS, 33%
at <1000 bp, and 49% are by more than 10000 bp away
from the TSS. However, the BSs for MYC stored in TRANS-
FAC are differently located relative to the TSS, namely
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56% of the BSs are at a distance of <200 bp from the TSS,
67% are at <1000 bp, and none is further away than
10000 bp from it. A similar distance distribution was
observed for the MYC BSs stored in TRRD. Thus, in terms

of the experimentally verified MYC BSs from the TRANS-
FAC and TRRD databases, the site location near the TSS
prevails. By contrast, in terms of the ChIP-chip experi-
ments, there is no such prevalence. The reason for the dis-

The occurrence frequencies of the IRF1, ISGF3, STAT1, and NF-κB binding sites in the 5'-flanking regions from the training-ISG set with respect to the TSSFigure 1
The occurrence frequencies of the IRF1, ISGF3, STAT1, and NF-κB binding sites in the 5'-flanking regions 
from the training-ISG set with respect to the TSS. The TSS is designated as 0 along the X-axis; Y-axis, the occurrence 
frequency of a BS within 200 bp region normalized for gene number in the sample; a) putative binding sites; b) true experimen-
tally confirmed sites.
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crepancy is not the poor annotation of the BSs in the
TRANSFAC or TRRD databases. The reason is that many
genes are still insufficiently studied. As a rule, until
recently, researchers focused their attention on the pro-
moter regions, and the regions far beyond TSSs that con-
tain the functional sites were often left unnoticed.

In general, presence of unknown remote regulatory
regions might cause substantial problems for computa-
tional analyses. However, our study of the ISG promoters
demonstrated that the vast majority of BSs are located
near TSSs. To delineate the structural features of ISGs, the
regulatory regions of 3 functional groups of genes were
compared. The gene regions spanning from -500 to +500
bp with respect to the TSSs were examined; 1664 random
human promoters from the EPD (control-EPD set) were
used as a control. There was a severalfold density excess of
the putative BSs for the IRF1, ISGF3, and STAT1 in the [-
400; -1] region of ISGs (see Additional file 1: Distribution
of IRF1, ISGF3, STAT1, and NF-κB binding sites in differ-
ent gene groups), whereas the density excess was less pro-
nounced in some other regions (data not shown). For this
reason, we further analyzed the [-500; +300] region that
was found to be important in determination of the specif-
icity of the ISG regulatory regions. Omission of the sites
included in the training samples for site recognition did
not affect the distribution feature (Table 1). Differences
between the training-ISG set and the other gene groups
are shown in Table 1.

Correct regulation of the gene expression is provided not
only by the presence of BSs of particular types, it also
requires specific localization of BSs with respect to TSSs
and each other. In the detection of the characteristic fea-
tures of the BS localization in ISGs, not only the key regu-
lators, but also their possible interactions with the other
regulators must be taken into account. In addition to the
distribution of the main regulators (see Additional file 1:
Distribution of IRF1, ISGF3, STAT1, and NF-κB binding
sites in different gene groups), we checked the distribu-
tion of the putative BSs for another 14 TFs, namely, AP1,
C/EBP, E2F, GATA1, GR, HNF1, HNF3, HNF4, MyoD, NF-

Y, OCT1, SF1, Sp1, and TATA-box. Only a few BSs (AP1,
GATA1, OCT1, Sp1, and TATA-box) showed the higher
density specific to the ISGs in the region of interest. Next,
we turned to analysis of the frequencies of the sites for the
main regulators and these TFs. About 4 hundreds of vari-
ous site combinations were examined. Emphasis was on
the combinations of the putative BSs of the key regulators
and also their combinations with the sites of the other
types. Of these, 158 combinations whose occurrence fre-
quencies in the training-ISG set were significantly differ-
ent from these in the control sets were selected. Most BS
pairs were composed of combinations involving BSs of
the key regulators, including their tandem repeats. Taking
advantage of individual sites, their combinations and
information about the type and level of induction of each
gene of the training-ISG set, we developed 3 methods for
the recognition of the IFN-inducible regions in DNA. In
order to do this, we compiled two subsamples from the
training-ISG set; the genes mainly induced by the IFNsty-
peI (training-ISG subset 1) were assigned to the first sub-
sample and those by the IFNγ to the second subsample
(training-ISG subset 2). The recognition methods for the
IFN-inducible regions were as follows:

i. method 0, any IFN-inducible region (induction by IFN
of any type);

ii. method 1, promoter or regulatory region inducible by
type I IFNs (IFNα, IFNβ);

iii. method 2, promoter or regulatory region of the type II
IFN (IFNγ) -inducible genes.

