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Abstract
Background: Much recent work in bioinformatics has focused on the inference of various types
of biological networks, representing gene regulation, metabolic processes, protein-protein
interactions, etc. A common setting involves inferring network edges in a supervised fashion from
a set of high-confidence edges, possibly characterized by multiple, heterogeneous data sets (protein
sequence, gene expression, etc.).

Results: Here, we distinguish between two modes of inference in this setting: direct inference
based upon similarities between nodes joined by an edge, and indirect inference based upon
similarities between one pair of nodes and another pair of nodes. We propose a supervised
approach for the direct case by translating it into a distance metric learning problem. A relaxation
of the resulting convex optimization problem leads to the support vector machine (SVM) algorithm
with a particular kernel for pairs, which we call the metric learning pairwise kernel. This new kernel
for pairs can easily be used by most SVM implementations to solve problems of supervised
classification and inference of pairwise relationships from heterogeneous data. We demonstrate,
using several real biological networks and genomic datasets, that this approach often improves
upon the state-of-the-art SVM for indirect inference with another pairwise kernel, and that the
combination of both kernels always improves upon each individual kernel.

Conclusion: The metric learning pairwise kernel is a new formulation to infer pairwise
relationships with SVM, which provides state-of-the-art results for the inference of several
biological networks from heterogeneous genomic data.
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Background
Increasingly, molecular and systems biology is concerned
with describing various types of subcellular networks.
These include protein-protein interaction networks, meta-
bolic networks, gene regulatory and signaling pathways,
and genetic interaction networks. While some of these
networks can be partly deciphered by high-throughput
experimental methods, fully constructing any such net-
work requires lengthy biochemical validation. Therefore,
the automatic prediction of edges from other available
data, such as protein sequences, global network topology
or gene expression profiles, is of importance, either to
speed up the elucidation of important pathways or to
complement high-throughput methods that are subject to
high levels of noise [1].

Edges in a network can be inferred from relevant data in
at least two complementary ways. For concreteness, con-
sider a network of protein-protein interactions derived
from some noisy, high-throughput technology. Our con-
fidence in the correctness of a particular edge A - B in this
network increases if we observe, for example, that the two
proteins A and B localize to the same cellular compart-
ment or share similar evolutionary patterns [2-4]. Gener-
ally, in this type of direct inference, two genes or proteins
are predicted to interact if they bear some direct similarity
to each other in the available data.

An alternative mode of inference, which we call indirect
inference, relies upon similarities between pairs of genes or
proteins. In the example above, our confidence in A - B
increases if we find some other, high-confidence edge C -
D such that the pair {A, B} resembles {C, D} in some
meaningful fashion. Note that in this model, the two con-
nected proteins A and B might not be similar to one
another. For example, if the goal is to detect edges in a reg-
ulatory network by using time series expression data, one
would expect the time series of the regulated protein to be
delayed in time compared to that of the regulatory pro-
tein. Therefore, in this case, the learning phase would
involve learning this feature from other pairs of regula-
tory/regulated proteins. The most common application of
the indirect inference approach in the case of protein-pro-
tein interaction involves comparing the amino acid
sequences of A and B versus C and D (e.g., [5-8]).

Indirect inference amounts to a straightforward applica-
tion of the machine learning paradigm to the problem of
edge inference: each edge is an example, and the task is to
learn to discriminate between "true" and "false" edges.
Not surprisingly, therefore, several machine learning algo-
rithms have been applied to predict network edges from
properties of protein pairs. For example, in the context of
machine learning with support vector machines (SVM)
and kernel methods, Ben-Hur and Noble [8] describe how

to map an embedding of individual proteins onto an
embedding of pairs of proteins. The mapping defines two
pairs of proteins as similar to each other when each pro-
tein in a pair is similar to one corresponding protein in the
other pair. In practice, the mapping is defined by deriving
a kernel function on pairs of proteins from a kernel func-
tion on individual proteins, obtained by a tensorization
of the initial feature space. We therefore call this pairwise
kernel the tensor product pairwise kernel (TPPK, see Meth-
ods section).

