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Abstract
Background: Most existing algorithms for the inference of the structure of gene regulatory
networks from gene expression data assume that the activity levels of transcription factors (TFs)
are proportional to their mRNA levels. This assumption is invalid for most biological systems.
However, one might be able to reconstruct unobserved activity profiles of TFs from the expression
profiles of target genes. A simple model is a two-layer network with unobserved TF variables in the
first layer and observed gene expression variables in the second layer. TFs are connected to
regulated genes by weighted edges. The weights, known as factor loadings, indicate the strength and
direction of regulation. Of particular interest are methods that produce sparse networks, networks
with few edges, since it is known that most genes are regulated by only a small number of TFs, and
most TFs regulate only a small number of genes.

Results: In this paper, we explore the performance of five factor analysis algorithms, Bayesian as
well as classical, on problems with biological context using both simulated and real data. Factor
analysis (FA) models are used in order to describe a larger number of observed variables by a
smaller number of unobserved variables, the factors, whereby all correlation between observed
variables is explained by common factors. Bayesian FA methods allow one to infer sparse networks
by enforcing sparsity through priors. In contrast, in the classical FA, matrix rotation methods are
used to enforce sparsity and thus to increase the interpretability of the inferred factor loadings
matrix. However, we also show that Bayesian FA models that do not impose sparsity through the
priors can still be used for the reconstruction of a gene regulatory network if applied in conjunction
with matrix rotation methods. Finally, we show the added advantage of merging the information
derived from all algorithms in order to obtain a combined result.

Conclusion: Most of the algorithms tested are successful in reconstructing the connectivity
structure as well as the TF profiles. Moreover, we demonstrate that if the underlying network is
sparse it is still possible to reconstruct hidden activity profiles of TFs to some degree without prior
connectivity information.

Background
Factor analysis (FA) as well as principal component anal-
ysis (PCA) is used to describe a number of observed vari-

ables by a smaller number of unobserved variables.
Unlike PCA, FA also includes independent additive meas-
urement errors on the observed variables. FA assumes that
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the observed variables become uncorrelated given a set of
hidden variables called factors. It can also be seen as a clus-
tering method where the variables described by the same
factors are highly correlated, thus belonging to the same
cluster, while the variables depending on different factors
are uncorrelated and placed in different clusters.

FA has been successfully used in a number of areas such as
computer vision, pattern recognition, economics and
more recently in bioinformatics [1-4]. The suitability of
FA for gene expression analysis is also the motivation of
this work. Genes are transcribed into mRNAs which in
turn are translated into proteins. Some of these proteins
activate or inhibit, as transcription factors (TFs), the tran-
scription of a number of other genes creating a complex
gene regulatory network. The number of transcription fac-
tors is much smaller than the number of transcribed genes
and most genes are regulated only by a small number of
transcription factors. Hence, the matrix that describes the
connections between the transcription factors and the reg-
ulated genes is sparse. Using microarrays, mRNA levels of
thousands of genes can be measured simultaneously, but
no direct information is obtained about TF activity. Our
aim is two-fold: to identify the genes regulated by a com-
mon TF, that is, to reconstruct the connectivity structure
and weights in a two-layer network, and to reconstruct the
activity profile of each TF.

Liao et al. [5] have suggested the use of a network compo-
nent analysis (NCA) algorithm for reconstructing the pro-
files of the TFs (see also [6] and [7]), while Boulesteix and
Strimmer [8] have used an approach based on partial least
squares regression. They have both shown that such meth-
ods can faithfully reconstruct the expression profiles of
the TFs. However, both methods rely heavily on the avail-
ability of connectivity information. Nonzero positions in
the factor loadings matrix, which describes the connections
between the factors and the genes, need to be specified in
advance. The algorithms then estimate the values at these
positions (which might turn out to be zero). This is a
strong limitation since often only little information about
genes regulated by specific TFs is available. FA models are
faced with a much harder task where both the structure of
the factor loadings matrix and the activity profiles of the
factors have to be reconstructed. Independent component
analysis (ICA) has also been widely used in bioinformat-
ics (see for example [9,10] and [11]). This approach
assumes that the transcription factors are statistically inde-
pendent. A comparison of NCA and ICA can be found in
Liao et al. [5], and thus ICA will not be considered further
here. A further advantage of the Bayesian FA models is
that any information about the underlying structure can
be easily incorporated through priors. This improves per-
formance, but is not required for the algorithms to be

applicable in the first place, as in the case of NCA and its
generalisations.

Hinton et al. [12] first introduced an EM algorithm for fac-
tor analysis in order to model the manifolds of digitised
images of handwritten digits. Later Ghahramani and Hin-
ton [13] presented an exact EM algorithm for both factor
analyzers and mixtures of factor analyzers. More recently,
Utsugi and Kumagai [14] used a Gibbs sampler instead of
the EM algorithm suggested by Ghahramani and Hinton
[13] for mixtures of factor analyzers. West [3] was the first
to introduce Bayesian factor analysis in the bioinformatics
field. To accommodate the required sparsity regarding the
connections between the factors and the genes, he sug-
gested the use of a mixture prior on the factor loadings
matrix. As is shown in the results section, the predicted
factor loadings matrix has the desired sparsity, at the
expense of increasing computing time as the number of
hidden variables increases. Recently, Sabatti and James [4]
have used the framework by West [3] for the reconstruc-
tion of transcription factor profiles. In order to avoid the
computational burden of estimating the factor loadings
matrix at each step of the Gibbs sampler and to facilitate
the reconstruction process, they set a large number of
entries to zero based on information obtained from the
Vocabulon algorithm [15]. This algorithm scans DNA
sequences for multiple motifs and associates with each
transcription factor a probability of binding to a specific
site. This approach resembles the approach of Liao et al.
[5], and Boulesteix and Strimmer [8] where the structure
of the factor loadings matrix is given in advance.