Each method was based on the patterns obtained by com-
parison of the respective training-ISG set and subsets 1,2
with the control-EPD set. The patterns selected for each
method are given in Tables 2, 3, and 4, respectively. The
resulting patterns were the individual sites with defined
disposition relative to TSS or a combination of two sites.
Individual sites were identified using the asymptotical sta-
tistical test for comparison of two binomial variables. Site
pairs were selected using the standard χ2 test based on the

Table 1: Relative occurrence frequencies of the BSs in the promoter regions of genes grouped according to functional activity

Relative occurrence frequency of a site in a sample

BS (position with 
respect to the TSS)

training-ISG set training-ISG set excl.* control-Gluco set control-LipM set control-EPD set ISGs/EPD ratio

IRF1 (-200 to -1) 0.77 0.70 0.21 0.18 0.21 3.67
ISGF3 (-100 to -1) 0.28 0.19 0.00 0.00 0.05 5.60
ISGF3 (-200 to -1) 1.00 0.85 0.08 0.17 0.10 10.00
STAT1 (-200 to +1) 0.19 0.15 0.05 0.00 0.08 2.38
NF-κB (-100 to +100) 0.93 0.80 0.46 0.46 0.12 2.02

*BSs used for drawing training samples for site recognition were omitted
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Table 2: Patterns for method 0, recognition of any IFN-inducible DNA region (stimulation by any IFN)

Site 1 Site 2 W = F1/F2 (weight for the pattern)

strongISGF3 (b)*
from -350 to +350**

- 8.57

strong ISGF3 (+)
from -350 to +350

- 10.48

ISGF3 (b)
from -200 to +50

- 9.41

ISGF3 (+)
from -200 to +50

ISGF3 (+)
from -500 to +1

9.41

strong ISGF3 (+)
from +130 to +350

ISGF3 (+)
from +130 to +350

3.14

strong STAT1 (-)
from -350 to +350

- 9.36

STAT1 (-)
from -350 to +350

- 3.66

STAT1 (-)
from -200 to +50

STAT1 (+)
from -350 to +350

3.76

STAT1 (-)
from +130 to +350

- 3.22

strong IRF1 (b)
from -350 to +350

- 5.0

IRF1 (-)
from -650 to +350

- 5.18

IRF1 (-)
from -200 to +50

IRF1 (-)
from +130 to +350

3.50

AP1 (+)
from -500 to -300

- 1.20

AP1 (b)
from -300 to +1

- 1.13

NF-Y (-)
from -150 to +50

- 1.28

OCT1 (+)
from -300 to +50

- 1.31

NF-κB (-)
from -300 to +1

NF-κB (+)
from -300 to +1

5.16

ISGF3 (b)
from -200 to +50

STAT1 (+)
from -350 to +350

3.64

STAT1 (b)
from +130 to +350

TATA (+)
from -100 to +70

3.50

STAT1 (b)
from -300 to +1

TATA (+)
from -100 to +70

13.0

STAT1 (-)
from +130 to +350

TATA (+)
from -100 to +70

3.0

AP1 (b)
from -300 to +1

TATA (+)
from -100 to +70

2.0

STAT1 (+)
from -350 to +350

IRF1 (b)
from -300 to +1

3.74

IRF1 (+)
from -350 to +350

ISGF3 (b)
from -500 to +1

5.1

strong ISGF3 (b)
from -600 to +350

STAT1 (b)
from -650 to +350

10.8

ISGF3 (b)
from -200 to +50

STAT1 (b)
from -650 to +350

5.8

strong IRF1 (b)
from -650 to +350

STAT1 (b)
from -650 to +350

10.8

strong IRF1 (b)
from -650 to +350

strong ISGF3 (b)
from -600 to +350

5.8

ISGF3 (b)
from -200 to +50

strong IRF1 (b)
from -650 to +350

3.8

strong ISGF3 (b)
from -600 to +350

IRF1 (b)
from -500 to +1

4.8

ISGF3 (b)
from -200 to +50

IRF1 (b)
from -500 to +1

4.8
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2 × 2-contingency tables (for details, see the Methods sec-
tion 'Building of recognition methods for the interferon-
inducible promoters and enhancers').