Less attention has been paid to the use of machine learn-
ing approaches in the direct inference paradigm. Two
exceptions are the works of Yamanishi et al. [9] and Vert et
al. [10], who derive supervised machine learning algo-
rithms to optimize the measure of similarity that under-
lies the direct approach by learning from examples of
interacting and non-interacting pairs. Yamanishi et al.
employ kernel canonical correlation analysis to embed
the proteins into a feature space where distances are
expected to correlate with the presence or absence of inter-
actions between protein pairs. Vert et al. highlight the sim-
ilarity of this approach with the problem of distance
metric learning [11], while proposing an algorithm for
that purpose.

Both of these direct inference approaches, however, suffer
from two important drawbacks. First, they are based on
the optimization of a proxy function that is slightly differ-
ent from the objective of the embedding, namely, finding
a distance metric such that interacting/non-interacting
pairs fall above/below some threshold. Second, the meth-
ods of [9] and [10] are applicable only when the known
part of the network used for training is the set of all edges
among a subset of proteins in the network. In other
words, in order to apply these methods, we must have a
complete set of high-confidence edges for one set of pro-
teins, from which we can infer edges in the rest of the net-
work by assuming that edges not observed among the
proteins in the training set are really absent. This setting is
often unrealistic. In practice, our training data will gener-
ally consist of known positive and negative edges distrib-
uted throughout the target network. For example, in the
case of protein-protein interactions, one typically derives
positive examples of interactions from experimental
assays, while negative examples can be sampled randomly
among non-interacting pairs or generated from pairs of
proteins known to be present in different cellular localiza-
tion or expressed under different conditions; the methods
of [9] and [10] can not be used in this setting.

In this paper we propose a convex formulation for super-
vised learning in the direct inference paradigm that over-
comes both of the limitations mentioned above. This
formulation stems from a particular formulation of the
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distance metric learning problem [10,11]. We show that a
slight relaxation of this formulation bears surprising sim-
ilarities with the supervised approach of [8], in the sense
that it amounts to defining a kernel between pairs of pro-
teins from a kernel between individual proteins. We there-
fore call our method the metric learning pairwise kernel
(MLPK). An important property of this formulation as an
SVM is the possibility to learn from several data types
simultaneously by combining kernels, which is of partic-
ular importance in various bioinformatics applications
[12,13].

Several authors have proposed algorithms for distance
metric learning with kernels related to our method. Tsang
and Kwok [14] propose a quadratic program (QP) formu-
lation of the problem, while Weinberger et al. [15] pro-
pose a semidefinite programming formulation in the
context of distance metric learning for k-nearest-neigh-
bour classifiers. In both cases, however, a specific algo-
rithm must be implemented. To the contrary, the
formulation we propose builds upon the well-known
SVM algorithm. Any practitioner of SVM can therefore
easily use it with most public SVM implementations, at
the price of using a specific kernel. A second advantage of
our SVM formulation is that it can be easily combined
with other SVM formulation, such as the TPPK approach,
by forming linear combinations of different kernels.

We validate the MLPK approach on the task of recon-
structing two yeast networks: the network of metabolic
pathways and the co-complex network. In each case, the
network is inferred from a variety of genomic and pro-
teomic data, including protein amino acid sequences,
gene expression levels over a large set of experiments, and
protein subcellular localization. We show that the MLPK
approach nearly always provides better prediction per-
formance than the state-of-the-art TPPK approach, and
that the combination of the MLPK and TPPK together
almost always leads to the best results.

Results and discussion
In this section we present a comparison of the previously
described TPPK kernel and the new MLPK kernel for the
reconstruction of two biological networks: the metabolic
network and the co-complex protein network. For each
network, we cast the problem of network reconstruction
as a binary classification problem, where the presence or
absence of edges must be inferred from various types of
data relevant to the problem. Because the network con-
tains relatively few edges compared to the total number of
possible pairs, we created a balanced dataset by keeping
all known edges as positive examples and randomly sam-
pling an equal number of absent edges as negative exam-
ples. We compare the utilities of the TPPK and MLPK
kernels in this context by assessing the performance of an

SVM for edge prediction in a five-fold cross-validation
experiment repeated three times (3 × 5 cv) with different
random folds. At each fold, the regularization parameter
C of the SVM is chosen among 18 values evenly log-
spaced on the interval [10-4, 50] by minimizing the classi-
fication error estimated by five-fold cross-validation
within the training set only. We also assess the perform-
ance of the pairwise kernel obtained by summing the
TPPK and MLPK kernels, which we call MLPK + TTPK
below. The MLPK + TPPK kernel is a simple way to com-
bine the information contained in the MLPK and TTPK
kernels. We also test two approaches to integrate the vari-
ous genomic and proteomic data for edge prediction. First
we construct an integrated kernel over genes, obtained by
adding together all kernels defined by the various data,
and deduce a TPPK, MLPK or MLPK + TTPK pairwise ker-
nel from this integrated kernel. This is a simple approach
to data integration that has proved useful in previous
work [12,16]. Alternatively, we consider the pairwise ker-
nels deduced from each individual genomic data, and add
them together to form an integrated pairwise kernel.