Note that the algorithms of Ghahramani and Hinton [13],
and Utsugi and Kumagai [14] have not previously been
applied to biological data, and that the algorithm of Sab-
atti and James [4] is an adaptation of the algorithm of
West [3] with the difference that an informative prior is
used for the factor loadings matrix. Also, Sabatti and
James [4] applied the FA model to yeast and E. coli data,
while West [3] applied his algorithm to cancer data.

In this paper, we suggest the use of Fokoue's algorithm
[16] as an alternative to West's algorithm [3]. This algo-
rithm utilises a Gamma prior distribution on the variance
of the factor loadings matrix that imposes the required
sparsity but, at the same time, avoids the computational
burden introduced by the use of a mixture prior [3]. Since
this algorithm avoids the combinatorial problem of
West's algorithm, a prior knowledge on the underlying
model is not required. At the same time, we give a thor-
ough review of all FA algorithms mentioned above and
examine the applicability of those algorithms to biologi-
cal data. To the best of our knowledge such a comparison
of FA algorithms in the scope of analyzing microarray data
has not been presented before. Moreover, we extend these
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algorithms by suggesting a further factor rotation analysis
which produces additional sparsity of the factor loadings
matrix. This additional sparsity not only facilitates the
interpretation of the results, but it is also useful in a bio-
logical context where a very sparse matrix is required.
Finally, we show that merging the information provided
by each algorithm to obtain a combined result leads to
better performance. The algorithms are compared based
on their ability to reconstruct the underlying factor load-
ings matrix and the profiles of the transcription factors.

The comparison is done on both simulated data where the
true answer is known and on experimental data. We eval-
uate the performance of the algorithms on the Hemo-
globin data obtained by Liao et al. [5] and on the
Escherichia coli (E. coli) data in Kao et al. [6]. Although
time series data show correlation that is ignored in a factor
analysis, which in fact assumes independence across data
points, we used these data sets for comparison of our
results with that in Liao et al. [5], Kao et al. [6], and Boul-
esteix and Strimmer [8].

Factor analysis model
Let us assume that we have a random observed vector var-
iable x of P dimensions, x = (x1,..., xP)'. We denote an
instance of this vector with a superscript n and we assume
that we have N such instances, xn where n = 1,..., N. Simi-
larly, f = (f1,..., fK)' is a vector of K hidden variables, known
as factors. Note that the number K of factors is always
smaller than or equal to the number P of observed varia-
bles. The factor analysis model states that the observed
variables are a linear combination of the factors plus a
mean and an error term. For case n

where μ = (μ1,..., μP)' and εn = ( ,..., )' are column vec-

tors of dimension P with elements corresponding to the
mean and the error of the P observed variables. The vector

μ is the same for all cases. Λ is the unobserved transition
matrix also referred to as the factor loadings matrix. The fac-
tor loadings matrix has P × K dimensions. That is, each
column corresponds to a factor and each row corresponds
to an observed variable. The entries of the factor loadings
matrix indicate the strength of the dependence of each

observed variable on each factor. For example, if λpk is

zero, then variable xp is independent of factor fk. In matrix

form equation 1 is

where X = (x1,..., xN), F = (f1,..., fN), E = (ε1,..., εN), M = μeN

with eN an N dimensional row vector of ones. FA models

assume that the error terms εn are independent, and mul-
tivariate normally distributed with mean zero and covari-

ance matrix Ψ, εn ~ (0, Ψ), where Ψ = diag( ,..., ).

Thus the probability distribution of x for each observed
case n has a multivariate normal density given by

or in matrix notation

where tr is the trace, the sum of the diagonal elements. In
the methods section, we discuss in detail the prior and
posterior probabilities of the parameters F, μ, Λ and Ψ, as
well as algorithms for their estimation.

Identifiability problems
As shown in equation 5 in the methods section, the com-
plete density of the data, when factors are integrated out,
is given by a normal distribution with covariance matrix
ΛΣf Λ' + Ψ. There is a scale identifiability problem associ-
ated with Λ and Σf. In order to avoid this problem, we
could either restrict the columns of Λ to unit vectors or set
Σf to the identity matrix. The second approach is often pre-
ferred in factor analysis.

There is also an identifiability problem associated with
equation 2. Let us assume that we have an orthogonal
matrix Q of dimensions K × K with QQ' = Q'Q = IK. Then
we can have

ΛF = ΛQQ'F = Λ*F*

with cov(F*) = cov(F). That is, it is not possible to distin-
guish between Λ and all its possible orthogonal transfor-
mations Λ* based on knowledge of the product ΛF only.
However, as we show in the results section, if the loadings
matrix underlying the data generating process is sparse
enough, it can often be reconstructed. This can be done
either by using sparsity priors on the entries of the load-
ings matrix in a Bayesian setting or by orthogonal rota-
tions enforcing sparsity (see methods section).

Note that orthogonal transformations also include per-
mutations of the factors. Factors could be ordered by the
amount of variance explained. Or, as in the case of regula-
tory networks, we would have to map known TFs to the
inferred factors. In Sabatti and James [4], the factors are
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constrained by assigning a priori zero values to the factor
loadings matrix. Here, we map the TFs to the inferred fac-
tors based on previous knowledge about their activity pro-
files, as for example reported in Kao et al. [6].

Results and Discussion
We compare the algorithms by Ghahramani and Hinton
[13] (Z), Utsugi and Kumagai [14] (U), Fokoue [16] (F),
and West [3] (W) on simulated and real biological data.
Algorithm W is based on updating hidden indicator vari-
ables representing network connections. For a full explo-
ration of the posterior probability, all possible
combinations of hidden values need to be evaluated, thus
an exponential number of combinations of these varia-
bles. We therefore suggest and test a version (Ws) of the
algorithm with independent updates of hidden variables.
We also compare these Bayesian FA algorithms with clas-
sical FA (as implemented in the Matlab function factoran
(M)).

