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Abstract
Background: Design of protein structure comparison algorithm is an important research issue,
having far reaching implications. In this article, we describe a protein structure comparison scheme,
which is capable of detecting correct alignments even in difficult cases, e.g. non-topological
similarities. The proposed method computes protein structure alignments by comparing, small
substructures, called neighborhoods. Two different types of neighborhoods, sequence and structure,
are defined, and two algorithms arising out of the scheme are detailed. A new method for
computing equivalences having non-topological similarities from pairwise similarity score is
described. A novel and fast technique for comparing sequence neighborhoods is also developed.

Results: The experimental results show that the current programs show better performance on
Fischer and Novotny's benchmark datasets, than state of the art programs, e.g. DALI, CE and SSM.
Our programs were also found to calculate correct alignments for proteins with huge amount of
indels and internal repeats. Finally, the sequence neighborhood based program was used in
extensive fold and non-topological similarity detection experiments. The accuracy of the fold
detection experiments with the new measure of similarity was found to be similar or better than
that of the standard algorithm CE.

Conclusion: A new scheme, resulting in two algorithms, have been developed, implemented and
tested. The programs developed are accessible at http://mllab.csa.iisc.ernet.in/mp2/runprog.html.

Background
It is well known that conservation of proteins at the struc-
ture level can be much higher than at the sequence level
[1]. Recognizing similarities in protein structures and clas-
sifying them into folds, families, etc. is therefore an
important task in biology, and is often used as a basis for
designing experiments for gaining further knowledge.

Unfortunately, most formulations for comparing protein
structures have turned out to be NP-Hard [2]. This has led
to the development of many heuristic approaches, e.g.
SSAP [3], DALI [4], Cα-match [5], LOCK [6], CE [7], SSM
[8], etc.
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However, it is clear from many experiments, e.g. those in
[7] or results reported in the section on validation using
benchmark datasets (section 0.1), that the existing algo-
rithms produce sub-optimal results in many practical
cases. For example, DALI and CE are not capable of detect-
ing non-topological similarities. The current article
reports a protein structure comparison scheme that
improves upon existing algorithms in terms of quality of
alignments and ability to detect non-topological similari-
ties.

Most protein structure comparison algorithms can be
broadly classified as either distance matrix based or trans-
formation based. This article proposes a new scheme
which compares protein structures by comparing small
and compact sub-structures, called neighborhoods. Neigh-
borhoods spanning the entire protein are calculated for
both the proteins. All pairs of neighborhoods from the
two structures are aligned and resulting transformations
are used to calculate the optimal alignments between the
two proteins. Thus, alignments between protein structures
are calculated by growing neighborhood alignments. This
leads to a middle approach of comparing the neighbor-
hoods using distance matrix based methods and calculat-
ing actual alignment using transformations obtained
from neighborhood alignments (figure 1).

Following the scheme, two new algorithms based on two
different kinds of neighborhoods, namely sequence and
structure neighborhoods, are proposed. The structure
neighborhood is a more natural concept, and gives better
alignments. However, the algorithm for comparing struc-
ture neighborhoods is slow and scales exponentially with
the size. The algorithm based on comparison of sequence
neighborhoods is designed to be faster. For this reason, a
novel and fast technique for comparing sequence neigh-
borhoods, based on spectral graph matching [9], is devel-
oped. A more detailed description and explanation of the
techniques developed is given in the methods section
(section 0.4).

The techniques thus developed have been implemented,
and are available for public use at [10]. The implementa-
tions were used to compare proteins from Fischer's [11]
and Novotny et. al.'s [12] benchmark datasets. Results
show that the current programs find similar or better
alignments than DALI [4] and CE [7] in almost all cases.
The current programs also show a better overall perform-
ance than SSM [8]. on the benchmark datasets. Results
from comparison of proteins with large number of indels
and internal repeats, show that the current algorithms
detect the similarities correctly.

The sequence neighborhood based program was used in
extensive fold and non-topological similarity detection

experiments. For detecting fold level similarity, a new
measure of significance, based on the ratio of length of
alignment to the average size of the two proteins, was
used. This is contrast with the normally used measures,
e.g. Z-scores of some property of the alignment. The new
measure is expected to work because the RMSD of the
alignments have been constrained below a threshold
(approx. 3 Å). The accuracy of fold detection with this new
measure of similarity was found to be similar or better
than that of the standard algorithm CE [7].

Finally, the current methods ability to detect non-topo-
logical similarities was tested using a circularly permuted
pair of proteins. The results show that the current pro-
grams detects the full alignment, even in presence of non-
topological similarities. Next section describes results
from the experimental validation of the developed
scheme. The scheme is described in detail, in the methods
section.

Results and Discussion
The algorithms developed in this article were imple-
mented in C using GCC/GNU-Linux system. The pro-
grams thus developed were used to test the correctness of
the concepts used in developing the algorithm on real
protein structure data. This section reports the results
from the experiments conducted for validating the current
algorithms. Validation has been done by comparing the
results from the current programs with those from the
state of the art protein structure comparison programs
DALI [4], CE [7], and SSM [8]. It may be noted that a
recent survey [13] mentions SSM as the top performer in
protein structure comparison programs.