Dashes in the second columns of Tables 2, 3, and 4 indi-
cate the individual sites. The weight of each pattern, W =
F1/F2 (F1 is the occurrence frequency in the training-ISG
set, F2 that in the EPD-control set, see Methods) is next to
it. The weight indicates how many times more frequently
the pattern occurs in the training-ISG set compared to the
control-EPD set. Tables 2, 3, and 4 contain all the selected
patterns whose occurrence frequencies in the training-ISG
set significantly exceed those in the control-EPD set.

To check how the methods work, information from 16
articles on the ISGs identified by microarrays (Additional
file 2: List of references for drawing the ISGs samples from
microarray data) was assessed. Based on this information,
we compiled a sample of the promoter regions of 1005
ISGs (the microarray-ISG set). However, the information
about the type and extent of IFN induction for some of the
genes was incomplete. For this reason, two subsamples,
microarray-ISG subset 1 and microarray-ISG subset 2,
were derived from microarray-ISG set. The microarray-ISG
subset 1 contained only gene sequences whose induction
by the type I IFNs (IFNα, IFNβ) was more than twofold
during the first 12 hours of IFN stimulation. Thus, most
genes whose induction by IFNs might have been caused
indirectly and also the "weak" ISGs were ignored. This
made the microarray-ISG subset 1 (668 genes) contain
less falsely included genes than the microarray-ISG set.
The microarray-ISG subset 2 was composed of the
sequences of the genes induced by the type II IFN; the
restrictions imposed on their inclusion for the microarray-
ISG subset 2 were the same as for the microarray-ISG sub-
set 1. Since there were much less data for the fold induc-
tion by the IFNγ than for the type I IFNs, microarray-ISG

subset 2 ultimately contained 97 genes versus the 668
genes in the microarray-ISG subset 1.

What if the microarray-ISG set contained some "weak"
ISGs and/or falsely included genes? This may be the case
because only 23.3% of the genes were recognized (Table
5). By contrast, in the microarray-ISG subset 1 and micro-
array-ISG subset 2, recognition was much better and com-
parable to that in the training-ISG-set for both the short
and long sequences. This result suggested that the micro-
array-ISG subset 1 and the microarray-ISG subset 2 were
quite homogenous and representative.

At restricted sequence length, the recognition was poorer
because the IFN-inducible enhancers could be far away
from TSSs. ISGs containing enhancers at the distance of
~1000 bp upstream of TSSs were not recognizable after
sequences were truncated.

Using the developed methods at various threshold levels,
DNA sequences from -1000 to +1000 bp with respect to
the TSS from gene groups were analyzed. The dependence
of recognition on the function threshold value is graphi-
cally represented in Fig. 2. Method 2 outperformed the
other two: it recognized the regions responsive to any IFN
where, even at the maximum cut-off (0.7), about 1% of
the genes were recognized in the EPD and RefSeq samples,
but recognition remained high, at 12.5%, in the training-
ISG set (Fig. 2a). Method 2 (recognition of the IFN-γ-
inducible genes, Fig. 2c) performed quite similarly.
Method 1 (recognition of the type I IFN-inducible genes)
requires improvement because of a high overprediction
(Fig. 2b).

Search of the potential ISGs in the human genome
To minimize the overpredictions admitted in the search of
the potential ISGs in the human genome, we applied

NF-κB (b)
from -500 to +1

strong IRF1 (b)
from -650 to +350

8.8

NF-κB (b)
from -500 to +1

strong IRF1 (b)
from -500 to +1

3.8

NF-κB (b)
from -500 to +1

AP1 (b)
from -500 to +1

1.8

IRF1 (b)
from -200 to +50

NF-κB (b)
from -500 to +1

2.0

AP1 (b)
from -500 to +1

strong IRF1 (b)
from -650 to +350

3.8

AP1 (b)
from -500 to +1

IRF1 (b)
from -500 to +1

1.8

ISGF3 (b)
from -200 to +50

OCT1 (b)
from -500 to +1

1.4

STAT1 (+)
from -300 to +1

OCT1 (b)
from -500 to +1

1.3

*b (both) - any direction of a site; + forward DNA strand; - reverse DNA strand;
** Location of a site with respect to the TSS

Table 2: Patterns for method 0, recognition of any IFN-inducible DNA region (stimulation by any IFN) (Continued)
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together all the three methods. This enabled us to detect
with high significance the early response ISGs with a sev-
eral fold enhancement of the expression in the response to
IFNs. To determine the number of early response ISGs in
the human genome, we used the EPD database [16]
because it contains well-documented TSSs. The -1000 to
+1000 bp regions of the 1664 human genes annotated in
the EPD database were analyzed. The training and control
sets were analyzed in the same way. The recognition per-

formance for the ISGs in the various samples is set out in
Table 6.