In order to evaluate the strengths and weakness of such
algorithms we simulate comparatively 'easy' data (that is
from linear models) to be able to focus on the question
how far sparsity in the connectivity allows identification
of the loadings and the factor matrix. Moreover, as shown
in the PhD thesis by Pournara [17] the assumption of lin-
earity is not a severe one given the small amount of data
and the significant amounts of noise present in micro-
array data, especially after taking logarithms of mRNA
abundance levels or ratios (see also Kao et al. [6]). In a sec-
ond step, instead of resorting to simulated nonlinear data,
which would have invited questions about the choice of
particular nonlinear functional forms, we apply the algo-
rithms to real microarray data and evaluate their perform-
ance there directly.

Simulated networks

We test the algorithms on simulated networks. For the
generation of random networks we start with a descrip-
tion of network characteristics such as the indegree distri-
bution of genes and outdegree distributions of TFs, which
we take from known regulatory networks of E. coli. For
each TF, we then select random genes subject to these con-
straints. The activity levels of the factors F are drawn from
a Gaussian distribution with zero mean and covariance

matrix I. The vector μ of means is set to zero. All non-zero
loadings are set to 1. A noise term Ep is added in each

dimension p with zero mean and variance  as

where  is the variance of the data in dimension p, and

snr is a signal to noise ratio. We evaluate the performance
of the algorithms by calculating the mean of squared error

(MSE) for the predicted factor loadings matrix Λ and the
factor matrix F. We identify the labels of the factors by
choosing the column permutation of F that gives the
smallest MSE.

As discussed above, the loadings and factor matrices are
only identifiable up to a rotation. Sparsity of the true load-
ings matrix helps to overcome this lack in identifiability.
In algorithms F and W the parameters are estimated by
imposing sparsity on the loadings matrix directly. Others,
not imposing any prior sparsity, cannot be expected to
find the correct solution without further processing, for
example, by orthogonal transformations to a sparse form.
Results can be improved by normalising the column vec-
tors of the loadings matrix before the transformation, that
is, by dividing each vector by its Euclidean length. The
inverse of the orthogonal transformation of the loadings
matrix is used to transform the factor matrix correspond-
ingly. Finally, in order to assess how successful a factor
analysis is independently of the identifiability problem
for orthogonal transformations, we apply a procrustes
orthogonal transformation (that is, one minimising
squared vector distances, see methods section) of the col-
umn vectors of the reconstructed loadings matrix onto the
column vectors of the true loadings matrix. Such rotation
is possible since in the case of simulated data the true
loadings matrix is known.

Simulated E. coli networks
We assume that there are only a few TFs in E. coli that con-
trol the expression profiles of most genes. This assump-
tion is also supported by the connectivity matrix as
inferred from RegulonDB [18] and the current literature
in Kao et al. [6]. The matrix is reproduced in Figure 1(a).
It is very sparse with most genes regulated by 1 to 3 TFs,
and with only a few TFs regulating a larger number of
genes as shown in Figures 1(b) and 1(c).

We generated random networks consisting of 50 genes
and 8 TFs. Since the performance of the algorithms
depends on the number of nonzero entries in the loadings
matrix Λ, we generated networks with densities ranging
from 15 to 40 percent of nonzero entries. Figure 2 shows
the distributions of the genes and TFs for three networks
with densities of 15, 25 and 40 percent. Networks with
density less than 25 have distributions similar to that in
the E. coli network of Figure 1.

Figure 3(a) shows the MSE for the Λ matrix for all the FA
algorithms and for different network densities. Shown are
the mean value for three random networks for each den-
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sity. From each network 100 data points were generated,
and the snr was set to 10. For sparse networks algorithms
W and F give a smaller MSE than the other algorithms.
However, both algorithms perform worse than algorithms
Z and U on dense networks. The sparsity priors in W and
F obviously hamper reconstruction of dense networks.
Classical FA shows an average performance for sparse net-
works but decreasing performance for dense ones. Algo-
rithm W performs better than algorithm F only for
extremely sparse networks. The version Ws of algorithm W
with independent updates of entries in Λ gives results sim-
ilar to that of W which uses a block update, but with a
much faster Gibbs sampling step.

Figure 3(a) also shows the MSE for the varimax and pro-
crustes rotated matrix Λrot. Varimax and quartimax rota-
tion give similar results. The equamax rotation gives a
slightly higher MSE for sparse matrices and lower MSE for
dense matrices (results not shown). Once a varimax rota-
tion is applied to matrices obtained by the FA algorithms,
the difference between them regarding the MSE is signifi-
cantly reduced. It appears that the performance of algo-
rithm F for sparse matrices is better without a varimax
rotation; actually so much so that algorithm F is still better
than all the other algorithms even after application of var-
imax. The procrustes rotation indicates the ability of all
the FA algorithms to reconstruct a factor loadings matrix
that has a very small MSE. However, it also shows that
finding the best possible rotation is difficult.

Two more tests were performed to investigate the behav-
ior of the FA algorithms on datasets of different size (rang-
ing from 25 to 100 cases) and data generated with
different values of snr (ranging from 0.5 to 100). Note that
the classical FA algorithm uses the covariance matrix of
the data and thus the number of cases must be greater

than the number of variables. That is, the factoran script
was not run for datasets of 25 cases. These two tests were
applied to networks with density 15. Figure 3(b) shows
again that algorithms Z and U perform similarly regard-
less of the number of cases in the dataset. Moreover, algo-
rithms F and W also perform similarly and have a much
smaller MSE than the other algorithms. Once the varimax
rotation is applied, all the algorithms give a similar per-
formance with a smaller MSE achieved as the number of
cases increases. For sparse networks with small densities
even a very small dataset is enough to reconstruct the fac-
tor loadings matrix. The procrustes rotation indicates that
algorithm W produces a factor loadings matrix which, if
properly rotated, is very close to the true matrix for very
sparse networks.

