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Abstract
Background: Many important high throughput projects use in situ hybridization and may require the analysis of images
of spatial cross sections of organisms taken with cellular level resolution. Projects creating gene expression atlases at
unprecedented scales for the embryonic fruit fly as well as the embryonic and adult mouse already involve the analysis
of hundreds of thousands of high resolution experimental images mapping mRNA expression patterns. Challenges include
accurate registration of highly deformed tissues, associating cells with known anatomical regions, and identifying groups
of genes whose expression is coordinately regulated with respect to both concentration and spatial location. Solutions
to these and other challenges will lead to a richer understanding of the complex system aspects of gene regulation in
heterogeneous tissue.

Results: We present an end-to-end approach for processing raw in situ expression imagery and performing subsequent
analysis. We use a non-linear, information theoretic based image registration technique specifically adapted for mapping
expression images to anatomical annotations and a method for extracting expression information within an anatomical
region. Our method consists of coarse registration, fine registration, and expression feature extraction steps. From this
we obtain a matrix for expression characteristics with rows corresponding to genes and columns corresponding to
anatomical sub-structures. We perform matrix block cluster analysis using a novel row-column mixture model and we
relate clustered patterns to Gene Ontology (GO) annotations.

Conclusion: Resulting registrations suggest that our method is robust over intensity levels and shape variations in ISH
imagery. Functional enrichment studies from both simple analysis and block clustering indicate that gene relationships
consistent with biological knowledge of neuronal gene functions can be extracted from large ISH image databases such
as the Allen Brain Atlas [1] and the Max-Planck Institute [2] using our method. While we focus here on imagery and
experiments of the mouse brain our approach should be applicable to a variety of in situ experiments.
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Background
Many large scale molecular biology experiments now use
cDNA microarray technology for measuring expression
levels of a large number of genes for a small tissue sample
or cell. However, there are a number of projects underway
to map spatial patterns of gene expression using in situ
hybridization (ISH) [3] for tens of thousands of genes in
different organisms. In contrast to microarray based meth-
ods, these projects can produce huge archives of high-res-
olution 2D and 3D images and involve the analysis of
complex spatial patterns of expression in the context of
anatomical structures, tissues and cells. These types of ISH
experiments are essentially a type of tissue array.

In recent years, genome-wide ISH experiments have
started to become publicly available, including: the Berke-
ley ISH embryonic fruit fly (Drosophila) experiments [4],
the ISH mouse embryo experiments at the Max-Planck
Institute [5], projects at Harvard [6] and Baylor [7] and the
extremely large scale ISH experiments of the Allen Brain
Atlas [1,8], involving over 21, 000 genes and roughly
three hundred 5000 × 5000 pixel images per gene for the
adult mouse brain. The processing and analysis of ISH
experiments, the linking of atlas based experimental
archives with relevant scientific literature, and the com-
parison of results with existing knowledge, together have
the potential for tremendous impact on the scientific
community. In our experiments here we focus on the
processing and analysis of ISH experiments of the adult
mouse brain using data from the Allen Brain Atlas [1,8]
with properties very similar to the the Max-Planck data
[5]. Figure 1 shows some examples of the imagery from
the Allen Brain Atlas.

We concentrate here on extracting expression information
from the type of imagery typically found in these
resources. To achieve this we have developed algorithms
to register each gene expression cross section to a corre-
sponding reference image. We then use these warped
images to estimate the expression characteristics of a gene
across different anatomical structures and extract biologi-
cally meaningful information from this data through a
simple enrichment analysis, as well as with a block clus-
tering algorithm.

In both the Allen Atlas and the Max-Planck data, images
are of very high resolution (roughly 5000 pixels per inch)
while the number of slices through the brain for a given
gene expression experiment is moderate for the Allen
Atlas (≈300) and small (≈10) for the Max-Planck data. The
intensity of each pixel gives an estimate of the expression
of that particular gene at that location. Basic searching
tools have been integrated into the BrainAtlas that help
users search for genes expressed in specific parts of the
brain [1].

Since our goal is to gather statistics about common expres-
sion patterns in anatomical structures across experiments,
it is important that we achieve a registration that is as
accurate and robust as possible. In most of our experi-
ments, we align each expression image to a hand drawn
anatomical reference image. This hand drawn reference
was created by an anatomist referring to their Allen Refer-
ence Atlas, which consists of Nissl stained sections of an
unfixed, unfrozen mouse brain [9]. The reference image
shows major anatomical structures as fixed colored
regions. Several properties characterize the specific nature
of our registration task and influenced our approach to
the registration problem:

• Our images have very high resolution. Because of this,
we are frequently able to find a large number of points in
the registration for which we have high confidence. In
other words, there is a lot of data for establishing corre-
spondences in certain areas. This suggests using a method
that uses a combination of local registrations. Such an
approach may not be possible in registration problems
using images of lower resolution, since there may not be
enough information in the images to have high confi-
dence for a large number of registration points.

• Our images have undergone large non-linear distor-
tions. Because of this, and the size of the images, the space
of possible transformations is very large relative to some
other registration problems, such as intra-patient registra-
tions in medical imaging. Searching this transformation
space directly, either by trying all possible transforma-
tions, or through iterative optimization methods, is not
feasible: there are simply too many transformations, and

In situ hybridization imagesFigure 1
In situ hybridization images. A. Reference image at position 4000. Expression images for B. Abr, C. Adcy5, D. Astn1. B is 
one of the best quality images. Most of the images are of quality C. D is among the worst quality.
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a program designed to do this would take prohibitively
long to run. Iterative optimization methods like gradient
descent, in which a small change is made to the current
transformation at each step to improve the results, is likely
to get caught in local optima, where all small changes
make the result worse, and yet a good transformation has
not yet been found. These difficulties further point toward
the use of a piecewise, or local, registration process.

• Finally, we wish to have a fully automatic registration
procedure. While the first two points above suggest land-
mark based registration methods, we would like these
landmarks to be selected automatically, rather than man-
ually as occurs in many methods.

Together these considerations led us to the development
of a fully automated, piecewise, landmark-based registra-
tion method. Below we discuss our method in the context
of other registration work, and we give details of our
approach in the section on methods.