Among the 1664 human genes retrieved from EPD, 74
that potentially responded to the IFN induction were rec-
ognized (Table 6). For 60 of these, IFN induction had not
been detected. For the 14 other genes, RNA microarray
analyses provided experimental support for transcription
enhancement by IFN. In 28 of the recognized genes, the -

Table 3: Patterns for method 1, recognition of DNA regions induced by type I IFNs (IFNα, IFNβ)

Site 1 Site 2 W = F1/F2 (weight for the pattern)

strongISGF3 (b)*
from -350 to +350**

- 3.25

ISGF3 (b)
from -200 to +50

- 3.89

ISGF3 (b)
from +130 to +350

- 1.83

STAT1 (+)
from -350 to +350

- 2.29

STAT1 (b)
from -300 to +1

- 1.68

STAT1 (-)
from +130 to +350

- 1.67

strong IRF1 (b)
from -350 to +350

- 2.76

strong IRF1 (+)
from -350 to +350

- 2.0

IRF1 (+)
from +130 to +350

- 2.16

strong NF-κB (-)
from -300 to +1

NF-κB (-)
from -300 to +1

1.8

IRF1 (b)
from -350 to +350

ISGF3 (b)
from -200 to +50

7.64

IRF1 (b)
from -500 to -300

ISGF3 (+)
from -200 to +50

4.25

IRF1 (b)
from -300 to +1

STAT1 (b)
from -350 to +350

9.4

ISGF3 (b)
from -200 to +50

AP1 (b)
from -500 to +1

3.74

IRF1 (b)
from -200 to +50

GATA1 (b)
from -600 to +1

3.45

IRF1 (+)
from -350 to +350

GATA1 (b)
from +45 to +350

2.1

ISGF3 (b)
from -200 to +50

OCT1 (b)
from -500 to +1

2.3

ISGF3 (b)
from -200 to +50

GATA1 (b)
from -600 to +1

2.35

ISGF3 (b)
from -200 to +50

AP1 (b)
from -500 to +1

5.31

ISGF3 (b)
from -200 to +50

OCT1 (b)
from -500 to +1

1.92

STAT1 (b)
from -350 to +350

ISGF3 (b)
from -200 to +50

4.53

STAT1 (b)
from -500 to +1

GATA1 (b)
from +45 to +350

1.92

STAT1 (+)
from -350 to +350

OCT1 (b)
from -500 to +1

2.66

*b (both) - any direction of a site; + forward DNA strand; - reverse DNA strand;
** Location of a site with respect to the TSS
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200 to +50 bp promoter regions were the most sensitive
to IFN induction.

The detected potential ISGs may be grouped by the IFN
biological activities. These groups include immune and
inflammatory responses, regulation of cell proliferation
and differentiation, antitumor effect (Additional file 3:
Putative human ISG recognized by the methods devel-
oped in the EPD database). Genes whose involvement in
biological functions of IFNs was doubtful were regarded

as possible overestimations and they were all assigned to
the possible false-positives.

The regulatory regions of the genes of the IFN system have
been systematically studied for many years. As a conse-
quence, the number of ISGs with well-annotated TSSs
may be relatively high and EPD-set is more enriched in
these genes than the RefSeq-set. Thus, our estimates of the
ISG number in the human genome may turn out to be
much higher than the EPD-based. Given the fact that not

Table 4: Patterns for method 2, recognition of DNA regions stimulated by the type II IFN (IFNγ)