Section 0.1, presents a systematic evaluation of the pro-
grams on two benchmark datasets containing more than
200 protein structure pairs. Section 0.2, reports tests using
critical cases of proteins having multiple domains (hence
large number of indels) and internally repeating subunits.
In section 0.3, we explore one of the applications of pro-
tein structure comparison, i.e. the program's ability to
detect proteins having the same fold as a given query pro-
tein. In section 0.4, the method's ability to detect non-top-
ological similarities is explored.

The protein structure data was taken from PDB [14] and
the SCOP [15] domains were obtained from the ASTRAL
database [16]. Rasmol [17] was used to generate the
molecular graphics. The programs were tested on hun-
dreds of protein structure pairs and the optimal values of
the parameters were determined so as to cater for a wide
range of protein structures with varying levels of similari-
ties. Detailed results and default parameter values are
available in additional file [see Additional file 1].
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0.1 Validation using Fischer's and Novotny's benchmark 
datasets
The first experiment was to validate the idea of comparing
the proteins by comparing the various neighborhoods.
For this, we tested the algorithms developed in this article
on two benchmark datasets : Fischer [11] and Novotny et.
al. [12]. Fischer's dataset was developed for testing the per-
formance of fold recognition methods, and contains 68
pairs of protein structures having low sequence similarity.
Table 1 shows the alignments generated by the two algo-
rithms developed here and the 3 standard algorithms
DALI, CE and SSM, for the 10 difficult pairs [7] of protein
structures in the Fischer's dataset. It is clear that all three
standard programs generate similar or worse alignments
than the programs developed here on the 10 difficult pro-
tein pairs. For example, DALI generates worse alignment
for the protein pairs: [PDB:2SIM] – [PDB:1NSBA], while
SSM generates worse alignments for protein pairs:
[PDB:1TEN] – [PDB:3HHRB], [PDB:1CID] – [PDB:2RHE]
and [PDB:1BGEB] – [PDB:2GMFA]. All the other align-
ments generated by current programs are similar to those
by their standard counterparts. This clearly demonstrates
that the current programs perform competitively to the
other state of the programs.

Novotny et. al. [12] compared 11 fold comparison servers
using pairwise comparisons for 59 proteins taken from 10
different CATH [18] topologies. Both the algorithms
developed here were used to calculate the alignments for
all 153 pairs of proteins in Novotny's dataset. Tables 2, 3
and 4 report a summary of comparison of results obtained
from the two programs on both Fischer's and Novotny's
datasets with DALI, CE and SSM, respectively. An align-
ment is said to be better than other if it has both higher
length and lower RMSD. Two alignments are said to be
level if one has both higher length and RMSD than the
other. Tables 2, 3 and 4 show the number of protein pairs,
for which the current method gives better/worse/level
alignments than DALI, CE and SSM, respectively.

For Fischer's dataset, the sequence neighborhood based
method performs similarly to DALI, whereas the structure
neighborhood based method performs slightly better.
However, for some CATH classes in Novotny's dataset
(1.10.40, 1.25.30, 2.100.10), the current methods per-
form significantly better than DALI. On Fischer's dataset,
the current methods consistently perform better than all
the three standard programs. On Novotny's dataset, for
CATH classes 1.10.164, 1.10.40 and 1.25.30, the current
programs perform better than DALI and SSM, and for
CATH classes 2.40.100 and 2.100.10, the current pro-
grams perform better than CE. For CATH class 3.70.10,
the current programs did not give good alignments as
compared to CE and SSM. However, the overall perform-
ance of the current programs is better than all the three
state of the art programs. Also, it was observed (from table
1 and results provided in supplementary material) that
the structure neighborhood based method performs
slightly better than the sequence neighborhood based
one.

0.2 Testing on proteins with multiple domains and internal 
repeats
One of the important features of proteins is the noise in
the residue positions and insertions and deletions
(indels) of residues. One extreme case of indels is the case
when a protein has multiple domains and only one of the
domains are there in the other structure. In order to test
the current programs' ability of detecting such similarities,
we tested them for detecting the 3 individual domains in
2 multi-domain proteins, e.g. [PDB:2HCK] and
[PDB:2SRC], taken from [12]. The individual domains
were obtained from the ASTRAL database. Table 5 shows
the results for one of the protein (other omitted to save
space). The domains were perfectly detected by both the
programs developed here and all the standard programs.
We also chose random fragments of length 20 residue
from each of the 3 domains in [PDB:2HCK], and concate-
nated them to form a new structure, called "mixed" (table
5). We compared this new structure with the original pro-

Table 1: 10 difficult pairs of proteins as mentioned in [7]