As a baseline method for direct inference, for each kernel
between genes we also assess the performance of a direct
method that ranks the candidate edges by increasing dis-
tance between the two gene involved, where the distance
between two genes is derived from the kernel value by the
equation:

Metabolic network
Most biochemical reactions in living organisms are cata-
lyzed by particular proteins called enzymes, and occur
sequentially to form metabolic pathways. For example,
the degradation of glucose into pyruvate (called glycoly-
sis) involves a sequence of ten chemical reactions cata-
lyzed by ten enzymes. The metabolic gene network is
defined as an undirected graph with enzymes as vertices
and with edges connecting pairs of enzymes that can cat-
alyze successive chemical reactions. The reconstruction of
metabolic pathways for various organisms is of critical
importance, e.g., to find new ways to synthesize chemical
compounds of interest. This problem motivated earlier
work on supervised graph inference [9,10]. Focusing on
the budding yeast S. cerevisiae, we collected the metabolic
network and genomic data used in [9]. The network was
extracted from the KEGG database and contains 769 ver-
tices and 3702 undirected edges.

In order to infer the network, various independent data
about the proteins can be used. In this experiment, we use
four relevant sources of data provided by [9]: (1) a set of
157 gene expression measurements obtained from DNA
microarrays; (2) the phylogenetic profiles of the genes,

d x y K x x K y y K x yK ( , ) ( , ) ( , ) ( , ).= + − 2
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represented as 145-bit vectors indicating the presence or
absence of each gene in 145 fully sequenced genomes; (3)
the protein's localization in the cell determined experi-
mentally [17], represented as 23-bit vectors correspond-
ing to 23 cellular compartments, and (4) yeast two-hybrid
protein-protein interaction data [1], represented as a net-
work. For the first three data sets, a Gaussian RBF kernel
was used to represent the data as a kernel matrix. For the
yeast two-hybrid network, we use a diffusion kernel [18].
All data were downloaded from http://web.kuicr.kyoto-
u.ac.jp/~yoshi/ismb04

Table 1 shows the performance of each pairwise kernel, as
well as that of the baseline direct approach, for the differ-
ent data sets. The MLPK is never worse than the TPPK ker-
nel, and both methods are always much better than the
baseline direct method for edge inference. The two kernels
have similar performance on the sum kernel; MLPK is
slightly better than TPPK on the expression, localization
and phylogenetic profile kernels, and much better on the
yeast two-hybrid dataset (76.6% vs. 59.2% in accuracy).
Finally we observe that the integrated kernel MLPK +
TPPK is always at least as good as the best of MLPK or
TPPK alone, confirming that MLPK and TTPK are comple-
mentary to one another.

Interestingly, we note that although connected pairs, i.e.,
pairs of enzymes acting successively in a pathway, are
expected to have similar expression, phylogenetic profiles
and localization (explaining the good performance of the
MLPK on these datasets), the indirect approach imple-
mented by the TPPK also gives good results for these data.
This result implies that for these data, interacting pairs in
the training set are often similar not only to each other but
also to other interacting pairs in the training set. This
observation is not surprising because, for example, if two
proteins in the test set are co-localized in a particular
organelle, then it is likely that interacting pairs of proteins

co-localized in the same organelle are also present in the
training set.

In the case of yeast two-hybrid data, on the other hand,
the kernel between single proteins is defined as a diffusion
kernel over the yeast two-hybrid graph. One can speculate
that, in that case, similarity between pairs can be easily
assessed and used by the MLPK to predict edges, but sim-
ilarity between pairs as defined by the TPPK kernel is less
likely to be observed. In a sense, the dimensionality of the
feature space of the diffusion kernels is much larger than
that defined by the other kernels, and a protein is only
close to its neighbors in the yeast two-hybrid graph.

