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Abstract
Over the last two decades a large number of algorithms has been developed for regulatory motif
finding. Here we show how many of these algorithms, especially those that model binding
specificities of regulatory factors with position specific weight matrices (WMs), naturally arise
within a general Bayesian probabilistic framework. We discuss how WMs are constructed from
sets of regulatory sites, how sites for a given WM can be discovered by scanning of large sequences,
how to cluster WMs, and more generally how to cluster large sets of sites from different WMs into
clusters. We discuss how 'regulatory modules', clusters of sites for subsets of WMs, can be found
in large intergenic sequences, and we discuss different methods for ab initio motif finding, including
expectation maximization (EM) algorithms, and motif sampling algorithms. Finally, we extensively
discuss how module finding methods and ab initio motif finding methods can be extended to take
phylogenetic relations between the input sequences into account, i.e. we show how motif finding
and phylogenetic footprinting can be integrated in a rigorous probabilistic framework. The article
is intended for readers with a solid background in applied mathematics, and preferably with some
knowledge of general Bayesian probabilistic methods. The main purpose of the article is to
elucidate that all these methods are not a disconnected set of individual algorithmic recipes, but
that they are just different facets of a single integrated probabilistic theory.

The weight matrix representation of regulatory 
sites
The first step in any algorithm for identifying regulatory
sites in DNA or RNA is to decide on a mathematical rep-
resentation of the binding sites. For definiteness, let us
assume we are considering a DNA binding factor which,
when bound to DNA, covers a DNA segment of l base
pairs long. For any length-l sequence s there will be a well-
defined (but generally unknown) binding free-energy E(s)
to the regulatory factor. A key assumption [1] that is intro-
duced at this point is that the energy E(s) can be written as
the sum of independent contributions Ei(si) from each of
the bases si in segment s, i.e.

This assumption of course generally only holds to some
extent. Large-scale in vitro studies have shown that the
binding energies can deviate from this simple additivity
assumption [2]. However, these deviations are typically
small, and moreover they seem generally restricted to seg-
ments with low binding-energy [3]. At this point it is not
yet clear to what extent and for what fraction of regulatory
factors, the additivity assumption holds. Some researchers
believe that, at least for some factors, functional binding

Published: 27 September 2007

BMC Bioinformatics 2007, 8(Suppl 6):S4 doi:10.1186/1471-2105-8-S6-S4
<supplement> <title> <p>Otto Warburg International Summer School and Workshop on Networks and Regulation</p> </title> <editor>Peter F Arndt and Martin Vingron</editor> <note>Reviews</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/8/S6/S4

© 2007 van Nimwegen; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

E s E si i
i

l
( ) ( ).=

=
∑

1

(1)
Page 1 of 26
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/S6/S4
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2007, 8(Suppl 6):S4 http://www.biomedcentral.com/1471-2105/8/S6/S4
sites deviate significantly from this assumption, and this
may well be the case. However, it is this author's experi-
ence that in collections of experimentally determined
binding sites there is little evidence of correlations
between the nucleotides occurring at different positions
which, as we will see below, supports the additivity
assumption for functional binding sites.

The crucial assumption which underlies the whole idea of
'finding regulatory sites' is that the set of all 4l possible seg-
ments s can be meaningfully divided into 'binding sites'
and all other sequences. Since this is not a priori clear at
all, it is good to consider what this assumption entails. At
a given concentration c of the regulatory factor, the prob-
ability that a sequence segment s will be bound by the fac-
tor is given by an expression of the following form [4,5]

where β = 1/(kT) is the inverse temperature, and K is a
constant. (We here ignore the fact that the factor may bind
at segments that overlap s, which would prevent the factor
from binding at s. Below we will derive the general solu-
tion that takes this complication into account.) The
expression (2) is an s-shaped function that goes from 0 to
1 as ceβE(s) goes from much smaller than K to much larger
than K. Therefore, at a given concentration c one can nat-
urally separate sequences s into binders, i.e. those with
E(s) > log(K/c)/β and non-binders with E(s) < log(K/c)/β.
If the concentration of the (active) regulatory factor were
to vary continuously between different cellular states,
then the set of sites bound by the factor would also vary
continuously and it would not make much sense to divide
segments s into binders and non-binders. However, if in
physiological conditions the regulatory factor primarily
switches between an 'off' state, i.e. low concentration coff,
and an 'on' state, i.e. high concentration con than there
would be a well defined set of sites that are bound when
the factor is 'on' and unbound when the factor is 'off', i.e.
those with energies in the range