Analysis of the resulting data suggests that this approach
can yield biologically meaningful information. Many
genes had high expression values in the organs consistent
with their known function. Furthermore, our novel, prob-
abilistically principled block clustering algorithm also dis-
covers biologically meaningful clusters. To summarize,
the contributions of this paper are: (a) a novel informa-
tion theory-based landmark algorithm to register images;
(b) extraction of expression values; and (c) analysis of
these expression values to generate biologically-motivated
hypotheses.

Previous work
Registration and feature extraction
Registration of medical and biological images is a heavily
studied topic with dozens of distinct approaches and a
huge literature. General surveys of registration include
those by Toga [10] and by Maintz and Viergever [11].

Our registration procedure relies on automatically identi-
fied landmarks, and then bases a global registration on a
piecewise landmark-based registration. This means that
certain landmarks which are deemed to be in correspond-
ence in the two images are "pinned" to each other and the
remaining parts of the images are stretched to fit amongst
these pinned landmarks. The most closely related method
of which we are aware, developed for multi-modal image
analysis, is from Gopalakrishnan et al. [12], which finds
information rich landmarks automatically and uses an
approximate local affine (The term affine registration refers
to a registration in which one image has undergone an aff-
ine transformation. An affine transformation is an image
transformation in which straight lines remain straight,
and parallel lines remain parallel. In other words, it refers

to a registration without the introduction of curvature or
perspective distortion. Affine registrations include shifts
(or "translations"), rotations, scaling (magnification and
reduction along each axis), and shearing. While it is not
technically correct, affine transformations are sometimes
referred to as linear transformations. In this work, we con-
sider a subset of affine transformations that include all of
the above operations except shearing.) registration using
these landmarks. Although there are many differences in
the details, the methods are similar in spirit. Another very
similar strategy has been used by Pitiot et al. [13] to ana-
lyze histological sections.

Our criterion for alignment is based upon mutual infor-
mation, as in the original work by Maes et al. [14] and by
Viola and Wells [15]. Mutual information is a common
criterion of alignment, and has been used heavily in regis-
tration algorithms. Intuitively, mutual information align-
ment is similar to correlation based methods, in which
one image is warped until the brightness values at each
location correlate as strongly as possible with the bright-
ness values in the other image. Mutual information regis-
tration works on a similar principle, but rather than
striving to maximize linear dependence among pixel values,
as in correlation methods, mutual information methods
strive to maximize general statistical dependence, both
linear and non-linear. Mutual information is, in fact, a
numerical measure of this statistical dependendence
between the pixel values in two images. We discuss how it
is computed for a pair of images in the methods section.
The idea, then, behind mutual information registration is
that, when images are registered (or aligned) as well as
possible, the pixel values in the images will have the
strongest possible statistical dependencies. An extensive
survey of mutual information alignment algorithms has
been published by Pluim et al. [16].

Other work related to our goals here has sought to con-
struct 3D models from high resolution optical photogra-
phy of post-mortem human brain slices [17] or
registration of mouse brain histology from a Nissl stain to
obtain a reference volume [18]. In contrast, here we are
interested in obtaining registrations between a reference
volume and gene expression experiments, potentially a
more challenging problem. Recently, Ng et al. [9]
explored a strategy for ISH to Nissl registration in which a
high resolution B-spline grid is used to obtain a deforma-
tion field that warps a Nissl reference onto a subject
image. For their local matching cost for the deformation
they used a weighted combination of a mean squared dif-
ference of a tissue mask and the mutual information of
image intensities. They note that the problem is challeng-
ing because the expression data is by nature, regionally
variable and of varying intensity. Further, they suggest that
landmark based approaches show future promise for this
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setting. These observations further motivate our approach
here.

Recent attention has also been given to the processing of
less complicated, high resolution in situ images of dro-
sophila embryos [19]. In such cases, the registration step
is fairly straightforward because the embryonic shape is
simple and smooth; basic affine transformations appear
to lead to registrations of satisfactory accuracy for early
stages of development.

Spatial expression clusterin
In this work, we frame the analysis of extracted expression
levels in terms of a clustering problem in two dimensions:
genes and anatomical structures. Approaches to such clus-
tering include independently grouping the rows and col-
umns of the data matrix [20] (ignoring any dependencies
between the two clustering problems) and bi-clustering
[21], in which both the rows and columns of the matrix
are simultaneously clustered. This setting can lead to a
coupling of the two clustering procedures [22]. These
methods have been widely applied to microarray data
[23] as well as other heterogeneous data [24]. Earlier
related work on direct clustering [25] considered finding
joint row and column clusters or blocks. More recently,
[26] have cast the joint row and column clustering prob-
lem as a block mixture model. Here we present a novel block
mixture model and novel algorithms for optimizing the
model. Using these methods we perform block cluster
analysis of expression levels extracted for anatomical
structures.

Results and discussion
To test the viability of our system we collected several
mid-sagittal section images from the Brain Atlas for each
of 104 genes and also collected five reference brain images
from the same region. The resolution of each image (Fig-
ure 1) is 400 × 800 pixels. While the raw imagery in the

atlas has a purple color, we work with images in "gray
scale", which means each pixel is defined by a single
numerical value representing its brightness, and there is
no color information. Registration between a reference
image and an expression image was performed in two
stages: coarse registration and fine registration.

Registration
The coarse registration step is done to put the ISH image
in rough alignment with the reference image. Figure 2
shows the result of the coarse registration step. The main
purpose of this step is to ease the computational burden
on the fine registration step (discussed below). In particu-
lar, if the images are in rough alignment, the fine registra-
tion step can assume that a pair of corresponding points
in the reference image and the histological image are at
similar locations. To obtain a rough alignment, a global
affine transformation (one affine transformation for the
entire expression image) is done between the reference
image and the expression image. More details are given on
this step in the methods section.

Once a coarse registration has been done, a more accurate
fine registration is performed. This fine registration con-
sists of five steps.