Regarding the integration of heterogeneous data sets, the
pairwise kernels deduced from the sum of the individual
kernels performs slightly better than the sum of the pair-
wise kernels deduced from individual kernels, which per-
forms itself always better than the best of the pairwise
kernels deduced from individual kernels. This confirms
that the simple addition of kernels is a simple and power-
ful means to learn from heterogeneous data, and shows
that in the case of pairwise kernels it seems better to first
integrate heterogeneous data at the level of individual
genes, before converting this integrated kernel into a pair-
wise kernel.

Protein complex network
Many proteins carry out their biological functions by act-
ing together in multi-protein structures known as com-
plexes. Understanding protein function therefore requires
identification of these complexes. In the co-complex net-
work, nodes are proteins, and an edge between proteins A
and B exists if A and B are members of the same protein
complex. Some high-throughput experimental methods,
such as tandem affinity purification followed by mass
spectrometry, explicitly identify these co-complex rela-
tionships, albeit in a noisy fashion. Also, computational

Table 1: Performance on reconstruction of the yeast metabolic networks.

MLPK TPPK MLPK + TPPK Direct
Data Accuracy AUC Accuracy AUC Accuracy AUC AUC

Expression 77.9 ± 1.2 84.8 ± 1.2 77.4 ± 0.9 84.1 ± 0.4 78.2 ± 0.9 84.9 ± 1.3 51.9 ± 1.6
Localization 63.8 ± 2.2 67.5 ± 3.0 62.4 ± 1.0 65.6 ± 0.8 64.4 ± 0.9 66.3 ± 1.0 55.1 ± 1.4

Phylogenetic profile 79.5 ± 0.9 84.3 ± 0.9 77.7 ± 1.6 83.6 ± 1.7 80.7 ± 0.8 85.4 ± 1.1 60.7 ± 1.4
Yeast two-hybrid 75.9 ± 1.2 82.5 ± 1.4 59.4 ± 1.0 65.4 ± 1.7 76.7 ± 0.8 83.0 ± 0.4 51.6 ± 1.4

Sum 83.9 ± 0.7 91.6 ± 0.5 84.0 ± 0.7 91.2 ± 0.4 83.9 ± 0.9 91.5 ± 0.6 60.6 ± 1.3
Pairwise sum 81.4 ± 0.5 89.0 ± 0.4 80.7 ± 1.1 88.6 ± 0.6 81.6 ± 0.7 89.2 ± 0.8 -

The table lists, for each type of data, the accuracy and area under the ROC curve obtained by each pairwise kernel. Values in the tables are means 
and standard errors in a 3 × 5 cv experiment. TPPK is the tensor product pairwise kernel, and MLPK is the metric learning pairwise kernel. The 
column MLPK + TTPK shows the results when an SVM is trained with the sum of the MLPK and TPPK pairwise kernels. The row Sum shows the 
results when the kernel between the genes is the sum of the expression, localization, phylogenetic profile and yeast two-hybrid kernels. The line 
Pairwise sum shows the results obtained with the SVM when the pairwise kernel used is the sum of pairwise kernels derived from the expression, 
localization, phylogenetic profile and yeast two-hybrid kernels, respectively. The Direct column shows the result of the direct method, where gene 
pairs are ranked according to their distance as defined by each kernel to predict edges.
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methods exist for inferring the co-complex network from
individual data types or from multiple data types simulta-
neously [19,20]. We derived the co-complex data set
based on an intersection of the manually curated MIPS
complex catalogue [21] and the BIND complex data set
[22]. The co-complex network contains 3280 edges con-
necting 797 proteins. In addition, our data set contains
3081 proteins with no co-complex relationships.

For this evaluation, we again use four different data sets
that we consider relevant to the co-complex network. The
first data set is the same localization data that we used
above [17]. The second is derived from a chip-based ver-
sion of the chromatin immunoprecipitation assay (so-
called "ChIP-chip" data) [23]. This assay provides evi-
dence that a transcription factor binds to the upstream
region of a given gene and is likely to regulate the expres-
sion of the given gene. Our data set contains data for 113
transcription factors, and so yields a vector of length 113
for each protein. The final two data sets are derived from
the amino acid sequences of the yeast proteins. For the
first, we compared each yeast protein to every model in
the Pfam database of protein domain HMMs
(pfam.wustl.edu) and recorded the E-value of the match.
This comparison yields a vector of length 8183 for each
protein. Finally, in a similar fashion, we compared each
yeast protein to each protein in the Swiss-Prot database
version 40 (ca.expasy.org/sprot) using PSI-BLAST [24],
yielding vectors of length 101,602. Each of the four data
sets is represented using a scalar product kernel.