Site 1 Site 2 W = F1/F2 (weight for the pattern)

strong STAT1 (-)
from -350 to +350

STAT1 (-)
from -350 to +350

20.00

STAT1 (-)
from -350 to +350

- 9.36

STAT1 (-)
from +130 to +350

- 4.22

strong IRF1 (b)
from -350 to +350

IRF1 (b)
from -350 to +350

10.0

IRF1 (-)
from -350 to +350

AP1 (b)
from -500 to +1

5.4

IRF1 (b)
from -650 to +350

GATA1 (b)
from -600 to +1

1.17

IRF1 (b)
from -200 to +50

NF-κB (b)
from -500 to +1

6.0

IRF1 (+)
from -500 to +1

OCT1 (b)
from -500 to +1

2.0

IRF1 (+)
from -350 to +350

TATA (+)
from -100 to +70

5.2

STAT1 (-)
from -350 to +350

strong IRF1 (b)
from -650 to +350

10.0

strong STAT1 (-)
from -350 to +350

STAT1 (-)
from -350 to +350

20.00

STAT1 (-)
from -350 to +350

- 9.36

STAT1 (-)
from +130 to +350

- 4.22

strong IRF1 (b)
from -350 to +350

IRF1 (b)
from -350 to +350

10.00

STAT1 (b)
from -500 to +1

strong IRF1 (b)
from -650 to +350

6.1

STAT1 (b)
from -500 to +1

ISGF3 (b)
from -500 to +1

2.1

STAT1 (+)
from -350 to +350

AP1 (b)
from -500 to +1

3.8

STAT1 (+)
from -300 to +1

OCT1 (b)
from -500 to +1

3.3

STAT1 (b)
from -350 to +350

NF-κB (b)
from -500 to +1

4.1

STAT1 (-)
from -130 to +350

TATA (+)
from -100 to +70

4.0

STAT1 (b)
from -300 to +1

TATA (+)
from -100 to +70

8.0

NF-κB (b)
from -500 to +1

AP1 (b)
from -500 to +1

5.4

*b (both) - any direction of a site; + forward DNA strand; - reverse DNA strand;
** Location of a site with respect to the TSS
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all TSSs are well-annotated in the RefSeq, higher under-
predictions in RefSeq-based datasets may be expected
because our ISG recognition was strongly dependent on
the accuracy of TSS detection.

According to our estimates based on EPD and given the
possible overprediction (21 genes of 78, 26.9%), the
human genome contains about 3000 ISGs. However, the
RefSeq-based estimates are more than threefold smaller
(~1000 ISGs). It is likely that the real number lies some-
where between these two numbers, i.e. from 1500 to 2000
ISGs per human genome. This estimate agrees with the
one determined using microarrays. In the primary mono-
cytes from the peripheral blood mononuclear cells from
HCV infected patients at least twofold induction during
the first 6 hours after IFNα treatment was observed for
1012 genes [13], whereas the number of IFNγ-inducible
genes was 632 in macrophages [17]. Our results obtained
by method 2 are consistent with the prediction results for
the IFNγ-inducible genes: 65% of the predicted genes
were, indeed, IFNγ-inducible; 1387 genes out of 13,668
genes were predicted as IFNγ-inducible [18]. In the
HepG2 cell line, 400 genes of 14,112 analyzed genes were
induced more than twofold by IFNα and 405 by IFNγ
[19]. In the HT1080 fibrocarcinoma cell line, over 1000 of
6,800 genes were inducible by the type I IFNs during the
first 6 hours of induction, however, a less than twofold
induction was observed for 75% of them [14]. The gene
sets inducible by different IFNs and in cells of different
types do not overlap entirely. Out of 4600 genes exam-
ined in IFN-treated HeLa, hepatoma cell lines and primary
embryonic hepatocytes, 50 were consistently IFN-induci-
ble, by contrast, the IFN stimulation of another 60 genes
was cell-type specific [20].

We believe that further experimental and computational
studies will provide a better understanding of the genes
involved in IFN induction and ultimately of the molecular
mechanisms of this induction, thereby more precise pre-
diction of the side effects of IFN therapy.

Conclusion
1. Approaches for the recognition of the 20 BSs including
BSs for the key regulators of the IFN system, namely, IRF1,
ISGF3, STAT1, and NF-κB were developed.

2. Specific combinations of various BSs were revealed for
the IFN-inducible regions of the three analyzed types.

3. To provide more efficient tools for ISG recognition, we
devised three computer-assisted methods for the predic-
tion of the IFN-inducible regions relying on the increase
in the occurrence frequency of BS combinations in the 5'-
regions of ISGs.

4. About 200 genes were confidently predicted as ISGs out
of 10,000 gene sequences from in the RefSeq, EPD, and
TRRD databases.