1. In the first step, which is only performed once per ref-
erence image, points in the reference image that are "dis-
tinctive" are selected as a basis for the alignment. The goal
is to find a set of points which can be matched with corre-
sponding points in the histological image with high relia-
bility. The measure of distinctiveness is the entropy of the
neighborhood of the point. The entropy can be thought of
as a measure of the complexity of a point's neighborhood
in the reference image. Neighborhoods with high entropy
(such as the junction of three different anatomical struc-
tures) are likely to have more structure to provide a local
and repeatable match. Neighborhoods with low entropy

Approximate registrationFigure 2
Approximate registration. Images show the difference between expression image and reference image before(left) and 
after approximate registration. In these images red channel corresponds to reference image and green channel corresponds to 
expression image.
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(such as a neighborhood around a patch of constant
brightness) do not have enough structure to provide an
unambiguous match. The left side of Figure 3 shows some
of the high entropy neighborhoods selected in the refer-
ence image as distinctive landmarks for registration.

2. Once a set of distinctive points have been found in the
reference image, the next goal is to find the corresponding
points in the expression image. This is done by searching
a small neighborhood in the expression image for the best
match to the reference image. Because the two images are
roughly aligned from the previous step, the search for the
best match can take place over a smaller zone in the
expression image. The right side of Figure 3 shows the
matched landmarks in the expression image.

3. Using the landmarks in the reference image (from the
first step), the next step is to define a set of triangular
regions in the reference image that will be individually
registered to corresponding regions in the expression
image. To do this, a "triangulation" of the reference
image, using the set of identified landmarks, must be per-
formed. We do this using a standard procedure known as
Delaunay triangulation, which is described further in the
methods section. Intuitively, a Delaunay triangulation is
designed to break the image into triangles such that
"sliver-like" triangles are avoided as much as possible. The
left side of Figure 4 shows a Delaunay triangulation of the
reference image based upon the landmarks which have
been defined at each triangle vertex.

4. Once the reference image has been triangulated, the
corresponding triangulation of the expression image is
formed. It may be necessary to eliminate some reference
points in order to keep the new triangulation from con-
taining crossed lines (and thus ambiguous regions).
Details on this culling procedure are given in the methods

section. The right side of Figure 4 shows a typical triangu-
lation of an expression image.

5. At this stage, the algorithm has established correspond-
ences among triangles in the reference image and the
expression image. The pixels within each triangle of the
expression image are then warped according to a bi-cubic
interpolation scheme (explained in methods section) to
match the pixels in the reference image.

All images for each gene were registered against all five ref-
erence images and the best pair was selected according to
maximum mutual information. Figures 5, 6 and 7 show
the resulting images at various steps of registration. Ana-
lytical results of the registration is presented in Figure 8.
Masks (examples shown in Figure 9) were created for each
anatomical structure that was labeled in the reference
image, allowing for the corresponding pixels to be
extracted for each feature (examples shown in 10). Further
analysis was done on these extracted features to provide
biological validation of the methods (Figures 11 and 12).
Detailed results are provided below.

Figure 5 shows some well registered images with almost
all the anatomical structures aligning correctly. Approxi-
mately 55 out of 104 images are of this quality. Figure 6
shows moderately well registered images with a few mis-
aligned anatomical structures. Around 40 out of 104
images are of this quality and are sufficient for coarse fea-
ture extraction. From these results it appears that image
registration is successful under varying shape, intensity
levels and quality. Figure 7 shows some cases where the
registration algorithm failed. 5 out of 104 images were of
this quality. On manual examination, it is evident that
these images cannot be registered using a continuity pre-
serving local transformation. Figure 8 plots the density of
mutual information between test and reference images at
various points of registration, which further shows that

High entropy landmarksFigure 3
High entropy landmarks. Squares on the left image highlight some of the high entropy landmarks in the reference image. 
Large squares on the right image show the search space for those landmarks in the expression image, and small squares show 
the optimal patch that corresponds to those landmarks.
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the image registrations for a large majority of genes is suc-
cessful.

Feature extraction: estimation of expression values
Individual "anatomical structure masks" were constructed
for each of the brain regions annotated in the reference
images (cerebellum, cortex, etc.). Figure 9 shows some of
these masks. Each of these masks were applied on the cor-
responding registered image for each gene to extract pixels

for that structure. Figure 10 shows some of the registered
expression images masked for specific structures. While
most images are not sufficiently well-registered to do a
pixel-level feature extraction, gross features like mean,
median and quantile for expression levels across the entire
structure can be extracted with a high reliability. In the fol-
lowing analysis we chose to use the 0.75 quantile value of
these pixel intensities as the expression statistic, which we

Delaunay triangulation of landmarksFigure 4
Delaunay triangulation of landmarks. The left image shows the Delaunay triangulation based upon a set of landmarks in 
the reference image. The right image shows the corresponding triangulation of mapped points in an expression image. Triangu-
lation in the right image might not be the Delaunay triangulation.

Well registered imagesFigure 5
Well registered images. First column corresponds to the raw image. Images in the subsequent columns show the difference 
between reference image and raw image, image after approximate registration and fine registration respectively. In these 
images red channel corresponds to reference image and green channel corresponds to expression image. Note that as in these 
images (reference and expression) high intensity (or white) corresponds to low/no expression and vice versa. The last column 
has the registered image. Rows correspond to genes Cpeb1 (Maximum mutual information = 0.5962), Esr2(0.6118), 
Rasd2(0.6285) and Tdo2(0.6209) respectively. About 55% of the registrations were of this quality.
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found to be more robust to outlier effects due to registra-
tion errors and heterogeneity within the structure.

Lein, et al. [8] reported that expression levels were typi-
cally consistent within structures in the mouse brain. For
example, they note that expression levels are "relatively
uniform ... across all cortical areas, consistent with the
idea that the basic (canonical) microcircuit is conserved
across the entire neocortex." It is these sorts of structural
effects that we aim to capture in our feature extraction.

Nevertheless, Lein also emphasize that there are notable
examples of expression sub-structure, such as varying
expression among hippocampal sub-regions. Figure 13
shows this phenomenon in the hippocampus. Automated
identification of such sub-regions and the correlation of
genes within these sub-regions is an area for future
improvement.

In this paper, we limit our concern to the major annotated
structures, which allows for a consistent set of biologically

Moderately well registered imagesFigure 6
Moderately well registered images. Rows correspond to genes Bbs4(0.5721), Chd7(0.5325), Pde1b(0.4894) and 
Sphk2(0.5909) respectively. About 40% of the registrations were of this quality.