PDBid1(size) – PDBid2(size) Seq Nbhd
LAli/RMSD

Struct Nbhd
LAli/RMSD

DALI
LAli/RMSD

CE
Lali/RMSD

SSM
LAli/RMSD

1fxiA(96) – 1ubq(76) 54/2.18 56/2.16 60/2.6 100/3.82 60/2.86
1ten(90) – 3hhrB(185) 84/1.58 82/1.39 86/1.9 87/1.90 73/2.09
3hlaB(270) – 2rhe(114) 70/2.26 68/2.26 75/3 85/3.46 78/3.08
2azaA(129) – 1paz(120) 72/2.46 79/2.20 81/2.5 85/2.90 79/2.41
1cewI(108) – 1molA(94) 68/1.80 79/1.94 81/2.3 81/2.34 79/2.12
1cid(177) – 2rhe(114) 91/2.05 91/2.06 97/3.2 98/2.97 89/2.32
1crl(534) – 1ede(310) 160/2.50 174/2.49 211/3.5 220/3.91 188/3.81
2sim(381) – 1nsbA(390) 262/2.72 262/2.63 222/3.8 276/2.99 271/2.86
1bgeB(159) – 2gmfA(121) 85/2.48 87/2.22 94/3.3 102/4.02 44/2.49
1tie(166) – 4fgf(124) 105/2.20 106/2.27 114/3.1 115/2.86 114/2.85
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tein. While both the current programs and SSM detected
the match correctly, DALI and CE did not detect the cor-
rect match.

The current algorithms rely on similarity of neighbor-
hoods to detect global similarity between proteins. How-
ever, many proteins have repeating subunits which can
provide many similar looking neighborhoods. In order to
ascertain whether the current programs are fooled by such
internal repeats, we tested them on 6 pairs of proteins
showing high degree of internal repeats. The results,
reported in table 6, show that the correct alignments were
detected in all the cases. Thus, we conclude that the cur-
rent programs perform well, even in presence of high
indels and internal repeats.

0.3 Testing accuracy in detecting fold similarity
One of the applications of a protein structure comparison
program is to compare the folds of two protein structures,
or fetch all structures from a database, having the same

fold as a query structure. Many programs for searching
databases and comparing folds have been developed.
Recently, Novotny et. al. [12] performed a comparison of
fold comparison servers, and rated CE [7] as the topmost.
We compared the performance of the sequence neighbor-
hood based program (because it is faster than the structure
neighborhood based one) with CE, using 5 randomly
selected proteins from 5 prominent SCOP classes.

Given an alignment between 2 proteins, most programs
use a statistical significance (Z-score in case of DALI and
CE) to decide the level of similarity between the two pro-
teins. In the current case, the RMSD of the alignments
found by programs is upper bounded by the parameter T
(Eqn 1). For T = 5 (default) the RMSD is found to be less
than 3 Å. Thus, the free parameter is the length of the
alignment. We used the percentage of residues aligned as
a fraction of the average number of residues to decide the

Table 3: Comparison of results obtained from the 2 algorithms described here with CE

Data set/classifn. Alignment of sequence nbhd.
Better/Worse/Level

Alignment of structure nbhd.
Better/Worse/Level

Fischer's 2/1/65 2/0/66

Novotny's
1.10.164 0/0/10 0/0/10
1.10.40 0/0/21 0/0/21
1.25.30 1/0/20 0/0/21
2.30.110 0/0/6 0/0/6
2.40.100 6/0/22 4/0/24
2.100.10 4/0/11 4/0/11
3.10.70 1/0/9 1/0/9
3.40.91 0/0/6 0/0/6
3.70.10 0/0/15 0/1/14
2.40.20 1/1/19 0/0/21

Table 2: Comparison of results obtained from the 2 algorithms described here with DALI

Data set/classifn. Align. sequence nbhd.
Better/Worse/Level

Align. structure nbhd.
Better/Worse/Level

Fischer's 4/4/60 5/2/61

Novotny's
1.10.164 1/0/9 2/0/8
1.10.40 11/0/10 5/0/16
1.25.30 10/0/11 5/0/16
2.30.110 0/0/6 0/0/6
2.40.100 0/0/28 0/0/28
2.100.10 5/3/7 5/0/10
3.10.70 0/0/10 0/0/10
3.40.91 0/0/6 0/0/6
3.70.10 0/0/15 2/0/13
2.40.20 0/3/18 0/0/21
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level of similarity. Thus for each alignment, we calculate

percent aligned as: percalign =  × 100, where lav = (m +

n)/2.

Table 7 shows the results of a database search on the 40%
non-redundant ASTRAL database using the 5 query pro-
teins. The output from sequence neighborhood based
program was filtered using 2 percentage aligned cutoff val-
ues, e.g. 50% and 45%. For CE, the prescribed cutoff of 4.0
on Z-score value was used. The true and false positives,
and the actual number of entries in the database are
reported. For d101m__ and d1htia the number of false
positives given by CE are much higher than the current
program, whereas for d1jzba_ and d2pela_ fewer true
examples are detected by CE. On the whole, the current
program performs at par with CE without even invoking
any statistical theory.