Figure 3(c) shows the results for different values of snr. As
the amount of noise increases, the performance of most
algorithms decreases. Algorithm F has the best perform-
ance overall. Varimax rotation improves the performances
of the other algorithms and makes them comparable to
the results of F and W. Note that algorithm W seems to
perform worse when the data are free of noise (snr 100)
than when there is at least some small amount of noise
(snr 10). However, when we apply varimax rotation to
this algorithm we see that the performance decreases
indeed with increasing amounts of noise.

Figure 4(a) shows the change in the log likelihood for a
chosen representative run over 3000 cycles of the Gibbs
sampling for algorithms U, F and W. It suggests that all
algorithms converge, but algorithm F converges faster
than the others. Finally, Figure 4(b) shows the average
time consumed by each algorithm. The number of burn-
in and sample collection steps (3000) is the same for all
the FA algorithms. As mentioned above, for very sparse

Factor loadings matrix of the E. coli networkFigure 1
Factor loadings matrix of the E. coli network. (a) connectivity matrix of E. coli as suggested by Kao et al. [6] (a black 
entry corresponds to a non interaction while a white entry corresponds to an interaction), (b) distribution of the number of 
genes regulated by each TF, and (c) distribution of the number of TFs regulating each gene in the E. coli network of (a).
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Distributions of genes and TFs for the simulated networksFigure 2
Distributions of genes and TFs for the simulated networks. The plots on the left hand side show the distribution of the 
number of genes regulated by each TF for three networks with densities 15, 25 and 40, respectively. The right hand side plots 
show the distribution of the number of TFs regulating each gene for the same networks.
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networks algorithm W produces a better result than algo-
rithms Z, U and the classical FA, but it requires considera-
bly longer time for convergence when the number of
factors and genes is large. The results of our version of
algorithm W with single updates (Ws) and algorithm W
are similar, while Ws is approximately 10 times faster than
W. Note that the EM algorithm Z and classical FA are the
fastest FA algorithms by reaching convergence within a
few seconds. Algorithm Z was downloaded from [19]. All
the other FA algorithms were also implemented in MAT-
LAB and run on a 3.06 Ghz Xeon cluster.

Summarising, algorithms F and W perform better on
sparse matrices than algorithms Z, U and M because they
implicitly capture the required sparsity on the factor load-
ings matrix. However, if an appropriate orthogonal rota-
tion of the matrices Λ and F is applied, the performances
of all the FA algorithms are enhanced and become compa-
rable.

Biological data
We further compare the FA algorithms to two biological
datasets; the Hemoglobin dataset from Liao et al. [5],

Evaluation of the FA algorithms on E. coli simulated networksFigure 3
Evaluation of the FA algorithms on E. coli simulated networks. Mean squared errors (MSEs) for Λ, the varimax 
rotated Λvari, and the procrustes rotated Λprocr are shown. The first column (a) shows the MSEs of Λ versus the network den-
sity, the second column (b) shows the MSEs of Λ versus the dataset size, and the third column (c) shows the MSEs of Λ for dif-
ferent values of the snr. These tests are for networks consisting of 50 genes and 8 TFs. Shown are the mean for 3 different 
networks. For the definition of the symbols M, Z, U, F, W and Ws see page 6.
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where the connectivity matrix and the profiles of the fac-
tors are known to some degree, and the E. coli dataset,
where the TF profiles and some interactions have been
suggested by Kao et al. [6].

Hemoglobin dataset
The absorbance spectra of seven hemoglobin solutions
(M 1,..., M 7) were measured in Liao et al. [5]. Each spec-
trum is the outcome of a linear combination of the con-
centrations of three components: oxyhemoglobin
(OxyHb), methemoglobin (MetHb) and cyano-methe-
moglobin (CyanoHb). This dataset consists of 321 meas-
urements for each of the seven hemoglobin solutions.

We first compared the algorithms by Fokoue [16], West
[3], and by Tran et al. [7] (GNCA) fixing the positions of
zeros in the loadings matrix. Note that the algorithm by
Tran et al. [7] requires this connectivity matrix as an input
and is unlikely to work properly without this information.
Tran et al. [7] have presented an extension of the NCA
algorithm [5], the GNCA (generalised network compo-
nent analysis) algorithm. For details regarding the differ-
ent versions of the GNCA algorithm see [7]. We present
the results for versions GNCA and GNCAr. Each algorithm
was run 20 times. For algorithms GNCA and GNCAr, we
consider the run with the least MSE, while for the FA algo-
rithms we consider the average of these runs.

As shown in Figure 5(a), the MSE in the estimation of Λ is
approximately equal for all algorithms except GNCAr, and
it is very similar before and after procrustes rotation. This

figure indicates that fixing the zero loadings simplifies the
task of identifying the underlying factor loadings matrix
considerably. Figure 5(b) shows the MSE in the estima-
tion of the factor profiles, and these profiles are plotted in
Figure 6. The MSE for the reconstruction of the factor pro-
files is close to zero for all the algorithms except the algo-
rithm GNCAr. We used the inverse of the rotation matrix
returned for Λ by the procrustes method to rotate the fac-
tors. The rotation increases the MSE of the factors since the
best rotation for Λ is not necessarily the best rotation for
F. However, it is still considerably small.

We also evaluated the algorithms without providing prior
information about the underlying structure of the factor
loadings matrix. This can, of course, only be done for the
FA algorithms. Figure 7(a) shows the MSE of Λ as given by
each algorithm. It also shows the MSE after performing
varimax, quartimax, equamax, tanh, and procrustes rota-
tion. Most FA algorithms perform equally well in predict-
ing the values of the loadings of Λ. This is probably due to
the fact that the hemoglobin factor loadings matrix is not
sparse enough. Algorithms Z and U depend less on spar-
sity and match the performance of algorithms F and W on
this dataset. However, once we perform varimax rotation
the performance of all the algorithms improves.