Poorly registered imagesFigure 7
Poorly registered images. Rows correspond to genes Apaf1(0.5387), Reln(0.4720) and Myo5b(0.5148) respectively. About 
5% of the registrations were of this quality. First two of these images have large deformation (their medulla is elongated) that 
couldn't be reconciled with our approach. The third image is rotated and flipped. Our algorithm does not consider this type of 
transformation for computational reasons (i.e it would blow-up the running time).
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Quantitative performance of registrationFigure 8
Quantitative performance of registration. Density plot of mutual information between test and reference images before 
approximate registration, after approximate registration, and final registration.
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Examples of anatomical structure expression extractionFigure 10
Examples of anatomical structure expression extraction.  Gene expression images with hippocampus mask overlaid in 
blue.  Corresponding genes are A. Abr, B. Aplp2, C. Aff2, D. App. For a given pixel intensity value I, expression values are calcu-
lated via  (256-I)/256. The 75 percentile of expression values of all pixels in a  mask are then used as the expression statistic.
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meaningful structures across all gene expression experi-
ments. This naturally yields a matrix of anatomy-by-gene
expression level. Figure 11 shows a heat map where col-
umns correspond to the anatomical structures and rows
correspond to genes. Red indicates high expression and
green, low expression.

Scaling to high resolution
A key question is whether the registration and feature
extraction techniques are scalable to higher resolution
images. Although not publicly available at the time of
these experiments, the Allan Brain Atlas images, for exam-
ple, have original dimensions of ≈5000 × 10000 pixels. To
begin to address this question, we obtained a small
amount of data directly from the Allen Institute as well as
additional high resolution mouse brain imagery from the
Max-Planck Institute's GenePaint database. In this case,
we do not have hand-annotated reference maps of ana-
tomical structures and so instead we treat an arbitrary
image as a reference and consider the pairwise registration
quality between ISH images.

Sample results from these experiments are presented in
figures 14, 15 and 16. Table 1 contains the performance of
our algorithm in terms of mutual information. Figure 15
shows that delicate anatomical structures, such as the hip-
pocampus, can be successfully assigned.

Functional analysis and block clustering
There is substantial enrichment of brain-related gene
function in specific anatomical structures. For example, in
figure 12.B, genes associated with learning and memory
(GO:0007611) were found to be highly expressed in the
upper parts of the cortex and the medial habenula, just
below the hippocampal formation (p-value 0.001). In
another case, feeding behavior genes (GO:0007631) were
found to be highly expressed in the lower part of the olfac-
tory bulb (figure 12.C, p-value 0.008). In the same figure,

additional examples of spatial enrichment can be seen for
brain-related gene functions related to sensory perception
and visual learning.

Using a novel block clustering technique described in the
methods section, below, we permuted the rows (genes)
and columns (anatomy) to group correlated regions and
gene sets. We believe that this clustering assists us in iden-
tifying biologically meaningful information about genes
and anatomical structures. We justify this by noting that
many genes within block clusters have high expression
values in organs consistent with their known functional
annotations. For example, when a coarse scale 5 × 5 block
clustering is applied to our data, we find a high expression
block for the cerebellum and the cortex with gene clusters
containing Aff2, Prkar1b, Shc3, Tmod2, Abi2, all of which
are associated with learning and memory (p-value 0.001).
Figure 11 displays the block clustering results of a 10 × 8
class model, which demonstrates that block constant pat-
terns are indeed present within the data. We use a false color
image with scaling in a format commonly used in micro-
array visualization, high expression levels are red and low
expression levels are green. Missing values arising from
different anatomy and slice cross sections are indicated in
blue.

Both the variational and sequential optimization meth-
ods described in the methods section for block clustering
with a row-column mixture model produce comparable
and improved quality clustering results in comparison to
independently applied row and column clustering meth-
ods and a variety of other optimization algorithms [27].
Here we used the sequential method for the results shown
in figure 11 as our implementation runs faster for matrices
of the size considered. We used the best result over 10
runs for a 10 row and 8 column class model. Table 2
shows the clusters from figure 11 that are enriched for
genes associated with a particular GO category with p-val-

Examples of anatomical structure masksFigure 9
Examples of anatomical structure masks. Anatomical masks (highlighted in pinkish-orange) for hippocampal area and 
superior colliculus.
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Data after block clustering and analysis of the formed clustersFigure 11
Data after block clustering and analysis of the formed clusters. Expression data block clustered using 10 × 8 row-col-
umn mixtures model. Each of the block is defined by a set of genes and set of anatomical structures. Missing values, indicated in 
blue, result from the absence of certain  anatomical structures in the corresponding images. Red corresponds to  high expres-
sion and green corresponds to low expression.
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ues ≤ 0.001. We contrast this with table 3 in which we
used the same enrichment analysis for independently
applied clustering on rows and columns for a traditional
mixture model. From this comparison we see that the
joint clustering of the row column mixture has allowed us
to obtain more clusters enriched for biologically meaning-
ful GO categories.

For practical reasons due to data availability and ease of
analysis, we focused on a relatively small set of 104 well-
annotated genes and limited our consideration of struc-
tures to the major anatomical features defined in the ref-
erence maps. Since additional spatial sub-structure clearly
exists, future work requires scaling up the clustering to
include hundreds or thousands of sub-structures and
incorporating all (≈20, 000) gene expression hybridiza-
tions. Based on previous work [27], we expect that hard
assignment, variational methods will have superior run-
ning times to sequential methods in these larger matrices.
Thus, the methods we have developed here should be
applicable to other ISH image collections and should
scale to larger image sets of higher resolution.

Room for improvement certainly remains. Although we
have shown reasonable block constant structure is present

in the data matrix, recently developed, related methods
allowing overlapping groups such as Matrix Tile Analysis
[28] and other bi-clustering methods [23,29] may yield
future insights. A potentially more important extension of
this approach is to use more sophisticated feature extrac-
tion methods to obtain richer cellular level information.
Such methods could capture expression properties related
to cell type such as neurons, astrocytes, oligodendrocytes
and others. For example, our subset of experimental
images exhibited striking expression differences in the
Purkinje cell layer of the cerebellum.