0.4 Determination of non-topological similarities
Non-topological similarities between proteins is an
important phenomenon, from both scientific and practi-
cal applications points of view [19,20]. In this section, we
explore the capability of the current programs to detect
non-topological similarities. The current programs were
tested with the well known circularly permuted pair of
proteins [PDB:2PEL] – [PDB:5CNA], showing very high

structural similarity. Figure 2 reports the alignments and
superpositions from the current programs (in this case
both the current programs report the same alignment)
and DALI. The current programs give a 219 residue align-
ment with RMSD 1.3 Å. whereas DALI reports 117 residue
alignment with RMSD 1.3 Å. It is clear from figure 2 that
DALI detects only a portion of the actual similarity. CE
detects a 116 residue alignment with 1.2 ÅRMSD and SSM
detects a 116 residue alignment with 1.23 ÅRMSD. Thus
it is clear that none on the three programs used to bench-
mark the current programs detect full alignment in pres-
ence of non-topological similarities.

In order to find out more naturally occurring circularly
permuted pairs of proteins, we compared all possible
pairs of proteins, showing less than 40% sequence simi-
larity, from the SCOP fold b.29. There are 48 domains in
the b.29 fold of 40% non-redudant ASTRAL dataset. Out
of all the 1128 pairs, 107 pairs showed circular permuta-
tions. Table 8 shows 5 circularly permutated pairs of pro-
teins having low structural similarity. In 4 of the 5 cases,
the current program detects a better alignment than DALI,
and in one case DALI doesn't detect any significant align-
ment. A detailed study of these circular permutations will
be reported elsewhere. Thus, it is clear that the current
programs can be useful as a tool for detecting circular per-
mutations occuring in nature.

len

lav

Table 5: Comparison of multidomain proteins with individual domains

PDBid1 – PDBid2 Seq Nbhd
LAli/RMSD

Struct Nbhd
LAli/RMSD

DALI
LAli/RMSD

CE
Lali/RMSD

SSM
LAli/RMSD

2hck(438) – d2hcka1(63) 63/0.0 63/0.0 63/0.0 63/0.0 63/0.0
2hck(438) – d2hcka2(103) 103/0.0 103/0.0 103/0.0 103/0.0 103/0.0
2hck(438) – d2hcka3(272) 272/0.0 272/0.0 272/0.0 272/0.0 272/0.0

2hck(438) – mixed (60) 60/0.0 60/0.0 -/- 16/0 60/0.0

Table 4: Comparison of results obtained from the 2 algorithms described here with SSM

Data set/classifin. Alignment of sequence nbhd.
Better/Worse/Level

Alignment of structure nbhd.
Better/Worse/Level

Fischer's 13/10/45 23/5/40

Novotny's
1.10.164 3/1/6 4/0/6
1.10.40 9/0/12 8/0/13
1.25.30 9/0/12 3/0/18
2.30.110 1/1/4 1/1/4
2.40.100 1/0/27 2/1/25
2.100.10 1/4/10 3/1/11
3.10.70 2/0/8 3/0/7
3.40.91 2/0/4 1/0/5
3.70.10 0/1/14 1/2/12
2.40.20 0/6/15 3/2/16
Page 6 of 14
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2PEL
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=5CNA


BMC Bioinformatics 2007, 8:77 http://www.biomedcentral.com/1471-2105/8/77
Conclusion
Biology, in its present practice, is effectively a relational
science. Decisions made with one system being heavily
influenced by the knowledge obtained from other sys-
tems. It is quite understandable therefore, why recogniz-
ing similarities and deriving relationships are crucial for
all further knowledge. In this context, protein structure
comparison is an important yet complex problem.

The current article proposes a new scheme for comparing
protein structures, relying on efficient techniques availa-
ble for comparing smaller sub-structures (called neigh-
borhoods), having equal number of residues. This reduces
the problem of comparing protein structures to that of
searching over at most O(n2) transformations, under the
assumption that at least one of the neighborhoods from
the first protein has a match in the second protein.

The scheme leads to two specific algorithms, by using two
types of neighborhood definitions. The structure neigh-
borhood is the most intuitive, and is seen (section 0.1) to
give better alignments in many cases. However, the algo-
rithm based on structure neighborhoods is seen to be
approximately 2–4 times slower than the sequence neigh-
borhood based algorithm. Also, with sequence neighbor-
hood larger neighborhood sizes could be explored (17 as

opposed to 6 for structure neighborhoods). This is possi-
ble due to a novel technique developed (in section 0.10)
for comparing sequence neighborhoods. A web interface
to the programs developed is available at [10].

The algorithms reported here overcome some of the draw-
backs seen with other approaches, such as the detection of
non-topological similarities. Also, with the current
approach, the alignment quality has been found to be
superior to the state of the art programs, e.g. DALI, CE and
SSM, in a number of cases. So, as demonstrated in the
results, the proposed algorithms will aid in identifying
structural similarities that may have been missed out with
other approaches.