We used the same experimental procedure to compare the
quality of edge predictors for the co-complex network
using MLPK, TPPK and their combination MLPK + TPPK.
The results, shown in Table 2, again show the value of the
MLPK approach. Using either performance metric (accu-
racy or ROC area), the MLPK approach performs better
than the TPPK approach on three out of four data sets.
Both methods strongly outperform the direct approach on
all datasets.

Most striking is the improvement for the ChIP-chip data
set (accuracy from 63.8% to 82.2%). This result is
expected, because we know that proteins in the same com-
plex must act in concert. As such, they are typically regu-
lated by a common set of transcription factors.

In contrast, the MLPK approach does not perform better
than TPPK on the localization data set. This is, at first,
suprising because two proteins must co-localize in order
to participate in a common complex. This problem is thus
an example of the direct inference case for which the
MLPK is designed. However, the localization data is some-
what complex because (1) only approximately 70% of
yeast proteins are assigned any localization at all, and (2)

many proteins are assigned to multiple locations. As a
result, among 3280 positive edges in the training set, only
1852 (56%) of those protein pairs share exactly the same
localization. Furthermore, 550 (16.8%) of the 3280 nega-
tive edges used in training connect proteins with the same
localization, primarily "Unknown." These factors make
direct inference using this data set difficult. The indirect
method, by contrast, is apparently able to identify useful
relationships, corresponding to specific localizations, that
are enriched among the positive pairs relative to the neg-
ative pairs.

The fact that the MLPK and TPPK capture complementary
information is further demonstrated by the good perform-
ance of the combined MLPK + TPPK approach, which is
always better than both TPPK and MLPK alone on all data-
sets. Finally, the relevance of heterogeneous data integra-
tion by kernel summation is again demonstrated by the
excellent results obtained in this case, with a slight advan-
tage to the construction of a pairwise kernel over the inte-
grated kernel for genes. The combination of MLPK + TPPK
over the integrated kernel results in the best performance.

Conclusion
We showed that a particular formulation of metric dis-
tance learning for graph inference can be formulated as a
convex optimization problem and can be applied to any
data set endowed with a positive definite kernel. A relaxa-
tion of this problem leads to the SVM algorithm with the
new MLPK kernel (5) between pairs. Experiments on two
biological networks confirm the value of this approach for
the reconstruction of biological network from heterogene-
ous genomic and proteomic data.

The MLPK kernel is derived from a new formulation for
distance metric learning. Contrary to other formulations
[14,15] the resulting algorithm is a classical SVM with a
particular kernel. This formulation can therefore benefit
from the popularity of SVM in the computational biology
community coupled with the availability of numerous
public implementations of SVM, to solve various prob-
lems of gene or protein network inference, or more gener-
ally pairwise relationships inference.

This formulation, however, is obtained at the price of
relaxing a positive definiteness constraint for the sake of
computational efficiency. While the experimental results
validate the approach for practical gene network infer-
ence, the relaxed formulation can not be considered as a
distance metric learning algorithm anymore, because the
final metric matrix may have negative eigenvalues. This
discrepancy between the motivation of our approach (for-
mulating graph inference as distance metric learning) and
the final algorithm might complicate the interpretation of
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the results obtained, and will be subject to further investi-
gations in the future.

Beyond the direct and indirect approaches to graph infer-
ence mentioned in the introduction, there exist many
alternative ways to infer networks, such as estimating con-
ditional independence between vertices with Bayesian
networks [25]. An interesting property of methods based
on supervised learning, such as the SVM with the TPPK
and MLPK kernels, is the limited hypothesis made on the
nature of the edges; the only hypothesis made is that there
is information related to the presence or absence of edges
in the data, and we let the learning algorithm model this
information. The good accuracy obtained on two com-
pletely different networks (metabolic and co-complex)
supports the general utility of this approach.

An interesting and important avenue for future research is
the extension of these approaches to inference of directed
graphs, e.g., regulatory networks. Although the TPPK and
MLPK approaches are not adapted as such to this prob-
lem, variants involving for example kernels between
ordered pairs could be studied.