Therefore, this set of binding sites may be characterized by
a typical energy that lies somewhere in the middle of this
range.The assumption that is thus generally made [1] is
that binding sites are characterized by an average binding

energy . We now want to derive the probability P(s) that
a randomly chosen binding site will have sequence s,
given only the constraint that the average energy of the

sites is . The maximum entropy formalism [6], i.e. as

applied in statistical mechanics, prescribes that distribu-
tion P(s) is given by

where the sum over s' is over all length-l sequences, and

the sum over α is over the four bases. The Langrangian

multiplier λ is chosen such that �E� = ∑s E(s) P(s) = . Note

that this is the same functional form as the well-known
Boltzmann distribution. To avoid confusion, note also
that equations (2) and (4) are probability distributions
over entirely different spaces. The former takes a fixed
sequence segment s and compares the probabilities of the
bound and unbound states for this sequence segment,
whereas the latter assigns the probabilities that a binding
site will take on any of the 4l possible sequences. In equa-
tion (4) the bases at different positions are independent,

i.e.  with

This property allows us to define a position specific weight
matrix (WM) w with components

That is, we can represent regulatory sites by WMs, and find
the following expression for the probability that a binding
site has sequence s:

Finally, note that P(s|w) gives the probability that a given
binding site will have sequence s, which should be care-
fully distinguished from the probability P(w|s) that a
sequence segment s is a binding site for w. The latter can-
not be calculated without specifying how likely s is to arise
under alternative hypotheses as will be discussed in detail
below.

Weight matrices are probably the most commonly used
representation of regulatory sites and, as has just been
shown, can be derived under the assumptions that the
contribution to the binding energy from bases at different
positions in the site are independent, and that functional
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binding sites are characterized by a given average binding
energy. In this chapter we will focus on regulatory motif
finding methods that use WMs. It should be noted, how-
ever, that in some circumstances regulatory sites can be
adequately represented by either specific DNA words, i.e.
when the regulatory factor recognizes essentially only a
single sequence segment, or by regular expressions, and
there is a substantial amount of work on motif finding in
this context. There is also a moderate amount of work on
more complex representations of regulatory sites, such as
hidden Markov models that allow sites of varying length
and correlations between bases at neighboring positions
[2,7].

Finding WM matches
Assume that we are in possession of a WM w that summa-
rizes the binding specificity of a regulatory factor. One of
the simplest applications is to 'scan' one or more
sequences for 'matches' to this WM. Let s denote some
sequence of length L, where L is typically much larger than
the length l of the WM. We now want to infer if one or
more sites for this WM occur in this sequence. Probabilis-
tic inference always [6] takes the following general form

1. Enumerate all possible hypotheses H that could have
accounted for the data D.

2. Assign prior probabilities P(H) to each of these hypoth-
eses.

3. Define a likelihood model that gives the probability
P(D|H) of producing the entire data D under each of the
hypotheses H.

4. The posterior probability P(H|D)for each of the
hypotheses is then given by Bayes' theorem:

For example, assume that we have prior information that
precisely one site for WM w occurs in s and that the other
bases in s were drawn from a background model b. For
simplicity we will assume that under this background
model b, each letter has a probability bα to be base α. In
this situation all possible hypotheses are simply all possi-
ble locations i at which the binding site might start. If we
have no information to suggest that the site is more likely
to occur at some places than others we use an uniform
prior P(i) = constant. The likelihood P(D|i) of the data, i.e.
sequence s, given the corresponding hypothesis is given by
the product of probabilities that the bases from 1 up to i
derive from the background model, that the segment from
i + 1 through i + l derives from the WM w, and that bases

i + l + 1 through L again derive from the background
model.

The probability P(D|i), as illustrated in Fig. 1, is given by

P(D|i) = P(s[0,i]|b)P(s[i,l]|w)P(s[i+l,L-i-l]|b), (9)

where s[i,l] = si+1si+2...si+l is the length-l segment in s starting
after position i with

and the background probabilities are given by

With the uniform prior, the posterior probability P(i|D)
that the site occurs at i is

In general we of course do not know that there is precisely
one site in s. Therefore, we generally want to consider the
extended set of hypotheses that consists of all possible
configurations of binding sites that can be assigned to
sequence s. Figure 2 shows a possible configuration con-
taining 3 hypothesized binding sites.

Generally, each possible configuration with n sites can be
denoted by a vector i = (i1, i2,...,in) which denotes the posi-
tions at which the binding sites occur. The probability of
the data given a configuration i is now given by

where Bi is the set of background bases and Si is the set of
hypothesized sites in configuration i.