The current article also simplifies detection of folds by
using ratio of length of alignment and the average length
of the two sequences, as opposed to Z-scores of some
quantity used by other programs. This is done by con-
straining the RMSD to be below a cutoff. The program
uses simple rules based on RMSD and length of alignment
to hit upon the best alignment. Such simplification makes
the hits returned by the program easier to interpret (as
opposed to complex statistical significance measures).
Even with the simplified measures, the accuracy of fold

Table 7: Detection of folds using sequence neighborhood alignment method

SCOPid (tot. num.) Method cutoff (%/Z) True +ve False +ve

d101m__(37) seq nbhd 50% 34 9
seq nbhd 45% 35 38

CE 4.0 35 95
d1htia_(253) seq nbhd 50% 190 4

seq nbhd 45% 231 13
CE 4.0 233 224

d1jzba_(119) seq nbhd 50% 28 56
seq nbhd 45% 48 172

CE 4.0 2 0
d2pela_ (48) seq nbhd 50% 41 9

seq nbhd 45% 45 21
CE 4.0 36 8

d7rsa__(4) seq nbhd 50% 4 0
seq nbhd 45% 4 13

CE 4.0 4 0

Table 6: Comparison of pairs of proteins with internal repeats

PDBid1 – PDBid2 Seq Nbhd
LAli/RMSD

Struct Nbhd
LAli/RMSD

DALI
LAli/RMSD

CE
LAli/RMSD

SSM
LAli/RMSD

1gyhA(318) – 1tl2A(235) 155/3.00 143/2.90 196/3.6 149/3.9 192/3.99
1nscA(390) – 3sil(383) 258/2.62 257/2.67 289/3.2 272/2.9 272/2.92
1bd8(156) – 1ihbA(156) 152/1.18 153/1.22 154/1.3 154/1.3 152/1.24
1l4aA(66) – 1n7sA(63) 59/0.96 59/0.90 62/1.7 59/0.9 -/-
2pec(352) – 1bn8A(399) 269/1.62 268/1.64 287/2.5 291/2.7 258/1.59
1kapP(470) – 1sat(468) 436/1.25 438/1.24 448/1.7 446/1.5 427/1.16
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detection for the current program was found to be better
than CE [7] in some cases.

Methods
A protein structure is described by the 3D coordinates of
all non-hydrogen atoms present in the protein. However,
following the common practice, we will use the coordi-
nates of the Cα atom of each residue to describe each pro-
tein structure. So, a protein structure A, having m residues,
will be described as A = {x1, x2,...,xm}, xi ∈ �3, 1 ≤ i ≤ m,
where each point xi represents the position of one residue.
The sequence ordering of the polypeptide is given by the
indices of the points. Similarly, the second protein B is
represented as B = {y1,...,yn}, yj, ∈ �3, 1 ≤ j ≤ n.

A structural alignment between two protein structures A
and B is given by a set of equivalences (1 - 1 correspond-
ences) between the residues of the 2 proteins. So, a struc-
tural alignment Φ between structures A and B, of length L,
is denoted as:

Φ (A, B) = {(il, jl)|1 ≤ l ≤ L, 1 ≤ il ≤ m, 1 ≤ jl ≤ n, and il = ik

or jl = jk iff l = k}. In the alignment the  residue of pro-

tein A is said to be matched or equivalenced with the 

residue of protein B. In this definition, there is no notion
of maintaining the topology. However, some programs
find only topological similarities, and thus require the
condition il <ik iff jl <jk to be satisfied. A graph G with vertex

set V and edge set E ⊆ V × V is denoted as G = (V, E).

The score of a structural alignment is a measure of its suit-
ability for the current purpose. Many scoring functions
have been developed and used by different programs.
Also, many programs do not specify a global scoring func-
tion, but optimize a local property at each stage. In the
next section, we analyze the algorithms and scoring func-
tions of different programs for comparing protein struc-
tures, and summarize their desired characteristics.

0.5 Analysis of different algorithms
Methods for comparing protein structures can be broadly
divided into two types : ones that calculate the optimal
rigid transformation of one structure on the other (e.g.

LOCK), and ones that do not explicitly calculate the trans-
formation. Distance matrix based methods (e.g. DALI and
CE) are popular among the second type of methods.

The problem with methods based on distance matrices is
that searching over all possible alignments blows up expo-
nentially with the number of residues. DALI uses a Monte-
Carlo optimization technique to search the space of all
alignments in a randomized way. CE reduces the search
space by using sequence constraints and heuristic cutoffs
on extension of alignments.

Methods based on transformation calculation search over
the space of all transformations, which is a continuous
space. However, due to the multi modal nature of the
scoring function over the space of transformations, local
search based methods risk converging to a locally opti-
mum solution. Kolodny and Linial [21] suggest carefully
discretizing the space of all transformations, based on a
given approximation parameter to the objective function,
arriving at a polynomial time approximation algorithm
for comparing protein structures. Unfortunately, the time
complexity of the algorithm is very high for practical
applications. Cα-match also uses discretization of the
search space using the geometric hashing technique. It has
been observed that (see section 0.4) the conformation
search based algorithms are better at finding non-topolog-
ical similarities than their distance matrix based counter-
parts. This is typically due to constraining of search space
to curb the exponential blowup. However, distance matrix
based algorithms have the potential to solve the problem
to its global optimum.