Methods
Samples
The BSs samples of the key regulators (ISGF3, IRF1,
STAT1, and NF-κB) were compiled using the information
stored in TRRD [21]. Sample size varied in the 25–70
range for the sequences of a particular type. Sequence
length was 60 bp. The samples of the other BSs (AP1, C/
EBP, E2F, GATA1, GR, HNF1, HNF3, HNF4, MyoD, NF-Y,
OCT1, SF1, Sp1, and TATA-box) were partly taken from
the TRRD, partly from the SELEX databases [22]. The rec-
ognition methods of all the BSs were built as described
below. To make the training-ISG set, we chose 73 human
genes from the TRRD database for which the IFN induc-
tion was confirmed (Additional file 4: Training sample of
the human ISGs annotated in the TRRD database).

The sample of human glucocorticoid regulated genes
(control-Gluco set) containing 39 promoter sequences
was partly compiled from those stored in TRRD, partly
from the literary and RefSeq data. The sample of the lipid
metabolism genes (control-LipM set) from TRRD was
kindly provided by Ignatieva E.V, it contained 59 human
promoter sequences. The sequences for the microarray
ISG-sets (for the list of articles see Additional file 2: List of
references for drawing the ISGs samples from the micro-
array data), were extracted from the human RefSeq con-

Table 5: Recognition of the IFN-inducible DNA regions in the microarray-derived genes

Sample -5000 to +2000* -1000 to +1000

Microarray-ISG set 23% (31%)** 17.5% (27%)
Microarray-ISG subset 1 49% (54%) 24% (26%)
Microarray-ISG subset 2 37% (37%) 25% (26%)

* Sequence size in a sample with respect to TSS
**The percentage for the ISG-training set is in parentheses
Microarray-ISG subset 1, IFN type I-inducible ISGs
Microarray-ISG subset 2, IFN type II-inducible ISGs
Page 9 of 14
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Dependence of recognition accuracy on the function thresholdFigure 2
Dependence of recognition accuracy on the function threshold. a) method 0; b) method 1; c) method 2.

a) Method 0, recognition of the IFN-inducible genes

0

5

10

15

20

25

30

35

40

0.4 0.57 0.7

Threshold value

R
e

c
o

g
n

iz
e

d
 I

S
G

s
 (

%
 o

f 
s

a
m

p
le

)

IIG-TRRD

LipM

Gluc

EPD

RefSeq

b) Method 1, recognition of the IFN type I -inducible

genes

0

10

20

30

40

50

60

70

0.4 0.57 0.7

Threshold value

R
e

c
o

g
n

iz
e

d
 I
S

G
s

 (
%

 o
f 

s
a

m
p

le
)

IIG-TRRD

LipM

Gluc

EPD

RefSeq

c) Method 2, recognition of the IFN type II -inducible

genes

0

5

10

15

20

25

30

35

0.3 0.5 0.65

Threshold value

R
e
c
o

g
n

iz
e
d

 I
S

G
s
 (

%
 o

f 
s
a
m

p
le

)

IIG-TRRD

LipM

Gluc

EPD

RefSeq



BMC Bioinformatics 2007, 8:56 http://www.biomedcentral.com/1471-2105/8/56
tigs. The control sample of human random promoters
(control-RefSeq set) contained 8285 sequences extracted
from the human RefSeq contigs. The sequences in all sam-
ples, with the exception of the control-EPD set, were 7000
bp long, from -5000 to +2000 bp with respect to TSS. The
control-EPD set contained 1664 human sequences 2000
bp in length, from -1000 to +1000 bp with respect to TSS.

The TSS was determined using either the data stored in the
TRRD database, or the corresponding mRNA annotated in
the RefSeq.

Building of weight matrices
To recognize the BSs, a matrix approach based on the
additive or multiplicative function was used. To construct
the frequency and weight matrices, an iterative method
was developed.

Building of a weight matrix for the description of the
structure of the BSs was based on a detailed analysis of a
given sample of m nucleotide sequences. It was assumed
that each sample sequence of 100 bp contains one and
only one BS whose exact location and DNA strand orien-
tation are, however, unknown. To calculate the weight
matrix, three multiple alignment methods similar to the
Gibbs sampling method, were used. The methods were
different in that the recognition function and the proce-
dures for the transformation of the frequency into weight
matrices were different. The algorithms of the methods
were iterative, each iteration being two-step. To work with
the algorithms, an initial approximation to the frequency
matrix is assumed F = (fij), i = {A,C,G,T} j = 1,...,l, where l
denotes site length, fij is the occurrence frequency of the
nucleotide i at the j-th position of the aligned sample.