To assign prior probabilities P(i) to all possible configura-
tions one generally assumes that the data D was produced
through a stochastic process where at each step with prob-
ability (1 - π) a single background base is emitted, and
with probability π a length-l binding site is emitted. Under
this model the prior probability P(i) for a configuration i
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depends only on the number of sites n(i) that occurs in
the configuration, and is given by

P(i) ∝ πn(i) (1 - π)L-ln(i) (14)

Using this the posterior probability of configuration i
given the data becomes

where the sum in the denominator is over all possible
binding site configurations j.

Even though the total number of configurations grows
faster than exponential with the sequence length L, the
sum in the denominator can be easily calculated using
dynamic programming as follows. Let Fn denote the sum
of the likelihoods of all configurations up to position n in
s. We have the recurrence relation

Fn = Fn-1(1 - π)  + Fn-lπP(s[n-l, l]|w), (16)

as illustrated in Fig 3.

Notice that the sum over all configurations is just FL, i.e.
FL = ∑j P(D|j)P(j), which can be calculated in a time O(L)
using the above recurrence relation. Similarly, we can
move backward from the end of the sequence to have a
recurrence relation for the sum of likelihoods of all con-
figurations of positions n through L of s:

Rn =  (1 - π)Rn+1 + P(s[n-1, l]|w)πRn+l. (17)

Finally, instead of calculating the posterior P(i|D) for a
particular configuration i, we can also calculate the poste-
rior probability that a site occurs at a given position, inde-
pendent of the rest of the configuration. Let us denote by
{n} the set of all configurations that have a site at segment
s[n,l] .The posterior probability P({n}|D) is given by the
sum of posterior probabilities of all configurations in {n},
i.e.

It is easy to see that this sum can be expressed in terms of
Fn and Rn as follows:
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A dataset D consisting of a single sequence s of length L, with a single site hypothesized immediately after position iFigure 1
A dataset D consisting of a single sequence s of length L, with a single site hypothesized immediately after posi-
tion i.

A configuration i with 3 hypothesizes sitesFigure 2
A configuration i with 3 hypothesizes sites.Si denotes the set of hypothesized sites and Bi the background bases.
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where the numerator corresponds to the sum over all con-
figurations that have a site at s[n,l].

Here it is useful to note that, formally speaking, the model
that we have introduced is a hidden Markov model and
that the expressions (16), (17), and (19) are essentially
the same as the so-called forward-backward algorithms of
hidden Markov model theory [8,9]. Researchers with a
background in statistical physics tend to think of FL as a
partition sum and the recurrence relations are essentially
what is known as the transfer matrix technique.

Given the WM w for a regulatory factor we may use equa-
tion (19) to scan any sequence s for positions at which
functional binding sites for the factor are likely to occur.
The likelihood of success of this procedure critically
depends on the density of true sites in the input sequence
s. That is, even in a sequence generated entirely from the
background model, segments that are indistinguishable
from binding sites will occur by chance at a certain rate.
For example, let's assume that such chance 'binding site
lookalikes' occur once every 500 bps on average, and
assume that we are looking for between 1 and 3 functional
binding sites in an intergenic region of length 250 which
stems from a bacterial genome. In this case we expect less
than 1 binding site to occur by chance, and so we will
likely be able to accurately determine the location of the 1

to 3 functional sites. In contrast, assume we are looking
for 1 to 3 functional sites in the introns and upstream
regions of a human gene, which together might contain as
many as 100,000 bps of non-coding DNA. It is clear that
in this case the functional sites will 'drown' in a sea of
about 200 binding site lookalikes.

At this point the reader may ask how the cell distinguishes
functional binding sites from mere 'lookalikes'. Compar-
ing equation (2) with (6) and (7), we see that Pbound(s)
can be written in terms of P(s|w) and c. In other words,
two segments s and s' for which P(s|w) = P(s'|w) necessar-
ily have Pbound(s) = Pbound(s'), and one may thus wonder
why two segments that are equally likely to be bound by
the regulatory factor are not equally functional. There are
a number of reasons. First, in eukaryotic genomes DNA is
wrapped up in chromatin and so different sites may have
different accessibility to the regulatory factor. Second,
binding of the regulator may by itself not guarantee func-
tionality, i.e. a regulatory effect. A number of additional
constraints typically have to be satisfied. The site may
need to occur in the vicinity of specific other regulatory
sites, e.g. to mediate interactions between different factors
bound at the different sites. The site may need to occur at
a particular distance from the basal promoter and in a par-
ticular orientation to be able to interact with the basal
machinery, and other constraints currently not yet under-
stood. When we want to look for functional sites in long
sequences we thus generally have to use information that
goes beyond the probabilities P(s|w) of the individual
sequence segments given individual WMs w. One type of
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Illustration of equation (16)Figure 3
Illustration of equation (16). The black rectangle indicates the sum Fn of probabilities P(D|i) for all binding site configurations 
i for the sequence within the rectangle. Any configuration in Fn is obtained either through adding a single background base at n 
to any of the configurations in Fn - 1, or by adding a site from n - l + 1 through n to any configuration in Fn - l.
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additional information that can be used is that in some
cases functional binding sites are known to cluster on the
genome. We now discuss approaches to incorporating this
information.