In this article, we take an intermediate approach using dis-
tance matrix based methods to align sub-structures, called
neighborhoods, and arrive at the optimal transformation
starting from the transformations calculated using sub-
structure alignments. The alignments between the neigh-
borhoods provide a discrete set of transformations to
search from. To this end, we define the notion of neigh-
borhoods and motivate the comparison of neighbor-
hoods for comparing protein structures, in the next
section.

il
th

jl
th

Table 8: 5 examples of circular permutations detected with low structural similarity

SCOPid1
(size)

SCOPid2
(size)

seq nbhd
LAli/RMSD

DALI
LAli/RMSD

d1t6gc_(182) d1okqa2(185) 92/2.77 -/-
d1olra_(226) d1w0pa2(197) 107/2.72 101/3.8
d1dypa_(266) d1nls__(238) 129/2.39 83/3.0
d1s2ba_(199) d1epwa1(218) 107/2.87 117/3.9
d1wd3a1(319) d1mvea_(238) 143/2.75 133/3.7
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0.6 Neighborhoods and their comparison
It is well known that atoms close to a particular atom, in
the three dimensional structure of a protein, have more
influence on the position of the current atom than those
that are farther apart. This fact has been utilized by the
DALI score function to weight the errors corresponding to
distances with an inverse exponential function of the aver-
age distance. This fact has also been utilized by Cα-match
in introducing heuristic cutoffs on the distance between
the residues forming reference frames, and those being
considered for voting.

We use this fact more strongly to define the notion of
neighborhood of a residue. The k-structure neighborhood of
a residue of a protein is defined as the set of k residues
nearest to the given residue in 3D. Thus, the neighbor-

hood (i) of the ith residue of A is characterized by

(i) = {x ∈ A|x' ∉ (i) ⇒ ||x' - xi|| ≤ ||x' - xi|| and

| (i)| = k}. Note that xj ∈ (i) might not be con-

nected in sequence.

Another notion of neighborhood which maintains
sequence connectivity is the sequence neighborhood,
defined as a fragment of sequence of a given length. Thus,

a k-sequence neighborhood, (i) starting from residue

i of structure A is defined as (i) = {xi,...,xi+k-1}. The

main reason for defining sequence neighborhoods is that
(see section 0.10), it is easier to match sets of points with
sequence order than points without any order. Also, while
matching two structures, one of the structures can be tiled
along the sequence using sequence neighborhoods. So,
instead of n - k + 1 (as in the case when considering all
possible sequence neighborhoods), L(n/k)O different neigh-
borhoods are to matched. Thus, sequence neighborhoods
can be used to reduce the running time of the algorithm,
and also allow larger neighborhood sizes.

In the next section, we describe the algorithm for match-
ing structures based on alignments of neighborhoods. The
algorithms for aligning neighborhoods will be described
in subsequent sections. An important point to note here is
that even for the sequence neighborhoods, we calculate
the structural alignments. Thus, there can be non-topolog-
ical similarities in the alignments of neighborhoods.

0.7 Alignment of protein structures using neighborhood 
alignments
The central idea behind computation of optimal struc-
tural alignment from neighborhood alignments is that the

optimal structural alignment will have at least one of the
neighborhoods of residues aligned almost fully and opti-
mally. In other words, the optimal superposition between
two protein structures will contain an almost full (with
very few indels) and optimal superposition of two neigh-
borhoods. This assumption is valid under various circum-
stances, e.g. for proteins having functional similarity, the
sites responsible for functions are conserved. Also, pro-
teins having similar folds will have a highly conserved
core or conserved regions of secondary structures.

Utilizing these ideas, we propose the following scheme for
comparing two protein structures by systematically com-
paring neighborhoods.

1. For each of the two proteins, the neighborhoods (either
structure or sequence) are selected to span the entire pro-
tein.

2. All pairs of neighborhoods, with one neighborhood
from each of the two proteins, are aligned optimally using
the appropriate neighborhood alignment algorithm.

3. The aligned neighborhoods are then optimally super-
posed, and the resulting transformations of first protein
on the second are stored in a list.

4. Using the transformations calculated above, all residues
of the first protein are transformed.

5. For each of the transformations, a pairwise similarity
score is calculated between the residues of the two pro-
teins using the transformed coordinates of the first protein
and the original coordinates of the second.

6. The equivalences corresponding to the similarity scores
are calculated using greedy fragment pair search. The best set
of equivalences (structural alignment) thus calculated is
reported.

In step 1, while choosing structure neighborhoods, one
centered at every atom is chosen making m and n neigh-
borhoods respectively. While choosing sequence neigh-
borhoods, we tile one of the structures with the chosen
neighborhoods, i.e. choose neighborhoods starting at
positions (1 + ik) for i = 1... Qn/kN, and the last one starting
from n - k + 1 to include the remaining residues if any. On
the second structure, all the neighborhoods starting from
1...(n - k + 1) are chosen.