At the first iteration step, the frequency matrix F is trans-
formed into the weight matrix W = (wij): W = T(F) by
transformation T. The explicit form of the transformation
T is given below. Moving along the first sample sequence
with 1 bp step, the recognition function value G (the
explicit form of the function is given below) is calculated
for each analyzed sequence fragment l long. The same cal-
culations are done for the reverse strand. The fragment to
which the maximum value of the recognition function

corresponds was chosen as the sole candidate site. Then,
the procedure was applied, one by one, to the other sam-
ple sequences so that ultimately m candidate sites were
detected.

All the m candidates detected at step 1 were aligned taking
into account the strand orientation. A new frequency
matrix was calculated for the obtained alignment. When
the matrix perfectly matched with the preceding F version,
iteration was over. This ended up in an aligned site sample
and a weight matrix corresponding to it.

The three methods used the following versions of the rec-
ognition function G and of the transformation T of the
frequency to the weight matrix:

Method 1
T: wij = fij/(fAj + fCj + fGj + fTj),  (1)

For the given S = s1,...,sl nucleotide sequence l long, the
recognition function G is calculated using the additive
function (2)

Method 2
The transformation is T as in method 1. The G function for
the sequence S is calculated using the multiplicative func-
tion

Method 3
The calculation of the weight matrix is two-step. First, the
transformation used in method 1 is applied, next, the
entropy Ej is calculated for each position j, j = 1,...,l using
formula (3)

G s s( ,..., ) .
,...,

1
1

2l s
i l

W i
i

= ( )
=
∑

G s( ,..., )
,...,

1
1

s W il s
i l

i
=

=
∏

E w wj ij ij= − × ( )
=

∑
i A C G T, , ,

ln( ) 3

Table 6: Recognition of the ISGs for various samples

Sample Total number of sequences in a sample Number of recognized genes Recognized genes, %

control-EPD set 1664 74 4.4
control-RefSeq set 6809 79 1.2
training-ISG set 72 17 23.6
microarray-ISG set 1004 39 3.9
control-Gluco set 70 0 0
control-LipM set 58 0 0
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The final weights wij* are obtained by renormalization of
the initial weights wij by applying formula (4)

wij* = wij/Ej*,  (4),

where Ej* is the modified entropy at the jth position, i.e.

Ej* = {Ej, if Eji > 0.1; 0.1 otherwise}.

To calculate the recognition function, the same additive
function (2) as in method 1 is used.

Three matrices result from treatment of the same sample
sites with the three methods. The matrices do not match,
as a rule, yet they are very similar. Comparative analysis of
each of the 3 built matrices allows to choose the final
matrix as the one that provides the smallest recognition
error of type II (overprediction, α2) at a fixed error of type
I α1 = 15%.

It should be noted that the methods described above for
the derivation of the weight matrices are partly based on
the same principles as the Gibbs sampler approach [23]
for multiple alignment. Both assume that there exists one
and only one site in every nucleotide sequence. In both
cases, the methods are iterative, two-step, closely related
to the Estimation-Maximization technique. There is an
essential difference between the two, however. Gibbs
sampler approach relies on conditional probabilities
within the framework of the Bayesian model. The method
we propose for the matrix building is not based on the
probability model. With our method, we optimize the
sum of the scores assigned to the BSs in the training-ISG
set.

Method of statistical simulation
To reduce errors of type II, the method of statistical simu-
lation was utilized. If recognition function value was
above the threshold, a greater number (~107) of 500 bp
random sequences with given nucleotide frequencies was
additionally simulated. Nucleotide frequencies were pre-
liminarily calculated in a 500 bp fragment of the analyzed
sequence in whose center the predicted site was located.
The α2 value was obtained by counting the number of site
predictions detected in the simulated random sequences.
The final decision making was based on comparison of

the calculated error α2 with the additional threshold value
α2*;α2* for each site calculated by analysis of the training
sample of the corresponding site. In the process of choice
of the α2* values, the false prediction was minimized pro-
vided that error of type I (α1) did not increase signifi-
cantly.

Error of type I (α1) was calculated on the training sample
by the 4-fold cross-validation technique. Thus, we fitted
the matrix model to the 75% training set of BSs and esti-
mated type I error of the fitted model on the remaining
part (25%) of the training set. Type II error was estimated
by statistical simulation. To do so, we calculated the
nucleotide frequency for each sequence from the control-
EPD set. Then, using the calculated frequencies, the corre-
sponding random sequence was simulated. This was done
under the assumption that the matrix approach is based
on the principle of position independence. Finally, type II
error was estimated as the relative site frequency in all the
simulated sequences.