The classical FA algorithm (M) performs best according to
the MSE of Λ. However, comparing the MSE of the factors
(Figure 7(b)) its performance is worse. This is also appar-
ent by looking at the factor profiles (Figure 8). Classical
FA optimises the joint likelihood of the loadings matrix

Convergence test and processing timeFigure 4
Convergence test and processing time. (a) convergence test for the Gibbs sampling algorithms, and (b) the average time 
consumed by each algorithm.
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and noise covariance matrix (under a suitable constraint
that guarantees identifiability), which amounts to inte-
grating out the factors. All other algorithms (with the
exception of Z) represent the factors explicitly. This
explains why classical FA is doing better in reconstructing
the loadings but worse in reconstructing factors compared
to the other algorithms.

Algorithm F and W perform quite well on both the recon-
struction of the Λ and the factor profiles. Their perform-
ance is also improved by using any of the four rotation
methods. Varimax rotation also improves the perform-
ance of algorithms Z and U. Again procrustes rotation
shows that we can rotate the estimated Λ to match the true
Λ very closely. However, as shown again by the MSE on
the factors, the best rotation for Λ is not necessarily the
best rotation for the factors.

Figure 7(a) shows the result for algorithm F when entries
of the loadings matrix are restricted to stay close to 0 by a
strong prior (shape parameter 10 for δpk, scale parameter
0.01, see methods section). We also investigated the per-
formance of algorithm F under a vaguer prior on matrix
entries (shape parameter 1 for δpk, scale parameter 0.01).
As shown in Figure 7(c) and 7(d), this setting (Fu) per-
forms better, but once the loadings matrix is rotated, the
improvement is not as significant. Similarly, we set the
prior probability πpk (see methods section) that an entry of

the loadings matrix is nonzero to 1 in algorithm W (Wu)
and to 0.2 (W). As expected, since the connectivity is not
sparse for the hemoglobin data, the difference is small
(Figure 7(c)). With rotation (except the procrustes rota-
tion) the sparse prior seems to do considerably better
though. Finally, the algorithm Ws (with prior probability
0.2) that we have suggested in order to avoid the combi-
natorial problem of algorithm W gives good results and
comparable to the ones by W.

Figure 8 shows the reconstructed factor profiles after var-
imax rotation on the Λ without using prior information
on nonzero entries. It also demonstrates that it is now
harder to reconstruct the factor profiles, as seen in the
greater variability of profiles from different MCMC runs
when compared to Figure 6. All the profiles shown have
very similar likelihoods, indicating that the overall distri-
bution is multimodal. Algorithms F and W perform quite
well. Algorithms Z and U reconstruct the second and third
factors quite well but not as well the first one. As men-
tioned above the reconstruction of the factor profiles by
algorithm M are quite poor, while algorithm F seems to
find the best factor profiles.

Escherichia coli dataset
We evaluated the FA algorithms as well as the algorithm
by Boulesteix and Strimmer [8] (S, as implemented in the
R package plsgenomics) on an E. coli dataset from Kao et al.

Reconstruction of the factor loadings matrix for the Hemoglobin dataFigure 5
Reconstruction of the factor loadings matrix for the Hemoglobin data. Mean square errors (MSEs) for (a) the factor 
loadings matrix Λ and (b) the factors matrix F. The positions of the zero entries in the loadings matrix are given a priori. FA 
stands for the output of a given FA algorithm. The procrustes (P) factor rotation method is applied to this output to indicate 
the performance of the algorithms when the best possible rotation is achieved.
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Reconstruction of the factors matrix for the Hemoglobin dataFigure 6
Reconstruction of the factors matrix for the Hemoglobin data. Shown are (a) the true profiles of OxyHb, MetHb and 
CyanoHb, (b) the reconstructed profiles given by algorithm F, (c) the reconstructed profiles given by algorithm W, (d) the 
reconstructed profiles given by algorithm GNCA, and (e) the reconstructed profiles given by algorithm GNCAr. The positions 
of the zero entries in the loadings matrix are given a priori. The light gray curves are the profiles given by the 20 different 
Gibbs sampling runs, and the black curves are the average profiles. In these figures, the average profile of each factor coincides 
with its profile given by each single run.
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[6]. These data consist of 25 time points for 100 genes.
The first time point was ignored since all the values are
zero. A matrix that indicates possible interactions between
16 TFs and the 100 genes has been suggested by Kao et al.

[6] based on RegulonDB [18] and the current literature.
We will refer to this matrix as the Kao connectivity matrix.
This matrix also indicates whether a TF inhibits or acti-
vates a given gene. Each FA algorithm is run 10 times. The

Reconstruction of the factor loadings matrix for the Hemoglobin dataFigure 7
Reconstruction of the factor loadings matrix for the Hemoglobin data. Mean square errors (MSEs) for (a) and (c) the 
factor loadings matrix Λ, and (b) and (d) the factors matrix F. The positions of the zero entries in the loadings matrix are not 
given a priori. FA stands for the output of a given FA algorithm. On this output, a number of factor rotation methods (varimax 
(V), quartimax (Q), equamax (E), tanh (T) and procrustes (P)) are evaluated based on the MSE. (c) and (d) show the perform-
ance of algorithms F and W under different priors regarding the loadings matrix (for further details see section Hemoglobin 
dataset).
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Reconstruction of the factors matrix for the Hemoglobin dataFigure 8
Reconstruction of the factors matrix for the Hemoglobin data. Shown are (a) the reconstructed profiles given by algo-
rithm Z, (b) the reconstructed profiles given by algorithm U, (c) the reconstructed profiles given by algorithm F, (d) the recon-
structed profiles given by algorithm W, and (e) the reconstructed profiles given by algorithm M. The positions of the zero 
entries in the loadings matrix are not given a priori. The light gray curves are the profiles given by the 20 different Gibbs sam-
pling runs, and the black curves are the average profiles. We also plot with gray the true profiles for an easier comparison. 
These profiles are obtained after performing varimax rotation on the factor loadings matrix.
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following results refer to an average value over these runs.
The classical FA is not used in this analysis since the
number of cases (24) is smaller than the number of
observed variables (100).