Methods
In this section we first explain how SVM can be used for
graph inference, present the TPPK and MLPK kernels and
provide some intuitive analysis of their differences. We
then provide a detailed derivation of the MLPK kernel in
the context of distance metric learning. After explaining
the link between graph inference and distance metric
learning, we first propose a new algorithm for distance
metric learning when the genomic data are represented by
vectors. We then generalize this algorithm to the case
where the data are not necessarily finite-dimensional vec-
tors, but more generally when a positive definite kernel is
defined over the vertices. Finally, we introduce a relaxa-
tion of the resulting optimization problem, and we show
that the problem is then equivalent to an SVM for a par-
ticular pairwise kernel, which we explicitly identify as the
MLPK.

SVM and positive definite kernels
Our method for graph inference is based on the SVM algo-
rithm, a widely-used algorithm for supervised binary clas-
sification [26,27]. Given a set of points x1,...,xn with binary
labels y1,...,yn ∈ {-1, 1}, SVM estimate a function:

to predict the label of any new point x by the sign of f(x).
The function K in (1) is the so-called kernel, which must
be a symmetric and positive definite function (i.e., for any
integer p and any set of points u1,...,up the square p × p
matrix Ki,j = K(ui, uj) must be symmetric and positive sem-
idefinite). The weights αi (i = 1,...,n) and offset b in (1) are
obtained by solving the following quadratic program:

under the constraints

An interesting property of SVM is the complete modular-
ity between the choice of the kernel K, on the one hand,
and the algorithm. In other words the same SVM imple-
mentation can be used to process different data and solve
different problems by simply modifying the data and the
kernel used.

Pairwise kernels for graph inference

We formulate the problem of supervised graph inference
as follows: given a set of known interacting and non-inter-
acting pairs of genes, build a classification function to pre-
dict for all pairs not used in the training phase whether
they interact or not. In order to formalize this problem let
us assume that a gene is represented by a point x, and that
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Table 2: Performance on reconstruction of the yeast co-complex networks.

MLPK TPPK MLPK + TPPK Direct
Data Accuracy AUC Accuracy AUC Accuracy AUC AUC

Localization 76.2 ± 1.0 76.9 ± 2.0 79.5 ± 1.8 82.9 ± 1.7 80.6 ± 0.7 83.0 ± 1.2 73.9 ± 1.4
Chip-chip 82.2 ± 1.1 89.7 ± 0.8 63.8 ± 1.2 68.0 ± 1.1 84.4 ± 1.2 90.8 ± 1.2 58.4 ± 1.5

Pfam 92.1 ± 0.9 98.0 ± 0.5 86.1 ± 1.0 91.8 ± 0.9 93.8 ± 0.3 98.5 ± 0.1 67.3 ± 1.2
PSI-BLAST 89.0 ± 0.9 97.0 ± 0.1 88.3 ± 1.0 93.5 ± 0.9 93.1 ± 0.6 97.9 ± 0.2 67.8 ± 1.2

Sum 93.6 ± 0.3 98.7 ± 0.2 94.1 ± 0.6 98.0 ± 0.3 95.8 ± 0.3 99.1 ± 0.3 79.9 ± 0.8
Pairwise sum 93.3 ± 0.8 98.2 ± 0.4 90.5 ± 0.9 96.3 ± 0.7 95.2 ± 0.3 98.9 ± 0.2 -

The table lists, with the notation conventions explained in Figure 1, the results of the different methods on the reconstruction of the yeast co-
complex networks.
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a kernel K between genes has been chosen. This kernel can
for example be derived from genomic data, such as a
microarray expression profile. We consider a set of n genes

x1,...,xn, and a training set  =  ∪  of interacting

( ) and non-interacting ( ) pairs; our objective is to
learn a function to predict which pairs outside the training
set interact or not.

By labeling +1 interacting pairs and -1 non-interacting
pairs, this problem is a classical binary supervised classifi-
cation problem, which can be solved with a SVM as soon
as a kernel is defined. The difficulty is that the patterns to
be classified are pairs of genes, while we assume that only
a kernel between individual genes is available.

Ben-Hur and Noble proposed in [8] a general formula to
create a kernel between pairs or patterns from a kernel
between individual patterns:

KTPPK((x1, x2), (x3, x4)) = K(x1, x3)K(x2, x4) + K(x1, x4)K(x2, 
x3). (4)

The rationale behind this tensor product pairwise kernel
(TPPK) is that the comparison between a pair (x1, x2) and
another pair (x3, x4) is done through the comparison of x1
with x3 and x2 with x4 (using the kernel between individual
genes), on the one hand, and the comparions of x1 with x4
and x2 with x3, on the other hand.