Finding clusters of binding sites: regulatory modules
It has been well-established that in higher eukaryotic
organisms transcription regulation is often implemented
through regulatory 'modules' in which multiple binding
sites for multiple regulatory factors cluster together rela-
tively tightly in intergenic regions [10]. In some cases one
may even know the subsets of regulatory factors that tend
to cooperate in regulatory modules for particular biologi-
cal pathways. For example, a large body of work has iden-
tified the sets of transcription factors that are involved in
segmentation of the early Drosophila embryo, e.g. see
[11].

One approach to distinguishing functional binding sites
from nonfunctional ones is to look for such regulatory
modules. That is, the idea is to start with a set of WMs {w},
preferably from a set of regulatory factors that are believed
to interact in regulatory modules, and to look for rela-
tively short genomic segments in which there is a surpris-
ingly high density of sites for the WMs from {w}. As far as
this author is aware, this general idea was introduced
around the same time by a number of groups [12-15]. The
implementation we discuss here is most closely-related to
the approaches of refs. [14,15].

The first thing to note is that the dynamic programming
solution introduced in the previous section can be easily
extended to multiple WMs w (potentially of different
lengths). We now assume that the data is produced
through a stochastic process where at each step with prob-
ability πbg a background base is generated, and with prob-
ability πw a WM segment from WM w with length lw is
generated. The priors of course satisfy the normalization
πbg + ∑wπw = 1. For notational simplicity we can consider
the background b to just be one of the WMs (with length
l = 1) in the set {w}. In this more general model the recur-
rence relation for Fn becomes

where the background b is now one of the WMs w.

The second thing to note is that the sum over all configu-
rations FL = ∑cP(D|c)P(c|{πw}) is formally the likelihood
of the data D under our entire set of hypotheses c, that is,
it is the probability to obtain the data under the assumed
stochastic model. Note that in this expression we have
indicated explicitly that this probability depends on the
priors {πw}. The quantity FL thus summarizes how well

the sequence can be explained in terms of the set of WMs
in the model. The basic idea of the regulatory module
detecting algorithms in [14,15] is to identify putative reg-
ulatory modules with sequence segments that have a high
value for the sum FL of probabilities of all binding site
configurations in the segment.

The procedure works as follows. One starts with an inter-
genic region upstream of a gene of interest in a higher
eukaryotic genome. Such intergenic regions are typically
quite large, i.e. from 10 Kbps in flies to over 100 Kbps in
humans. One then slides a windows of length between
200 and 500 bps or so over this long intergenic region. For
each window one then determines the set of priors {πw}
that maximize FL for the sequence σ in the window, and
calculates the value of FL at this maximum. One also cal-
culates the probability P(σ|b) for the sequence in the win-
dow deriving entirely from the background model. The
ratio X = FL/P(σ|b) then quantifies the 'score' for the win-
dow in question. Finally, the predicted regulatory models
are all windows for which X is larger than some prespeci-
fied cut-off, and for which the score X is larger than the
score for any other window overlapping it.

A key step in this procedure is maximizing FL with respect
to the prior {πw}. Different regulatory modules may have
different densities of sites and we thus want to allow for
different priors {πw} within different windows. Since we
do not know the {πw} for each segment, from the point of
view of probability theory one should strictly speaking
not maximize with respect to {πw} but rather integrate
over all possible priors {πw}. However, the resulting
expressions no longer allow for an effective dynamic pro-
gramming solution and this would thus make the prob-
lem computationally intractable. However, if the function
FL has a sharp peak with respect to the {πw} then the
height of the maximum is representative for the value of
the integral and one can thus think of the maximization
of FL with respect to the {πw} as an approximation to
doing the full integral.