Since the GNCA algorithm requires prior knowledge of
zeros in the factor loadings matrix, for comparison we
also run the FA algorithms of Fokoue [16] and West [3]
providing prior information on zeros in the factor load-
ings matrix. Here, algorithms F and Ws treat the connec-
tivity matrix simply as indicating whether there is a
relationship or not between a gene and a TF and ignore
the information on activation or inhibition. However,
one could also include a more detailed prior information.
We consider two different prior matrices for the GNCA
algorithm: one where a simplified connectivity matrix
that only indicates whether an interaction exists or not,
and one with extra information on inhibition and activa-
tion. For each of the two different prior matrices, we run
the GNCA algorithm 10 times, and we only consider the
run with the least sum squared error.

Figure 9(a) shows that all the algorithms produce very
similar TF profiles, that is, given the connectivity matrix,
FA algorithms reconstruct TF profiles as well as GNCA.
The second column in Table 1 shows the MSE deviation of
profiles of algorithms F and Ws from profiles of GNCA
which uses information on activation and inhibition. The
MSE for GNCA is a consequence of using only connectiv-
ity information and no details on activation or inhibition.
This small value of MSE suggests that convergence to a
similar solution for the E. coli dataset is given regardless
whether extra information on activation and inhibition is
provided or not. The comparatively high MSE of algo-
rithm S is due mainly to a few factors which are recon-
structed as fiat.

Figure 9(b) shows the results when no prior information
on connectivity is provided. For comparison, we match
the resulting TF profiles with those of GNCA by minimum
MSE and add the plots of the GNCA TF profiles from Fig-
ure 9(a). As is evident, the FA algorithms in the case of the
E. coli dataset are still capable of reconstructing important
aspects of the TF profiles even without any prior informa-
tion on the connectivity. This is encouraging since prior
information on TF binding is sometimes limited, difficult
to obtain, or not always reliable. The profiles are slightly
rougher than the ones inferred given the connectivity
matrix and the FA algorithms show greater variability.
However, it is still impressive how all FA algorithms are
able to reconstruct the main trends of the TF profiles. The
third column in Table 1 shows the MSE deviation of pro-
files of algorithms Z, U, F and Ws from profiles of GNCA
with activation and inhibition information. The MSE is
about twice as large if no prior information is available.

Finally, we analyse the inferred factor loadings matrix in
greater detail. Such an evaluation is complicated by the
fact that the true connectivity matrix is not fully known.
For evaluating the learned loadings matrix, we treat the
Kao connectivity matrix (Figure 1(a)) as showing true
interactions and true missing interactions. However, we
should keep in mind that the latter is based on partial bio-
logical information and not necessarily complete. Figure
10(a) shows a ROC curve for each algorithm. The true
positive (TP) rate is the proportion of entries above a spec-
ified cutoff among entries which are nonzero according to
the Kao connectivity matrix. The false positive (FP) rate is
the proportion of entries above a specified cutoff among
entries which are zero according to the Kao connectivity
matrix. On average all algorithms give very similar per-
formance. The lack of differences between the algorithms
that implicitly consider sparsity, F and Ws, compared to
the algorithms that do not, Z and U, could be due to the
lack of detailed information in the Kao connectivity
matrix. That is, this matrix has only 0,1 entries and actu-
ally some of the 1 entries could be very close to zero or
exactly zero and in contrast some zero values could be
nonzero. Figure 10(a) also shows a ROC curve that is
based on merging the information gain by each algo-
rithm. That is, we derive a combined factor loadings
matrix by averaging the loading matrices derived by each
algorithm. This combined loadings matrix gives a ROC
curve that is better than any other ROC curve alone.

We also plot, in Figure 10(b), the ROC curve of each algo-
rithm after applying procrustes rotation to the factor load-
ings matrix. Here, we use the Kao connectivity matrix as
the target matrix for the procrustes rotation. The ROC
curves have greatly improved indicating that an appropri-
ate rotation of the learned loadings matrix for each algo-
rithm can lead to a connectivity matrix that is very close to
the Kao connectivity matrix. Again the combined loadings
matrix gives a ROC curve that outperforms each of the
ROC curves given by the FA algorithms.

Conclusion
We discussed and compared the performance of five fac-
tor analysis algorithms presented previously in the litera-
ture. Only one of these algorithms has been previously
applied to biological data. We investigated the applicabil-
ity of the algorithms on microarray data from E. coli, on
data from hemoglobin spectroscopic measurements and
on simulated data. In a gene regulatory context, we aim to
identify regulatory relationships between genes and TFs
and to reconstruct transcription factor activity profiles.
That is, the expression levels of regulated genes are the
observed variables and the TFs are the unobserved varia-
bles. Even after imposing a correlation structure on the
factors, this is still an underdetermined problem. If, how-
ever, we assume that the connectivity matrix is sparse, that
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Reconstruction of the factor profiles for the E. coli dataFigure 9
Reconstruction of the factor profiles for the E. coli data. a) prior connectivity structure is given and (b) no prior con-
nectivity structure is given. Red lines correspond to algorithm GNCA, black lines correspond to GNCA where inhibition and 
activation information is also given, blue lines are for algorithm Z, cyan lines are for algorithm U, green lines correspond to 
algorithm F, purple lines are for algorithm Ws, and brown lines are for algorithm S.
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is, that most genes are regulated by a small number of TFs
and most TFs regulate only a small number of genes, esti-
mation of TF profiles and loadings becomes possible.