In this paper we propose another pairwise kernel as fol-
lows:

KMLPK((x1, x2), (x3, x4)) = (K(x1, x3) - K(x1, x4) - K(x2, x3) + 
K(x2, x4))2. (5)

This metric learning pairwise kernel (MLPK) is justified in
detail in the following subsections and its link with the
problem of distance metric learning highlighted.
Although the formula of the MLPK (5) might seem less
intuitive than the TPPK (4), some simple algebra can help
highlight their difference. Indeed, any positive definite
kernel can be written as an inner product after embedding
the points to some Hilbert space [28]:

K(x, x') = Φ(x)¨Φ(x'), (6)

where Φ is the mapping from the space of pattern to the
feature Hilbert space. Consequently the MLPK can be
rewritten as follows by plugging (6) into (5):

KMLPK((x1, x2), (x3, x4)) = [(Φ(x1) - Φ(x2))¨(Φ(x3) - 
Φ(x4))]2. (7)

This equation suggests that, up to the square exponent,
the MLPK is an inner product between pairs after mapping
a pair (x1, x2) to the vector Φ(x1) - Φ(x2). Hence a major
difference between the TPPK and MLPK is that the former
involves comparison between individual genes of the first
pair and individual genes of the second pair, while the
later compares pairs through the differences between their
elements (in the feature space). In particular two pairs
might be very similar with respect to the MLPK kernel
even if the patterns of the first pair are very different from
the patterns of the second pair, resulting in a large dissim-
ilarity with respect to the TPPK kernel.

The rest of this section is devoted to a more rigorous deri-
vation of the MLPK kernel, in particular to show its rela-
tionship to distance metric learning

Distance metric learning
Following [10], we note that a possible approach to solve
the problem of graph inference is to learn a distance met-
ric d between genes with the property that pairs of nearby
genes with respect to d are connected by an edge, while
pairs of genes far from each other are not. If such a metric
is available, then the prediction of an edge between a can-
didate pair of genes simply amounts to computing their
distance to each other and predicting an edge if the dis-
tance is below a threshold.

More formally, let us first assume that genes are repre-
sented by finite-dimensional vectors and investigate dis-
tance metrics obtained by linear transformations of the
input space. Such metrics are indexed by symmetric posi-
tive semidefinite matrices M as follows:

dM(x, x') = (x - x')¨M(x - x').

Our goal is to learn a distance metric which separates
interacting from non-interacting pairs, while controlling
over-fitting to the training set. Following the spirit of the
SVM algorithm, we enforce an arbitrary margin of 2
between the distances of interacting and non-interacting
variables up to slack variables, and control the Frobenius
norm of M by considering the following problem:

under the constraints:

  
 

min ,
, , ( , )γ ζ

ζ
M Fro ij

i j

M C2 +
∈
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In order to solve this problem we first prove the following
extension to the representer theorem [29]:

Theorem 1
The solution of (8–9) can be expanded as:

with αij ∈ � for (i, j) ∈ .

Proof

For any pair (i, j), let us denote uij = xi - xj, and let Dij be the

p × p matrix Dij = (xi - xj)(xi - xj)¨ = uij . Then we can

rewrite

dM(xi, xj) = �M, Dij�Fro,

where �A, B�Fro = Trace(A¨B) is the Frobenius inner prod-
uct. Introducing the hinge loss function L(y, y') = max(1 -
yy', 0) for y, y' ∈ �, and the indicator variables:

we can eliminate the slack variables and rewrite the prob-
lem (8–9) as:

This shows that the optimization problem is in fact equiv-
alent, up to the positive semidefinitiveness constraint, to
an SVM in the linear space of symmetric matrices
endowed with the Frobenius inner product. Each edge
example is then mapped to the matrix Dij. In particular, if

the constraint on M was not present, then Theorem 1
would be exactly the representer theorem. Here we need
to show that it still holds with the constraint M  0. For this

purpose let M  0 and γ ∈ � be the solution of (8–9). M can
be uniquely decomposed as M = MS + M⊥, where MS is in

the linear span of (Dij, (i, j) ∈ ) and �M⊥, Dij�Fro = 0 for

(i, j) ∈ . By the Pythagorean theorem we have

, so if M⊥ ≠ 0 the functional

minimized in (10) is strictly smaller at (MS, γ) than at (M,

γ); this would be a contradiction if MS  0. Therefore, to

prove the theorem it suffices to show MS  0. Let v ∈ �p be

any vector. We can decompose that vector uniquely as v =

vS + v⊥, where vS is in the linear span of the uij, (i, j) ∈ 

and  for (i, j) ∈ . We then have MSv⊥ = 0 and

M⊥vS = 0, and therefore

where we used the fact that M  0 in the last inequality. This
is true for any v ∈ �p, which shows that MS 0, concluding
the proof. ■