Conclusion
The high mutual information gain in our image registra-
tion scheme (figure 8) along with manual review suggests
that the registration method is largely successful. From fig-
ures 5 and 6 it is evident that anatomical structures can be
registered reasonably well even when there is a large vari-
ation in shape or there is deletion of parts or presence of
debris. Figures 10 and 15 show that assignment of very
delicate anatomical structures, such as the hippocampus,
are often successful. However the variation in image and
sample quality is high, leading to difficult cases that prob-
ably cannot be adequately registered under any continuity
preserving transformation.

We found functional enrichment among anatomical
structures, as expected. But more generally, we demon-
strated how our novel block clustering strategy can extract
block constant structure and is likely to also scale well to
larger problems.

Methods
As described in the results section, a gene expression
image is first coarsely registered to a corresponding refer-
ence image using a single affine transformation. Later fine
registration is done by matching the high entropy land-
marks between the two images. Then using the registered
version of the gene expression image, gene expression val-
ues are extracted and analyzed. We now present details of
each step.

Enrichment for GO termsFigure 12
Enrichment for GO terms. Regions enriched (p-value < 0.01) for expression of genes involved A. sensory perception of 
sound (GO:0007605), B. learning and memory (GO:0007611), C. feeding behavior (GO:0007631), and D. visual learning 
(GO:0008542).

A B C D

Distribution of high entropy patchesFigure 13
Distribution of high entropy patches. In this image 
intensity at each point is proportional to average entropy of 
50 × 50 blocks overlapping that point.
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Coarse registration
In our approach we start with a Nissl stain reference image
with hand annotated anatomical regions (Figure 1A). For
each experimental ISH expression image, we perform a
coarse registration using a global affine transformation

(Figures 5, 6 and 7, middle column). Parameters of this
affine transformation are optimized sequentially. We start
with a set of initial parameters and each parameter is opti-
mized in isolation by searching over a set of values to (Ini-
tially rotation is set to zero, offsets are set to zero and

High resolution image registrationFigure 14
High resolution image registration. First two images show the registration between high resolution images for genes 
Chst2 and Sfrp2 (green channel) with that of Nr2f1 (red channel). Blue channel is set to maximum blue intensity.
Page 12 of 21
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scaling is set to one. Then horizontal scaling is optimized
by shrinking or expanding by 0 to 70 pixels, followed by
vertical scaling (shrinking or expanding by 0 to 50 pixels),
followed by rotation by 0 to 30 degrees on each side, fol-
lowed by horizontal offset, and finally vertical offset. (off-
sets are 0 to 50 pixels in both directions.) This step was
repeated until none of the parameters changed. Usually
convergence was reached within five iterations. Note that
these transformations are applied on a 1/5th scaled down
images.) maximize mutual information (discussed in detail
below) between the transformed expression image and
the reference image for each transformation. We then
select the transformation resulting in the greatest mutual
information.

The absolute quality of the registration cannot be assessed,
in general, by examining the mutual information score.
This score only gives a relative measure of how different
transformations compare. But coarse registration is rela-
tively easy as the image does not contain other objects and
the global shape of the two-dimensional sections is usu-
ally similar in the two images. The main objective of this
step is to reduce the size of the set of possible transforma-
tions (i.e., the search space) for the fine registration. After
coarse registration, we expect the anatomical structures to
be in similar locations, and to have similar size and orien-
tation, in the two images. To make this step computation-
ally viable, images are scaled down by a factor of five in
each dimension.

Fine registration
As the exact shape of the brain varies between the images,
a global transformation cannot capture the morphing
needed to align expression and reference images. But as
we have already peformed a coarse registration, individual
anatomical structures are mostly aligned and require only
local transformations for better alignment. We achieve
this by using a five-step, information theory-based land-
mark extraction and matching approach. In the first step
(1), high entropy patches, which are likely to contain
more information about shape and structure, are
extracted. Then (2) the coarsely registered expression
image is searched locally for patches that match each of
the distinctive landmarks in the reference image. After the
triangulation (3 and 4) of each image (explained below),
these mappings are used to perform a bi-cubic interpola-
tion (5) between the two images to obtain an accurate
alignment. Using a 2 GHz processor the complete coarse
and fine registration procedure takes approximately 20
minutes to register 400 × 800 pixel imagery and about 1
hour to register the higher resolution, 5000 × 5000 pixel
imagery.

Landmark extraction
The goal of landmark extraction is to find patches in the
reference image which can be matched in the expression
image with relatively high confidence. The intuition
behind our method for selecting distinctive patches for
matching is as follows: the more "structure" that one sees
in a patch, the lower the chance that it will be spuriously
matched to a patch in the expression image. For example,
if a patch in the reference image is completely constant (in

Closer view of hippocampal regionFigure 15
Closer view of hippocampal region. Hippocampus plays a very important role in memory and spatial navigation. This figure 
shows the registration in this region.

Table 1: Mutual information between high resolution images.

Gene1 Gene2 MI Before MI after coarse reg. MI after fine reg.

Sca1 Nr2f1 0.030602 0.192711 0.211132
Chst2 Nr2f1 0.053200 0.300494 0.334058
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(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 10):S5 http://www.biomedcentral.com/1471-2105/8/S10/S5
brightness), then we cannot be confident we have
matched it correctly to a patch in an expression image.
Hence, we want a notion of "complexity of structure" in
the reference image for patch selection. We use the entropy
of the distribution of brightness values in a patch as a measure
of this complexity. The formal definition and calculation
of entropy are discussed below.

75 high entropy 100 × 100 pixel patches are identified in
the reference image, which are then used to define anchor
locations within each expression image for our refined
registration. Patches may overlap, but we limit the maxi-
mal overlap to be 50%. That is, we select patches in order
of entropy, skipping patches which overlap previously
selected patches by more than 50%.

High entropy regions often correspond to edges or places
with high anatomical variation. This is reflected in Figure
13 which contains a two-dimensional histogram of high
entropy square patches around the image. A similar con-
cept called saliency [30] has been proposed and used to
extract information-rich features from images.