Table 7 gives the values of type I and type II errors (α1 and
α2, respectively) and also the underestimation values for
the additional control samples (the last column), which
contained the site sequences initially not included in the
training samples. For most BSs included in the additional
control samples, binding of the TFs was confirmed only
indirectly by cross-competition in gel-shift assays.

Building of recognition methods for the interferon-
inducible promoters and enhancers
In building the methods, we analyzed, in a given region,
the occurrence frequencies of key regulator BSs (ISGF3,
IRF1, STAT1, and NF-κB) and combinations of these key
regulator BSs with each other and with the sites of the
other types, namely, AP1, GATA1, OCT1, Sp1, and TATA-
box. Comparison of the training-ISG set with the control-
EPD set was decisive in derivation of the statistically sig-
nificant patterns (individual sites or site pairs).

Only those patterns whose occurrence frequencies in the
training-ISG set significantly exceeded those in the control
set were selected. To identify individual patterns, the gene
regulatory regions from the training and control sets were
examined. The regions were of different lengths (not
shorter than 200 bp) and differently disposed relative to

Table 7: Accuracy of the BS recognition

Binding site for the TF Type I error (α1) underprediction Type II error (α2) overprediction Independent control
(underestimation value at the given α2)

IRF1 24% 9.59E-05 31.8%
ISGF3 25% 6.84E-04 46.2%
NF-κ B 42% 5.32E-04 70.8%
STAT1 43% 8.82E-05 84.6%
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the TSS. Many of the regions overlapped. A site or a site
pair was accepted as a statistically significant pattern, if at
least one of the examined regions was significant. When
several, as a rule, overlapping regions were significant at
the same time, the region with the greatest significance
was given preference.

In selection of individual sites, the statistical test of com-
parison of two binomial variables was applied. With this
test, the site is classified as a pattern, if its relative occur-
rence frequency in the training-ISG set (F1) significantly
exceeded that in the control-EPD set (F2). Here "relative"
meant that the frequencies were normalized and lay in the
0–1 range. The maximally accepted p-value was 0.01. The
standard χ2 test based on the 2 × 2-contingency tables was
used initially for identification of site pairs within the
training-ISG set (p-value ≤ 0.01). In fact, the reached p-
values ≤ 0.001 for most of the chosen site pairs, thereby
supporting the high statistical significance of the results.
Then, only the identified site pairs with occurrence fre-
quency higher in the training-ISG set than in the control-
EPD set were further regarded as patterns.

After selecting the significant patterns, the score at any
position (say, pos_fixed) of an arbitrary nucleotide
sequence SEQ0 was calculated using the following algo-
rithm. Let T1, T2,..., Tm be the m patterns identified on the
basis of analysis of the training-ISG set. Then, the m
weights w1, w2, ..., wm were calculated for fixed position
pos_fixed of the sequence SEQ0:

wi = {1, if the i-th pattern Ti is not present at the corre-
sponding positions with respect to the fixed position
pos_fixed;

Wi = F1/F2, if the i-th pattern Ti is present at the corre-
sponding positions with respect to the fixed position
pos_fixed}, i = 1,...,m.

It should be noted that selected patterns were individual
sites or their pairs at defined distances from the TSS. How-
ever, in calculation of the wi, i = 1,...,m, position pos_fixed,
the presence of the same sites or site pairs equidistant
from the fixed position pos_fixed in the SEQ0 sequence
was checked. The multiplicative function was used to cal-
culate the SCORE for a given pos_fixed position of the
SEQ0.

SCORE = w1 * w2 * ... * wm.  (5)

The function that measures the similarity between the
examined SEQ0 sequence and the training-ISG set from
which the T1, T2, ..., Tm patterns were derived. This is fol-
lowed by the scoring of all the positions of the SEQ0. The
position with the greatest score was ultimately selected.

Each method uses its own set of selected patterns T1, T2, ...,
Tm.

In analysis of an arbitrary sequence, the score was calcu-
lated depending on the selected patterns. The score is cal-
culated by using the multiplicative function (5). A score
was assigned to the prediction by each method.

SCORE1, the ISG of the general type (method 0)

SCORE2, the IFNγ-inducible regions (method 2)

SCORE3, the IFNα/β-inducible regions (method 1)
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