The sparsity requirement is implicit in the algorithms by
Fokoue [16] and West [3], and thus these algorithms are
shown to perform very well on sparse simulated networks
where the underlying relationships are linear. However,
we show that the performance of the algorithms by Ghah-
ramani and Hinton [13], and Utsugi and Kumagai [14] is
also very satisfactory after an orthogonal rotation of the
loadings matrix. On the E. coli data, we see that all the FA
algorithms reconstruct the factor loadings matrix and the
factors profiles equally well. Moreover, we show, using
the E. coli data, that such algorithms can reconstruct the

underlying TF profiles to an acceptable degree even with-
out any prior knowledge of the connectivity structure. In
contrast, algorithms such as the GNCA algorithm of Tran
et al. [7], depend heavily on prior connectivity informa-
tion. Finally, we show that integrating results from several
FA algorithms results in a connectivity matrix which has a
better true positive rate given a specified false positive rate
than each algorithm separately. Our analysis demon-
strates the usefulness of FA algorithms for biological prob-
lems where prior information regarding the system under
study is not fully available.

The FA algorithms discussed here ignore any time series
information. We are currently working on an extension of
the above methods to integrate time correlation. We

Table 1: MSEs of the reconstructed factor profiles for the E. coli data

algorithms MSE (with prior information) MSE (without prior information)

Z - 0.017
U - 0.008
F 0.005 0.010

Ws 0.003 0.014
S 0.020 -

GNCA 0.0004 -

MSEs of the reconstructed factor matrices from the factor matrix obtained from GNCA with activation and inhibition information. The second 
column contains the MSEs when the zero positions in the loadings matrix are fixed. The third column contains the MSEs when no information 
regarding those positions is given. – indicates that the algorithm was not tested.

Reconstruction of the factor loadings matrix for the E. coli dataFigure 10
Reconstruction of the factor loadings matrix for the E. coli data. Shown for the E. coli dataset are (a) the ROC curve 
of each FA algorithm for the factor loadings matrix, and (b) the ROC curve of each FA algorithm for the factor loadings matrix 
after applying procrustes rotation method. The true positive (TP) rate is plotted against the false positive (FP) rate for a given 
cutoff value.
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expect that such correlation will smooth TF activity pro-
files further.

Methods
For completeness and to show commonalities and differ-
ences between the approaches to FA analysis discussed in
this paper, we describe them in some detail in this section.
We conclude this section with a short description of
matrix rotation methods.

Factors F
The factors are assumed to be normally distributed with
mean zero and covariance matrix Σf. That is,

fn ~ (0, Σf)

To resolve identifiability problems (we will return to this

issue later), we set Σf equal to the identity matrix IK as sug-

gested by Ghahramani and Hinton [13], Utsugi and Kum-
agai [14], and Fokoue [16]. Sabatti and James [4] choose

Σf = IK where  is a constant value. Finally, West [3]

assigns a more general prior, Σf = diag( ,..., ).

The posterior probability of the factors is now derived as

p(fn | xn, Λ, μ, Ψ) ∝ p(fn)p(xn | fn, Λ, μ, Ψ) = (fn | ,

)

where the posterior mean and variance are given by

 = (Σf + Λ'Ψ-1Λ)-1

 = Λ'Ψ-1(xn - μ)

We can now integrate F out of equation 4 to get the com-
plete density of the data

The EM algorithm of Ghahramani and Hinton [13] con-
sists of two steps: a) the E-step which calculates the
expected values and the second moments of the factors for
each case n given the current Λ and Ψ as given below

and b) the M-step which calculates the values of Λ and Ψ
given the expected values of the factors that were com-
puted in the E-step.

Mean vector μ
The prior probability assigned to the mean vector μ is the
Gaussian distribution with a mean vector mμ and a covar-
iance matrix Σμ

μ ~ (mμ, Σμ)

By using the above prior, we derive the following poste-
rior distribution for μ

where

West [3], Sabatti and James [4], and Fokoue [16] suggest
to centralise the data prior to the use of the FA model, and
they also assume that μ = 0. We also suggest to standardise
(centralise and scale by standard deviation) the data prior
to the analysis.

Utsugi and Kumagai [14] use a different prior covariance
matrix that ties the mean to the error term. That is,

where mμ is set to zero since they also centralize the data
prior to the use of the FA model. The posterior distribu-
tion of μ, given the above prior is derived in the next sec-
tion together with Λ.

Factor loadings matrix Λ
The main differences between the existing FA models lies
in the assignment of the prior distribution of the factor
loadings matrix Λ or in the prior distribution of its param-
eters. Let us discuss each of these priors separately.
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Normal prior on Λ and Gamma prior on Λ's covariance parameter
Fokoue [16] uses the prior suggested by Tipping [20] in
the context of Relevance Vector Machines to impose sparsity
in the Λ matrix. That is, independent Gaussian priors are
assigned to each element λpk of Λ.

λpk | δpk ~ (0, )

To each δpk, a Gamma prior is assigned as follows

δpk | αδ, βδ ~ (αδ, βδ)

where a Gamma distribution with shape parameter α and
a scale parameter β is defined as

In the context of biological data, we suspect that each gene
is regulated by only a small number of TFs. Thus, we aim
to identify a sparse factor loadings matrix that faithfully
describes the relationship between the transcription fac-
tors and the regulated genes. The suggested prior leads to
a Student t-distribution for each row of Λ. In two dimen-
sions, such distribution assigns most probability mass to
the origin where both λp1 and λp2 are zero and along the
spines where one of the coefficients λpk is zero.

We suggest that this type of prior on Λ is also applicable
to biological data. We have also further extended this
prior to include an extra level of hyperparameters for
increased flexibility and for an easier assignment of the
hyperparameters. Thus, the parameter βδ has also a
Gamma prior of the form

The posterior probability of each row Λp of Λ is given by

p(Λp | X, F, μ, Ψ, Δp) ∝ p(Λp | Δp)p(X | F, Λ, μ, Ψ) = (Λp

| , ) (7)

where

Δp = diag( ,... , ), and Ap is a row vector that corre-

sponds to the pth row of A.