For step 2, the algorithm for matching structure and
sequence neighborhoods are described in sections 0.9 and
0.10, respectively. While considering neighborhood align-
ments for calculating transformations (step 3), only the
alignments having length (number of aligned residues)
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greater than a cutoff (LenCutoff) is considered. This is
because the neighborhood comparison algorithms will
return some alignment, even between dissimilar neigh-
borhoods. Moreover, at least 3 aligned residue pairs are
required to calculate transformations in 3D. Also, note
that irrespective of the neighborhood type, neighborhood
alignments match the 3D structure of the neighborhood.
Thus, even in case of sequence neighborhood, the final
alignment is not dependent of the sequence similarity.

The transformations in step 3 are calculated using the
method described in [22]. The method uses unit
quaternions (4 component vectors with norm 1) to
describe rotations and a vector in 3D for describing the
translation of the origin. Thus, every transformation  is

a 7 component vector,  ∈ �7.

Many transformations calculated in step 3, will be the
same except for small numerical differences. In order to
avoid processing a transformation multiple times, the
transformations are clustered, and one transformation
from each cluster is considered for further processing.
Since the transforming the points involve multiplication
by a polynomial of degree two in the quaternion compo-
nents (see [22]), small changes in the component values
(maintaining unit norm property) will produce small
changes in the transformed coordinates. This property is
used to cluster the transformations based on 2-norm. For
clustering, a random order is chosen for the transforma-
tions and the first transformation is chosen as the center
of a cluster. The subsequent transformations are put
assigned clusters using the scheme: a transformation ',

belongs to a cluster i, if || ' - i|| ≤ ClustThreshold, i

being cluster center of the ith cluster. Otherwise, it forms a
new cluster center. This scheme avoids processing similar
transformations multiple times. Steps 4–6 are essentially
growing the neighborhood alignments corresponding to
the transformations obtained above to get the full align-
ments. This is done by first transforming the residues of
one structure onto other so that their positions can be
compared directly (step 4), followed by calculation the
similarity scores between residues of the two structures
(step 5). The similarity score is given by the equation:

S(i, j) = T - ||  (xi) - yj||, 1 ≤ i ≤ m, 1 ≤ j ≤ n  (1)

where, T is the tolerance in distance between the two
superposed residues, and  is the transformation being
considered. Finally, the equivalences are calculated based
on the above similarity score using the greedy fragment pair

search technique described in section 0.8. Given the equiv-
alences, the optimal superposition and hence RMSD are
computed using the method described in [22].

For each transformation in the clustered list, the structural
alignment between two structures is calculated as
described above. The best transformation (and hence
alignment) is decided based on RMSD and length of
alignment, using the following rules:

For two alignments Al1 and Al2:

• If RMSD1 ≤ RMSD2 and len1 ≥ len2 then Al1 is better than
A12 and vice versa.

• If RMSD1 ≤ RMSD2 and len1 ≥ len2 then, if

 > LRcutoff then Al2 is better else Al1 is

better; and vice versa.

The alignment given by this algorithm will have RMSD
lower than the value of parameter T (eqn. 1) because, res-
idue pairs separated by a distance more than T will have a
negative similarity score, and thus will not be taken up as
aligned residues. So, the parameter T can be used to con-
trol the RMSD of the match, depending on the applica-
tion. The above algorithm computes mn neighborhood
alignments for computing transformations. However, the
alignment length cutoff used after step 2, and clustering of
transformations in step 3 reduce the effectie number of
transformations to be processed to O(n). The effective
complexity of processing each transformation is O(n2)
(see section 0.8). Thus the effective overall time complex-
ity is O(n3).

Two key components of the above technique are the algo-
rithm for calculating alignment given similarity scores
between the residues of the two proteins, and the algo-
rithms for calculating neighborhood alignments. The
former is described in next section and the later in the sub-
sequent two sections.

0.8 Greedy fragment pair search
In this section, we propose an algorithm for calculating
the equivalences between residues of two proteins A and
B given a similarity score S(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. The
algorithm is inspired from the local alignment algorithm
[23], which detects the highest scoring pair of fragments
between two sequences. However, only similarities that
follow the sequence order are detected. We modify the
algorithm to detect multiple fragments which may not fol-
low sequence ordering.
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Ideally, given an alignment Φ(A, B), one would want to

maximize the score . However, this problem

(the assignment problem) is difficult and has a very slow
solution. Moreover, this does not use the information
available in the sequence ordering of the protein. We pro-
pose to detect high scoring fragment pairs in a greedy way
(i.e. the pick the best first, followed by second best, and so
on). For this, the local alignment matrix is calculated as:

The highest entry in the matrix corresponds to the highest
scoring fragment pair, and the corresponding fragment
pair can be detected by tracing back from the highest scor-
ing entry. However, the matrix also contains scores for
other high scoring fragment pairs. The second highest
scoring fragment pair is detected after deleting rows and
columns corresponding to the residues in the highest scor-
ing fragment pair. This iterative procedure continued till
there are no positive scoring entries in the matrix or all the
rows and columns have been deleted. The steps are given
in Algorithm 1. Generation of the local alignment matrix
takes O(n2) time. Each search through the matrix for high-
est scoring entry also takes O(n2) time, and the traceback
takes O(n) time, thereby giving an O(n3) bound on com-
plexity. However, since in most cases only a small number
of large fragment pairs will be picked up, the effective time
complexity is O(n2).