By plugging the result of Theorem 1 into (8–9) we see that

this problem is equivalent to that of finding αij, (i, j) ∈ 

and γ. In order to write out the problem explicitly, let us
introduce the following kernel between two pairs (x1, x2)

and (x3, x4):

This kernel is positive definite because it is the Frobenius
inner product between the matrices Dab representing the
pairs. Moreover, although KMLPK is formally defined for
ordered pairs only, we observe that it is invariant by per-
mutation of the elements of each pair (e.g., when x1 and
x2 are flipped). It can therefore be considered as a positive
definite kernel over the set of unordered pairs, seen as the
quotient space of the set of ordered proteins with respect
to the equivalence relation of permutation among each
pair. We call this kernel for unordered pairs the metric
learning pairwise kernel (MLPK), hence the notation KMLPK.

In order to express the problem (8–9) in terms of the α
variables provided by Theorem 1, we need to express the

constraint M  0 in terms of α. Denoting pairs of indices t
= (i, j), Theorem 1 ensures that M can be written as

. As we showed in the proof of Theo-

rem 1, this implies that M is null on the space orthogonal

to the linear span of (ut, t ∈ ). Therefore, M  0 if and

only if v¨Mv ≥ 0 for any v in the linear span of (ut, t ∈ ).

This is equivalent to the fact that the | | × | | matrix F

defined by  is positive semidefinite. Finally,

if we denote by Ft the | | × | | matrix whose (t1, t2)

M x x x xij i j i j
i j

= − −
∈

∑ α ( )( ) ,
( , )

>





uij
>

y
i j

i jij =
∈
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1

1
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entry is , this is equivalent to

.

Plugging the representation of Theorem 1 into (8–9), and
replacing the Frobenius inner product by the MLPK ker-
nel, we show that the problem is equivalent to

under the constraints:

Kernelization
An important property of the problem (13) is that the
data only appear through the kernel KMLPK and the matri-
ces Fij. Furthermore, the MLPK kernel itself (5) computed
between two pairs of vectors only involves inner products
between the vectors; similarly the (t1, t2)-th entry of the
matrix Ft is a product of inner products, which can easily
be computed from the inner products of the data them-
selves. As a result, we can apply the kernel trick to extend
the problem (12–13) to any data space endowed with a
positive definite kernel Kg. The resulting MLPK kernel
between pairs becomes

KMLPK((x1, x2), (x3, x4)) = (Kg(x1, x3) - Kg(x1, x4) - Kg(x2, x3) 
+ Kg(x2, x4))2,

and for any three pairs t = (i, j), t1 = (i1, j1), t2 = (i2, j2) in

 the entry (t1, t2) of Ft is

Relaxation

The problem (12–13) is a convex problem over the cone
of positive semidefinite matrices that can in theory be
solved by algorithms such as interior-point methods [30].
The dimension of this problem, however, is 2| | + 1.
This is typically of the order of several thousands for small
biological networks with a few hundreds or thousands
vertices, which poses serious convergence issues for gen-
eral-purpose optimization software.

If we relax the condition M � 0 in the original problem,
then it becomes the quadratic program of the SVM, for
which dedicated optimization algorithms have been
developed: current implementations of SVM easily handle
several tens of thousands of dimensions [27]. The obvious
drawback of this relaxation is that if the matrix M is not
positive semidefinite, then it does not define a metric.
Although this can be a serious problem for classical appli-
cations of distance metric learning such as clustering [11],
we note that in our case the goal of metric learning is just
to provide a decision function f(x, x') = dM(x, x') for pre-

dicting connected pairs, and negativity of this decision
function is not a problem in itself. Therefore, we propose
to relax the constraint M � 0, or equivalently

 in (13), and to solve the initial prob-

lem using an SVM over pairs with the MLPK kernel (5).
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