The posterior distribution of δpk is also a Gamma distribu-
tion given by

Finally, the posterior distribution of the scale parameter βδ
of Δ is given by

Mixture prior on Λ
West [3] has suggested a mixture prior on the elements λpk
that also induces sparsity on the factor loadings matrix Λ.
Thus each element λpk has the following prior

where δ0 is the unit point mass at zero, and πpk indicates
the probability of λpk to be different from zero. We set πpk
to 0.2 in the case of unknown connectivity and to 0 and 1
in the case the connectivity is known. An auxiliary variable
is usually used to enable the calculation of the posterior
probabilities. Thus, let us introduce a matrix of indicator
variables Z with each element zpk, corresponding to each
element λpk. The prior probability on Z is a product of
independent Bernoulli distributions as follows

The zpk variables are called indicators, since they indicate
whether the value of λpk is to be drawn from the normal
distribution or set to zero. That is,

The posterior probability of the vector variable Zp = (zp1,...,
zpK) does not have a known form (see equation 8). Thus
we have to calculate equation 8 for all possible configura-
tions of Zp and then use the multinomial probability dis-
tribution to sample a new configuration for Zp. This is a
combinatorial problem, and thus as the number of hid-
den variables increases, the computational cost increases
exponentially.

where F[Zp] denotes the submatrix of F obtained by
removing those rows of F corresponding to zpk = 0, K' is the
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number of factors for which zpk = 1, and IK' is the identity
matrix of K' dimensions. We also tested a version Ws of
this algorithm in which equation 8 (with K = 1) is applied
to each entry of the matrix individually, that is, without
the need of a combinatorial evaluation of all possible 0,1
vectors Zp.

The posterior distribution of each row Λp of Λ is the same

as in equation 7 but F is now replaced by F[Zp] and 

by IK'.

Normal prior with the covariance parameter depending on Ψ
Let us denote each column of the Λ matrix with Λk where

k = 1,..., K. A convenient conjugate prior for Λk is the Gaus-
sian distribution. Utsugi and Kumagai [14] set the mean
of this distribution to zero and the covariance matrix to

Ψ. That is,

Λk ~ (0,  Ψ)

where Ψ is the covariance of the noise. Thus, if the data are
noisy then the above prior assigns large magnitude to the
vector Λk, while free of noise data suggest small magni-
tudes for Λk.

The posterior distribution of the combined matrix  = [μ,

Λ] (see equation 6 for the prior on μ) is given

by

where � is the Kronecker tensor product,

and IK is a K dimensional vector of ones.

Moreover, Utsugi and Kumagai [14] suggest the use of a
Gamma hyperprior on the parameters α1 and α2. That is,

The posterior distributions of those hyperparameters are
also Gamma distributions given by

Noise covariance matrix Ψ
A convenient conjugate prior is assigned to the inverse of

the noise covariance matrix Ψ so that its posterior distri-

bution has a known form. Thus, the prior on each  is

a Gamma distribution given by

The Gamma posterior distribution of ψ-2 in West [3], Sab-
atti and James [4], and Fokoue [16] is given by

where

While the Gamma posterior distribution of ψ-2 in Utsugi
and Kumagai [14] has a more complicated form since Ψ is
tied to the covariance matrices of both μ, and Λ. Thus, it
has the following form

where

where Ip is the identity matrix of P × P dimensions and

West [3], and Sabatti and James [4] use a common vari-

ance ψ-2 for all dimensions P, while Ghahramani and Hin-
ton [13], Utsugi and Kumagai [14], and Fokoue [16] allow
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the model to estimate a different variance  in each

dimension p. We also suggest the use of a second level of

hyperpriors on the scale parameter of ψ-2 since it gives a
greater flexibility to the model. The cost of this greater
flexibility is that more parameters have to be estimated,
but this disadvantage is compensated for by the easier
assignment of the hyperparameters and the better estima-
tion of the noise covariance matrix. We assign a Gamma

prior on βΨ with parameters  and . The poste-

rior distribution is given by

Rotation of Λ matrix
We are usually interested in those rotations that result in
interpretable factor loadings matrix. For example, a matrix
that has as few nonzero loadings as possible. In a biolog-
ical context that means that each gene is regulated by a
small number of TFs. The algorithms of West [3] and Fok-
oue [16] implicitly look for sparse matrices. However, this
is not true for the classical FA algorithm and the algo-
rithms of Ghahramani and Hinton [13], and Utsugi and
Kumagai [14]. As shown in the results section, the per-
formance of these algorithms can be improved by apply-
ing an additional orthogonal rotation Q on the learned
factor loadings matrix that leads to a sparse one Λrot, Λrot =
ΛQ.

Since different orthogonal rotation methods have differ-
ent constraints as we discuss next, they can lead to differ-
ent factor loadings matrix. Thus, a unique solution can
not be achieved if a prior information regarding the posi-
tion of the zeros in the factor loadings matrix is not given.

A number of metrics can be used as a measure of sparsity.
For example, the varimax rotation [21] maximizes the row
variances of the squares of the loadings.

Similarly, the quartimax rotation maximizes the column
variances of the squares of the loadings (using that the
sum of squares along columns is constant).

The equamax rotation is something between the varimax
and quartimax rotation and gives better results for dense
matrices.

We suggest a new method, the tanh rotation. It penalizes
small deviations from zero but keeps the penalty constant
for values far from zero.

where the parameter α determines the steepness of the
tanh function.

Finally, the procrustes rotation [22] results in a factor load-
ings matrix Λrot by minimizing the sum of squared differ-
ences to a target matrix T,

Thus, if the true factor loadings matrix is known, the pro-
crustes method can be used to identify the best possible
rotation. However, since this is not usually true for real
data, the procrustes method can be used, for example,
when assessing FA methods on synthetic data. That is, in
this case the target matrix is the true matrix that we try to
infer.
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