Assuming that segment σ is of length L the set of equa-
tions specifying the maximum with respect to the {πw} are

where 〈n(w)〉 is the expected number of binding sites for
WM w averaged over all configurations, each weighted by
its probability. The last equation follows from the fact
that, the prior P(c|{πw}) is given by
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where n(w, c) is the number of sites for w in configuration
c. The derivative then becomes

Thus, from (21) and that fact that the πw are normalized
to sum to 1 we have

Typically this maximum is found through expectation max-
imization (EM). Starting from an initial guess of the {πw}
we calculate 〈n(w)〉 for all w and set a new set of priors
{πw} using equation (24). Under iteration this is guaran-
teed to lead to an optimum in FL, although not necessarily
the global optimum.

Motif finding
Up to now we have assumed that we are in possession of
the WMs w representing the sequence-specificities of the
regulatory factors. However, unless one has experimental
data that directly measures binding affinities of different
sequence segments we generally do not possess such
detailed information. Typically the best situation encoun-
tered is that we have a collection S of sequences that have
been determined to be functional binding sites for the reg-
ulatory factor. So we now ask what we know about the
WM w given such a set of sequences S, i.e. we aim to cal-
culate P(w|S).

Equation (7) gives the probability that a binding site for w
will have sequence s. This can be trivially extended to sets
of sequences. That is, the probability to obtain the set of n
length-l sequences S when sampling n sequences from the
WM w is given by

where in the last equation we have defined (S) as the

number of times the letter α occurs at position i in the
sequences S. Thus, the probability to obtain sequences S
when sampling from the WM w depends only on the

counts (S).

Using Bayes' theorem the posterior probability P(w|S) for
the WM given the set of sites S is formally given by

In this equation P(w) is the prior probability that the WM
is given by w. The denominator is a normalizing constant,
which does not depend on the WM (we discuss its mean-
ing in a minute). The prior P(w) represents our prior infor-
mation about the WM w before we see any sites. As will
become clear below, the computations are analytically
most easily tractable if we use so-called Dirichlet priors
that have the following general form

where ci is a normalization constant for column i, and the

 are constants that determine the prior. Notice that for

the particular choice  = 1 we obtain a uniform prior that

makes all WMs a priori equally likely, which can be
argued to reflect a state of complete ignorance about the
WM. In reality, however, we know that for most positions
in the site, regulatory factors tend to have distinct prefer-
ences for certain bases. That is, we a priori know that a
WM column wi = (0.25, 0.25, 0.25, 0.25) is not very likely.

To reflect this information we can choose  < 1. This will

put more weight on WM columns that are 'skewed', i.e.
giving low probability to some bases and high probabili-
ties to others. Sometimes we have even more pertinent
information. It has, for example, been argued recently that
groups of related TFs show the same pattern of highly and
less skewed columns [16]. If we are inferring the WM of
such a TF we can thus reflect that information by setting

 small for those positions i that are known to be highly

skewed and  ≈ 1 for columns that are known not to be

very skewed (for example because TFs of that family do
not touch the DNA at that position).

With a Dirichlet prior of the form (27) equation (26)
becomes

where C is an overall normalization constant. Equation

(28) shows why the  are often called pseudocounts.

Increasing  by 1 has the same effect on the posterior
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P(w|S) as adding 1 to the number of times (S) that let-

ter α was observed at position i. Put another way, the pos-
terior P(w|S) has exactly the same functional form as the

prior P(w), i.e. both are of the form  with xα

the 'count' of base α. Priors that have this property are
called conjugate priors. In this particular case it means that
one may think of the posterior P(w|S) as the prior for

another problem with 'pseudocounts' .

How to use the distribution P(w|S) in practice? In order to
estimate the WM one could for example determine the
WM w that maximizes P(w|S). This maximum posterior
probability WM has components

with ni(S) = ∑α (S) and γi = ∑α . Note that with a uni-

form prior  = 1 the maximum occurs when the WM

entries match the observed frequencies. This means, for

example, that if a given base α is not observed at all at

some position i, i.e. (S) = 0, we will assume that it is

impossible for α to occur at position i. This is true even if
the set S contains only very few sites.

Alternatively we may estimate the  by their expected

values under the distribution P(w|S). To calculate these
expectation values we have to integrate P(w|S) over all
possible WMs. That is, for each position i the integral is
over the simplex:

The solution to such integrals is given by the following
general identity

where the integral is over the simplex . Using

this identity we first find the normalization constant of

equation (28). That is, by demanding that ∫P(w|S)dw = 1
we obtain

and using this (plus the general identity Γ(x + 1) = xΓ(x))
we find for the expectation values

Note that in this estimate of the  no component gets

probability zero if we use a prior with  > 0 for all i and

α.