Landmark matching
The anchor patches are more precisely mapped to the
experimental image by performing a local search over a
small subset of affine transformations in a 150 × 150 pixel
window defined by the initial anchor position in the ref-
erence. For a fixed set of affine transforms, we warp a
small patch in the expression image using that transform,

and compare it to the anchor patch in the reference image.
The set of transformations used is represented by all com-
binations of the following simpler transformations:
shrinking or expanding by one or two pixels in each direc-
tion; rotation by one or two degrees in each direction;
shifting anywhere from 0 to 25 pixels (in steps of 5 pixels)
in each direction (up, down, left and right). Notice again
that these transformations do not include the possibility
of shearing. However, here again we use a local mutual
information based matching criterion. After local registra-
tion, the centers of the patches in the reference and exper-
imental images serve as the key pixel correspondences
between the images.

Every patch selected in the previous step is then mapped
to its corresponding patch in the gene expression image.
The selection and mapping of these landmarks is illus-
trated in Figure 3. The center of each of these patches are
used as landmarks to register between images. As some
parts of the image look very different from the reference
images, it is likely that all of the matches are correct. Glo-
bal consistency using Delaunay triangulations, described
next, are used to filter such patches.

Delaunay triangulation
A triangulation is a decomposition of an image into trian-
gles based upon a set of points that form the vertices of the
triangles, as shown in Figure 4. Triangulations are often
used to break an image into simpler parts, especially when
the reference points do not occur in a regular grid (like a

Table 3: Clusters discovered with a traditional mixture model (independent clustering). Type corresponds to either (P)rocess or 
(F)unction.

Clust GO number Type p-value Description Genes

A 0007166 P .0002 cell surf. receptor linked sig. trans. Erbb2, Fzd9
B 0007631 P .0062 feeding behavior Calca, Mc4r, Npy1r, Ntrk2
C 0001501 P .0092 skeletal development Gnaq, Hexa
C 0048066 P .0007 pigmentation during development Gnaq, Myo5a

Table 2: Clusters discovered with a joint row column mixture model (block clustering). Type corresponds to either (P)rocess or 
(F)unction.

Clust GO number Type p-value Description Genes

1 0008083 F .0091 growth factor activity Bdnf, Ntf3
1 0042490 P .0037 mechanoreceptor differentiation Bdnf, Ntf3, Ntrk2
1 0043523 P .0091 regulation of neuron apoptosis Bdnf, Ntf3
3 0001501 P .0055 skeletal development Gnaq, Hexa
3 0048066 P .0004 pigmentation during development Gnaq, Myo5a
7 0001584 F .0010 rhodopsin-like receptor activity Adora2a, Mc4r, Npy1r, Prlhr
7 0004930 F .0037 G-protein coupled receptor activity Adora2a, Mc4r, Npy1r, Prlhr
7 0004983 F .0055 neuropeptide Y receptor activity Npy1r, Prlhr
7 0007631 P .0010 feeding behavior Calca, Mc4r, Npy1r, Prlhr
8 0042759 P .0091 long-chain fatty acid biosynthesis Myo5a, Plp1
8 0048066 P .0091 pigmentation during development Gnaq, Myo5a
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rectangular grid). A Delaunay triangulation is a particular
type of triangulation that minimizes the number and size
of small angles in the resulting triangulation. See [31,32]
for details and algorithms to construct Delaunay triangu-
lation. The scientific package Matlab has library routines
for creating Delaunay triangulations as well.

Using the landmark points established in the first step, a
Delaunay triangulation of the reference image is con-
structed. The goal of the fine registration is to register each
triangle of the expression image to one of the triangles in
the reference image (see Figure 4).

Matching the triangulation to the expression image
The Delaunay triangulation of the reference image, made
from the landmark points, defines a set of triangles in the
image. In particular, it says which triples of landmark
points should be connected to form regions, as in Figure
4. If, for example, the landmark points in the reference
image are labeled {A, B, C, D, E,...}, then the Delaunay tri-
angulation could be expressed as a set of triples of these
landmarks, such as {[A, B, D], [B, C, D], [A, D, E],...}.

We would like to form a triangulation in the expression
image using the corresponding triples of landmarks that
we had used in the reference image. For example, if the
landmark points in the expression image are labeled {A',

B', C', D', E',...}, then we would like to form the following
triangulation: {[A', B', D'], [B', C', D'], [A', D', E'],...}.
Unfortunately, this may not always be possible, since the
points in the expression image are in slightly different
positions than their correspondents in the reference
image. In particular, edges of the triangles in the expres-
sion image may cross and create ambiguous regions. To
eliminate these regions, we simply remove a landmark if
it appears within another Delaunay triangle in the expres-
sion image. This process is repeated until none of the tri-
angles overlap. Every time a landmark is deleted Delaunay
triangulation is recomputed with the remaining land-
marks.

In an additional step, all the landmarks that are responsi-
ble for straining the mapping are removed. Specifically, if
AB is an edge in the triangulation of the reference image
and A'B' is the corresponding edge in the expression
image, and if the ratio of the lengths of these edges is
either greater than 1.5 or less than 0.67, then one of the
points is removed. This procedure alleviates some addi-
tional bad matches in the correspondence process and
improves overall registrations. In this step also every time
a landmark is deleted Delaunay triangulation is recom-
puted with the remaining landmarks.

Closer view of cerebellum regionFigure 16
Closer view of cerebellum region. Cerebellum plays an important role in sensory perception and motor output. This fig-
ure shows the registration in this region.
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Bi-cubic interpolation
At this point, we have established a triangulation in the
reference image and a corresponding triangulation in the
expression image. The only remaining step is to map each
pixel in the expression image to a new location, using the
corresponding landmarks of the surrounding triangle as
reference points. This is done using an interpolation
scheme known as bi-cubic interpolation [33]. The bi-
cubic interpolation is used instead of linear interpolation
to preserve smoothness of the transformation.

Calculating entropy and mutual information
We use discrete entropy as a measure of the complexity of
an image or image patch. It is a function of the brightness
values of a single image. We use mutual information as a
measure of the relative goodness of matching between
two images or two image patches. It is hence a function of
the brightness values of two images.

Let X = {xij} be the set of intensity values of the pixels in
the image X and Y = {yij} be the intensity values of the pix-
els in image Y. The value of pixel intensities are in the
range [0, 255] which can be divided into 16 equal inter-
vals {V1, V2,�,V16}. Histograms of images X and Y, and
their joint histogram, can be calculated by counting the
number of pixels falling in each interval.