0.9 Aligning structure neighborhoods
A k-structure neighborhood of a residue consists of the k
residues nearest to the current residue. So, there may not
be any sequence connection between these residues. Thus,
we look at the structure neighborhood

Algorithm 1 Greedy Fragment Pair Search

1: Alignment ← φ.

2: Compute highest = maxi, j Li, j.

3: Compute (u, v) = arg maxi, j Li, j.

4: while highest > 0 do

5: Alignment ← Alignment ∪ traceback(u, v) {traceback
returns the alignment obtained by tracing back from it's
argument}

6: Mark the rows and columns of L corresponding to the
residues returned in the current alignment done.

7: Compute highest = maxi, j Li, j such that i or j is not
marked done.

8: Compute (u, v) = arg maxi, j Li, j such that i or j is not
marked done.

9: end while

as a set of points in 3D. It is well known, that such a set of
point can be matched under rigid transformation using
graph matching techniques.

Let (i) and (j) be the 2 neighborhoods to be

compared. We construct two graphs GA = ( (i),

(i) × (i)) and GB = ( (j), (j) × (j)).

Also, consider the weighting functions w1 and w2 defined

on the edges of the graphs GA and GB as w1(e) = ||xp - xq||,

(xp, xq) = e ∈ E(GA) and w2(e') = ||xr - xs||, (xr, xs) = e' ∈
E(GB). Two edges e and e' from each graph are said to com-

patible if (distT - |w1(e) - w2 (e')|) ≥ 0, incompatible other-

wise. A mapping g of vertices from GA to GB is called

isomorphism if, for v1, v2 ∈ GA, the edges (v1, v2) and

(g(v1), g(v2)) are compatible. The problem of finding a

maximal match between the two neighborhoods is same
as finding the maximal subgraph of GA having an isomor-
phic subgraph in GB.

This problem of finding a maximal common subgraph
between GA and GB is solved using the algorithm described
in [24], with the added constraint that the central residues

of both the neighborhoods (i) and (j) be

matched. The parameter distT is used to control the
allowed deviation in distances. This value is kept small
(typically 1 Å) as the neighborhoods are required to be
matched very accurately. The algorithm scales exponen-
tially with the neighborhood size. All results are reported
for neighborhood size of 6. The algorithm becomes very
slow for neighborhood sizes above 15. In the next section,
a faster algorithm, which can handle larger neighbor-
hoods, albeit with a slight loss of accuracy, is described.
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0.10 Aligning sequence neighborhoods

Sequence neighborhoods, like structure neighborhoods,
are sets of points in 3D space. Thus, the problem can be
solved using the algorithm mentioned above. However,
there is natural topological connection between them. We
utilize this fact to derive a more efficient, though less
exact, algorithm for matching sequence neighborhoods.
Our algorithm is based on spectral graph matching tech-
nique described first in [9]. Define the graphs GA and GB

as in the previous section, with (i) and (j)

replaced with (i) and (j), respectively. Define

the weight functions w1 and w2 as w1(e) = , Dpq = ||xp

- xq||, (xp, xq) = e ∈ E(GA) and w2 (e') = , Drs = ||xr -

xs||, (xr, xs) = e' ∈ E(GB), where α is a parameter governing

the rate of decay of the weight functions. Let A and B

be adjacency matrices of GA and GB. We are interested in
finding a mapping between vertices of GA and GB, or
equivalently a permutation of bases of A or B.

For calculating the best permutation, we calculate the
eigenvalue decomposition of the nearness matrices as 

= . It can be easily shown that if the rows

and columns (or bases) of a matrix is permuted by certain
permutation, its eigenvalues remain the same and the
bases of its eigenvectors are also permuted by the same
permutation and vice versa. Thus, considering only the
eigenvector corresponding to the highest eigenvalue, for
two similar matrices, the difference between the permuted
eigenvectors should be minimal. We use this fact to define
a similarity measure between the bases of the two matri-
ces, and hence between the residues of the two neighbor-
hoods.

Let fA and fB be the eigenvectors corresponding to the
highest eigenvalues of A and B, respectively. We
define the similarity sim(i, j) between residue i of neigh-

borhood (i) and residue (j) of neighborhood 2

as:

sim(i, j) = T' - |  - |, 1 ≤ i, j ≤ k (3)

Here, T' is the maximum allowed difference in the eigen-
vector values. T' can be used to control the precision of the
returned match. We are interested in equivalences that

maximize the sum total score of similarities between cor-
responding residues. Also, since there in a natural
sequence connectivity between residues of the neighbor-
hood, we can use the greedy fragment pair search tech-
nique described in section 0.8. The equivalences thus
obtained are returned as the optimal alignment between
the sequence neighborhoods.
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