In the previous section we repeatedly made use of the
expression P(s|w), i.e. the probability to obtain sequence
s when sampling from the WM. We now calculate an anal-
ogous expression P(s|S) = ∫ P(s|w)P(w|S)dw, which is the
probability to obtain sequence s when sampling from the
same WM as the one from which the set S derived (with-
out ever specifying precisely what this WM is, i.e. we inte-
grate over all possible w). Using again the general identity
(31) we obtain

That is, we find that P(s|S) is precisely the probability that
would be obtained from expression P(s|w) when using the

expectation values � � as an estimate for the WM w.

Up to now we assumed that we were given a set S of
length-l sequences that were sampled from the WM.
Except in cases where we have, for example DNase foot-
printing data that give the precise locations of the regula-
tory sites, such specific data are again generally rare. It is
much more common that we have a set of n longer
sequences that we know (or strongly suspect) to contain
one (or more) regulatory site(s) each for a common regu-
latory factor. In this situation we simultaneously need to
infer where in the sequences the sites occur and what the
WM is from which they derive.

To be explicit, let's assume we have a dataset D that con-
sists of n length-L sequences, and we know that each
sequence contains precisely one binding site of length l for
a common regulatory factor. The set of hypotheses for this
problem then corresponds to all combinations (w,i) of a
WM w and a vector i = (i1, i2,... in) that denotes the posi-
tions where the regulatory sites occur, i.e i1 is the position
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of the site in the first sequence, i2 the position of the site
in the second sequence, etcetera. We now first calculate
the probability P(D|w, i) of the data given (w, i). Let Si
denote the set of n length-l segments that make up the
hypothesized binding sites with positions i and let Bi
denote all background nucleotides in the data D outside of
these segments. In analogy with equation (13) the proba-
bility P(D|w, i) is then given by

where the first product is over all nucleotides outside of
the hypothesized binding sites, and the second product is
over all hypothesized binding sites s.

At this point there are two possible approaches. In the first
approach one calculates the probability P(D|w) of the
data given the weight matrix only by summing over all
possible binding site configurations i:

where P(i) is a prior probability distribution over vectors
of site assignments, and the sum is over all possible vec-
tors. One then next searches the space of all possible WMs
w for those with high P(D|w). In the second approach one
calculates the probability P(D|i) of the data given the vec-
tor of site positions only by integrating over all possible
weight matrices. Formally [6] this probability is given by

P(D|i) = ∫ P(D, w|i)dw = ∫ P(D|w, i)P(w)dw, (37)

and next the set of all site positions i is searched for those
with high P(D|i). We now discuss these approaches in
turn.

Maximizing P(D|w) through Expectation Maximization
In the first approach one attempts to find the weight
matrix w that maximizes the probability of the data
P(D|w). Note that, as we have seen in section "Finding
WM matches", the sum over all possible site configura-
tions i can be easily performed through dynamic pro-
gramming once the matrix w is given. For the particular
case we are considering, i.e. assuming precisely one site
per sequence, the probability P(D|w) is given by the prod-
uct of the probabilities for the individual sequences

with

where Dm is the mth sequence, the product over σ is over
all bases outside of the site (i.e. the background), and we
have used the uniform prior P(im) = 1/(L - l + 1) over the
binding binding site position im.

To find the WM w that maximizes P(D|w) we proceed
analogously as we did for finding the set of priors {πw} in
equations (21) through (24). For each column k of the
WM we have the four equations

where � � is the number of times letter α is expected to

occur at position k of the regulatory sites under posterior
distribution P(i|D,w).

To derive the last equality, first note that derivative is a
sum of independent terms

and that each term is again a sum of independent terms

Now if the base s(im + k) at position im + k of sequence m

is equal to α, then the last derivative on the right simply

divides P(Dm|w, im) by , and else the derivative is zero.

We thus have

where the delta-function is one if s(im + k) = α and zero
otherwise. We thus find
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Note that the numerator of the right-hand side of this
equation is just the expected number of times letter α
occurs at position k of the binding sites in Dm under the
posterior distribution P(im|D,w). Summing over all
sequences m we thus obtain

Using the fact that the WM columns are normalized, we
find that at the maximum of P(D|w) the weight matrix
components obey the equalities

As in section "Finding clusters of binding sites: regulatory
modules" one can use EM to solve these equations. We
start with a randomly chosen WM w and calculate 

� � for that WM. We then update the WM components

using equation (46) and repeat until the WM no longer
changes. This procedure is guaranteed to converge to a
local optimum of P(D|w).