Here Count is a function that counts the number of
instances that the argument condition is satisfied. Using
these histograms, the probability and joint probability
distribution of the images can be calculated:

The entropy of X is calculated using

Mutual information between images X and Y is calculated
using

One interpretation of the mutual information between
two random variables X and Y (here defined by the bright-
ness values in two different images) is as the relative
entropy between the joint distribution and product distri-
bution. Or it is equal to difference between the sum of
individual entropies and the joint entropy:

The last equation is interesting because the fraction in the
summation becomes unity, the log of which is 0, and the
mutual information becomes 0, when X and Y are inde-
pendent random variables. In other words, for independ-
ent random variables, the mutual information is zero.
Conversely, when two sets of values (like the brightness
values in two images) are highly dependent, the mutual
information will be relatively large. This is the justifica-
tion for using it as a measure of the quality of alignment
in registration.

Analysis of expression levels
Once the expression images are registered, the annotated
anatomical regions in the reference image are mapped to
the experimental image, allowing for the expression levels
within each region to be easily extracted in an automated
manner. To achieve this we use colored "masks" to delin-
eate anatomical boundaries in our reference imagery, we
can compute a variety of feature measurements for each
anatomical structure in a straightforward and semi-auto-
mated manner. These procedures are then used to extract
pixels associated with the corresponding anatomies from
every registered expression image. We have experimented
with simple summary metrics for each anatomical region
such as the mean and median expression level, however,
we have found that a robust, quantile measure results in
superior performance. Figure 11 shows the 75th percen-
tile for each of 38 anatomical regions for 104 genes. These
values have been obtained and summarized in a matrix of
genes and anatomies that can be analyzed in a very similar
way as analyzing gene expression data obtained in a
microarray experiment.

For functional enrichment analysis of individual anatom-
ical regions, the five most highly expressed structures were
identified for each gene and it is assumed that the gene is
over-expressed in those structures (lack of normalization
data prevents us from using a global threshold).
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Functional enrichment
For single gene/structure enrichment as well as enrich-
ment in block clusters, we use the Gene Ontology [34]
terms associated with each gene, producing frequencies
relating the number of occurrences of each GO term to
each structure. We then tested for statistical over-represen-
tation of GO terms in each structure (p-value < 0.01)
using the hypergeometric distribution (Fisher exact test).

Specifically, the hypergeometric distribution provides the
probability of observing exactly n genes within a group of
K genes by chance being associated with a GO category
containing C genes from a total of G genes being analyzed.
For our experiments p-values are given by

. This test indicates

whether a cluster is enriched with genes from a GO cate-
gory to a greater extent than would be expected by chance.

Block cluster analysis
Clustering is a widely used tool in bioinformatics. We
present and apply a novel, probabilistically principled
approach to block clustering in which row and column
clusters influence one another. The problem is formulated
as one of inference and optimization in a formally defined
probability model – a joint row-column mixture model.

Row-column mixture models
Consider a data matrix X where elements of the matrix are
written as xi,j. In our model each row i of the matrix is
associated with a row class random variable ri ∈ {1,...,nr},
where nr is the number of possible row classes. Each col-
umn j of the matrix is associated with a column class ran-
dom variable cj ∈ {1,...,nc}, where nc is the number of
column classes. The conditional distribution for element
xi,j is then a function of the random variable associated
with row i and column j. As such, the joint distribution of
the data X, row classes ri and column classes cj can be writ-
ten:

Here we will use Gaussian models where

, where

 although other choices of distribu-

tion are possible. The unconditional distribution for each

row class ri and column class cj is given by  and

 respectively. Let all the row and column

classes be written as , where Nr is the

number of rows in the matrix and let ,

where Nc is the number of columns. It is insightful to con-

trast row-column mixtures with a traditional mixture of
Gaussians for the rows of a matrix where the joint distri-
bution for the data matrix and the row classes is given by:

, where  now

represents elements of vectors μj. If, in the joint row-col-

umn model we assign each column to its own class then
the models are equivalent.

Variational optimization of row-column mixtures
In the following exposition we present a straightforward
extension of the well known Expectation Maximization
(EM) [35] approach to clustering for a joint row column
mixture model. We then show how a simple adaptation of
the more general algorithm leads to an approach that
scales more easily to larger matrices. The algorithm we
present here is a form of variational EM [36-38]. Tradi-
tional EM based clustering requires the posterior distribu-
tion over random variables for clusters. However, since we
have associated random variables with both row and col-
umn clusters and these variables are conditionally
dependent, traditional EM would require an intractable
joint posterior distribution. We therefore use a tractable
approximation to the posterior distribution P(R, C|X)
consisting of

Starting with an initial guess for , it is possible to opti-
mize a bound on the log probability of the observed data
under our model by starting with initial guesses (e.g. uni-
form distributions) and iteratively updating Q(ri)s and

Q(cj)s [37,38]. We can therefore optimize the parameters

of our model by repeating the following two steps until
updates converge to a final solution:

1. Variational E-steps for one or more rounds updating Qs,
then

2. An M-step, updating .

To express our variational E-steps succinctly, define hid-
den row and column class membership or indicator vari-
ables as H = {R, C}. The variational updates for fully
factorized Qs can be written
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where  denotes the expectation under all Ql≠k and

 represents an observed data matrix X. Since one holds
Ql≠k constant, these computations are performed locally in

the graphical model corresponding to (1). Variables are
updated in turn under random permutations of their
ordering over iterations. The updates of parameters of the
model are computed via a Maximization or M-step, set-

ting , we obtain closed form

updates for Θ. These updates are given by:

We refer to algorithm above as a variational optimization
of a row column mixture (v-rc-mix). A closely related opti-
mization method is to start with hard assignments for row
and column classes and search for new Maximum a Pos-

teriori (MAP) variable  assignments by alternating

updates for the assignments for all the rows  and then

all the columns . One then interleaves updates of the

parameter estimates. This is equivalent to constraining the
Q(ri)s and Q(cj)s in (2) to take on a single value, the best

possible hard assignment. Therefore the algorithm can be
described with the same equations above and simply add-
ing these constraints on the Qs. While this approach can
fall into local minima more easily, for large matrices with
row or column sizes exceeding hundreds of elements this
hard assignment algorithm can have superior run time
characteristics if implemented efficiently. We refer to the
hard assignment version of the algorithm using (rc-mix).