Note that in the above we assumed just one site per
sequence but it is easy to extend these derivations to arbi-
trary configurations, using the identities derived in section
"Finding WM matches". Probably the first algorithm
developed to find regulatory motifs in this way is the well-
known MEME algorithm [17], and by now there are quite
a number of algorithms that have been developed using
this general idea, e.g. MDScan [18].

Once an optimal WM w* is found it is straightforward, i.e.
using equation (19), to calculate the posterior probabili-
ties P(im|D, w*) that a site occurs at position im in sequence
m and this allows one to distinguish between high confi-
dence and low confidence sites. Programs that use the EM
approach to motif finding often report such probabilities.
Note, however, that the posterior probabilities P(im|D, w*)
should not be confused with the posterior probabilities
P(im|D) which give the posterior probability that a site
occurs at im independent of what the WM w is (we derive an
expression for this probability below). The latter quanti-
fies how much evidence there is in the data D that a site
occurs at im, whereas P(im|D,w*) assumes in addition that
the inferred WM w* is correct. Since in many cases there is
a reasonably high probability that w* does not match pre-
cisely the WM from which the site derives, the probabili-
ties P(im|D, w*) will typically be significantly larger than
P(im|D).

Finally, it would even be straightforward to extend the EM
approach to multiple WMs using the expressions of sec-
tion "Finding clusters of binding sites: regulatory mod-
ules". One could then, in principle, simultaneously find
the set of priors {πw} and the set of WMs {w} that maxi-
mize the overall probability P(D|{w}, {πw}) of the data.
For each W M w the expectation-maximization update
equation of the WM components would take on the form

where 〈n(w)〉 is the expected total number of sites for WM

w that occur in D and < (w)> is the expected number of

those sites that have a base α at position k. The problem
with this approach is that EM will very often lead to a local
rather than the global optimum (it roughly speaking
moves uphill from the starting point to the nearest local

optimum). So depending on the initial sets {w} and {πw}

the EM procedure may lead to very different optima and
the higher the dimension of the search-space, the more
serious this problem becomes. Therefore, in practice algo-
rithms such as MEME do not search for multiple WMs
simultaneously but rather find one WM at a time. In addi-
tion, programs like MEME will start from many different
initial WMs w and perform EM for each of them, reporting
the best optimum found in any of these EMs.

Motif sampling
The second approach to motif finding focuses on the
probability P(D|i). To calculate (37) we substitute (35) for
the likelihood and first note that it can be separated in a
part P(Bi|b, i) that depends only on the background, and
a part P(Si|i) that is given by an integral, i.e. P(D|i) =
P(Bi|b,i)P(Si|i) with

where nα(Bi) is the number of times base α occurs in the
background Bi, and

For the prior P(w) we use a Dirichlet prior as in (27), and
use the general identity (31) to calculate the integral,
which results in
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where (Si) is the number of times base α occurs at posi-

tion k of the sites in Si, and the  are again the pseudo-

counts of the Dirichlet prior. The most common situation
is that we know little about the WM that can be expected

and in such situations either a uniform prior  = 1 or

one that biases toward the corners of the simplex, e.g. 

= 0.5, are reasonable choices. However, as we mentioned
in the discussion of equation (28), if we already have a set

of known sites Sknown for the motif, in which base α

appears  times at position k, then the posterior proba-

bility for the WM has the same form as a prior with counts

. Using this posterior as a prior in equation

(50) we can thus also calculate the probability of obtain-
ing the sequence segments in Si when sampling from the

same WM as the WM from which the set Sknown derived.

That is, equation (50) easily allows for the incorporation
of prior knowledge about the WM w.

The meaning of equation (50)

Since the expression (50) is central in all motif sampling
strategies we will divert here to discuss its meaning in a lit-
tle more detail. First, note that P(Si|i) is a product of inde-

pendent factors for each column k. We thus focus on a
single column only. In addition, we will assume a uni-

form prior over WMs, i.e.  = 1. The expression for a sin-

gle column then takes on the simpler form

where we used that Γ(x + 1) = x! for integer x. The second
equality on the right is to clarify that P(S) can be written
as the product of two factors. The first of these factors,
3!n!/(n + 3)!, is the inverse of the binomial coefficient

. This binomial coefficient corresponds to the

number of different sets of counts {nα} that are possible.

That is, it counts the number of vectors of integers (na, nc,

ng, nt) such that ∑α nα = n.

The second factor in equation (51), ∏α nα!/n!, is the

inverse of the multinomial coefficient n!/(∏α nα!) which

gives the number of different ways that n objects can be
distributed over 4 boxes such that na objects are in the first

box, nc in the second, ng in the third, and nt in the fourth.