Sequential optimization of row-column mixtures
Our computational experiments suggest that the follow-
ing algorithm has run-time and performance characteris-
tics that are well suited to the size of matrices we explore
here. For this reason we present the following sequential
optimization algorithm. To optimize a row column mixture
with this method we begin with a random hard assign-
ment for row and column classes. We cycle through the
rows and columns under a random permutation, remov-
ing the contribution of each row or column and compute
the optimal class re-assignment after the parameters have
also been updated. We therefore refer to this type of algo-
rithm as a sequential optimization (s-rc-mix). We also
note that for many applications in bioinformatics, the
data matrix X may contain missing values. As such, the
algorithm presented here formally deals with missing val-
ues. Specifically, when we count the number of elements
xi,j within a r × c class, Nr,c we do not include missing val-
ues. Under a hard assignment for row and column classes,
the cost function we wish to minimize is given by

We then obtain an efficient update for our algorithm by
observing that (7) can be re-written as the sum of terms

, where

Given this construction we can then optimize (7) by re-
assigning rows and columns to new assignments under a
random permutation with updates computed using the
following equations. We remove a row or a column from
its row or column class and compute the effect upon the
parameters and each term in the cost function. The update
of the parameters if a row i is removed from row class k
can be written

where ,  and

. The column update

equations have the same form and the equations for add-
ing a row or column also have a similar form.
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Comparing models and optimization algorithms
We wish to recover block structure within our matrix of
expression levels for different anatomies and genes. Fur-
ther, we wish to identify algorithms that will scale to high
resolution, genomic scale data sets with hundreds of ana-
tomical structures and thousands of genes. In the follow-
ing experiments we investigate the difference between
independently clustering rows and columns of matrices
and different optimization methods for joint row-column
mixture models. We compare k-means and Gaussian mix-
ture models independently applied to the rows and col-
umns of a matrix (i-mix) vs. optimizing row column
mixture models with a hard assignment update algorithm
(rc-mix), our variational update algorithm (v-rc-mix) and
our sequential optimization method (s-rc-mix). We per-
form experiments recovering known block constant struc-
ture within synthetic data followed by experiments from a
known DNA microarray data set, the mitogen activated
protein kinase (MAPK) data of [39] for which the authors
arranged a sub-matrix into block constant regions by
hand. In both cases we compute recognition rates by
assigning each row-column class to the dominant known
class within the cluster. While other measures of cluster
quality are possible, such recognition rates provide an
intuitive measure of performance.

Synthetic data example
We generated 100 random matrices and present the mean
and 95% confidence interval. To general matrices, with
equal probability we choose a row-column mean of zero
or a row-column mean drawn uniformly from the interval
[-1, 1]. Means drawn from the mean zero class are given a
variance drawn from the interval [0, .01] and for the
means drawn from the random class we draw a variance
uniformly from [0, .16]. Such matrices have similar statis-
tics to our brain atlas data matrix and other DNA microar-
ray experiments. Table 4 illustrates the results of tests

recovering block constant structure from 50 × 50 element
matrices with 5 row and 5 column classes.

DNA microarray example
In these experiments we compare the algorithms
described in the previous sections for the task of automat-
ically determining the class assignments that were used to
create figure 14b within [39]. In this figure, a subset of 36
experiments for 67 genes were grouped into 7 row and 8
column cluster blocks "by hand" after an initial hierarchi-
cal clustering of a larger 46 × 400 microarray data matrix.
Importantly, these hand assigned row column clusters
indeed exhibit approximately block constant structure.
For the following experiments we randomize this matrix,
apply the algorithms described in the previous section
and use the hand labeled class assignments as the ground
truth. Table 5 illustrates the recognition rates and timing
results for this data set using the different algorithms
when we treat the dominant known class in a cluster as
the true label.

Modeling and computational considerations
First, when performing joint row-column cluster analysis
one must of course have reason to believe that block con-
stant structure exists in the underlying data. However, fig-
ure 11 indicates that these model assumptions are
reasonable for this subset of the Allen Atlas data. Second,
our performance and runtime analysis suggests that for
matrices of approximate size 50 × 50 our variational opti-
mization procedure is an attractive approach. For matrices
of approximate size 200 × 200 the computation time for
our variational method is such that our sequential optimi-
zation algorithm becomes more attractive. Finally, for
matrices with several hundred anatomical structures and
several thousand genes, given a fixed amount of time for
computation, the alternating row column greedy optimi-
zation algorithm has desirable characteristics. Finally, for

Table 5: Results for recovering the block constant structure in the MAPK microarray data [39]. (Left to Right) Recognition rates for: 
independently applied k-means, independent Gaussian mixture models (i-mix), alternating row and column hard assignment row 
column mixtures (rc-mix), sequentially optimized rc-mixtures (s-rc-mix) and variational optimization for rc-mixtures (v-rc-mix). We 
recover known, approximately block constant structure in a 36 × 67 element matrix with 7 row and 8 column classes.

k-means i-mix rc-mix s-rc-mix v-rc-mix

recognition rate .50 ± .01 .48 ± .01 .56 ± .01 .56 ± .01 .55 ± .01
time (sec.) .38 ± .01 .46 ± .01 3.8 ± .1 4.6 ± .4 195 ± 3

Table 4: Comparing clustering algorithms (Left to Right) Recognition rates for: independently applied k-means, independent Gaussian 
mixture models (i-mix), alternating row and column hard assignment row-column mixtures (rc-mix), sequentially optimized row-
column mixtures (s-rc-mix) and row-column mixtures optimized using our variational method (v-rc-mix). We recover the block 
constant structure of synthetic data consisting of 50 × 50 element matrices with 5 row and 5 column classes.

k-means i-mix rc-mix s-rc-mix v-rc-mix

recognition rate .71 ± .04 .72 ± .04 .77 ± .04 .83 ± .04 .84 ± .05
time (sec.) .15 ± .02 .22 ± .01 1.0 ± .06 2.3 ± .2 110 ± 10
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future work in this area we see annealing approaches and
automated model selection methods as having great
potential for these types of models.
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