Thus, the probability P(S) for a column of n bases is
inversely proportional to the number of ways in which the
counts {nα} of this column can be realized. In summary,

there are 4n possible outcomes for the n bases in the col-
umn. The probability distribution P(S) assigns a probabil-
ity to each of these that is precisely inversely proportional
to the number of the 4n outcomes that lead to the counts
{nα}. As a result, the total probability to obtain an out-

come with counts {nα} is constant for all  possible

counts (because we have to sum P(S) over all possible out-
comes that lead to the same set of counts).

For large n we can approximate the multinomial coeffi-
cient using Stirling's approximation to find

where H({nα}) is the entropy of the distribution nα/n:

Thus, the probability P(S) is largest for sets of sequences
whose base distributions have lowest entropy.

Back to motif sampling

We now return to our motif sampling calculations. Using
(50) and (48) we obtain P(D|i) in terms of the counts

(Si) and nα(Bi). Finally, using a uniform prior over

hypotheses i, the posterior P(i|D) becomes simply

where the sum in the denominator is over all possible
assignments j = (j1,..., jn) for the positions of the binding
sites.

Ideally we would now either find the configuration of site
positions i* that maximizes P(i|D), or we would for each
position ik calculate the posterior probability P(ik|D) that
a site occurs at position ik in sequence k, which is formally
given by
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Unfortunately, since P(i|D) is a complicated nonlinear

function of the base counts (Si) and nα(Bi) we cannot

separate it easily into contributions from the different
hypothesized sites in i and there is generally no way to cal-
culate sums like (55) other than explicitly summing over
all (L - l + 1)n-1 states. To find site configurations i with
high P(i|D) researchers have in in general resorted to
Markov chain Monte-Carlo techniques for sampling the
distribution P(i|S)[19]. The most commonly used way of
sampling the distribution P(i|S) is through so-called Gibbs
sampling [20] and consists of iterations of the following
steps, which are illustrated in Fig. 4

1. Randomly select one of the n sequences with uniform
probability.

2. If sequence number m was selected, remove the seg-
ment s located at position im from the set of sites Si of the

current configuration. Denote this set of (n - 1) sequences

as  and the new configuration as i-.

3. For every position im = 0 through im = L - l denote the
new configuration that results from placing the site at im
in sequence m as (i-, im) and calculate P(D|i-, im).

4. Select a new configuration by sampling the position of
the site in sequence m according to the probability distri-
bution

using (48) and (50) one finds that this probability is pro-
portional to

where s(im + k) is the base that occurs at position im + k in

sequence m. Note that this expression is precisely the ratio

between the probability  of the site at im deriv-

ing from the same WM as the others in , i.e. as in equa-

tion (34), and the probability  of this segment

under the background, i.e.

By iterating these steps one can sample the entire distribu-
tion P(i|D) and, for example, estimate the posterior prob-
ability P(im|D) that a site occurs at position im in sequence
m, i.e. by the fraction of time a site occurs at im during sam-
pling. The probabilities P(im|D) rigorously quantify the
evidence in D that a site occurs at position im. Thus, when-
ever P(im|D) is large we can be confident that a site does
occur at im.

To make a single prediction for the set of regulatory sites
in D one searches for the configuration i* that maximizes
P(i|D). In some approaches, e.g. [21], this is done simply
by keeping track of the highest probability configuration
that was observed during sampling. However, more accu-
rate determination of the optimal configuration i can be
obtained through simulated annealing [22]. One intro-
duces a parameter β and instead of sampling from P(i|D)
one samples from a probability distribution which is pro-
portional to P(i|D)β. At the start of the search β is set to a
small number and then β is slowly increased with time. As
β increases more weight will be put on configurations
with high probability and eventually the sampler will
'freeze' into a state with locally optimal probability
P(i|D). Provided the annealing is done slowly enough the
optimum will correspond to the globally optimal state.
This is for example the approach taken by the PhyloGibbs
algorithm [23].

Once an optimal state i* is found through simulated
annealing one can of course use normal sampling, i.e.
with β = 1, to obtain the posterior probabilities of the sites
in i*. Given the optimal configuration i* one can of course
also report the expected WM given this configuration,
which has components

Instead of assuming that there is precisely one site in each
of the n sequences we can of course also sample much
more general configurations c. Most generally, one could
allow varying numbers of sites for multiple WMs. The top
left panel in figure 5 shows such a general configuration
with sites for 3 different motifs (red, blue, and green). If
we assume the same kind of priors as we used in section
"Finding clusters of binding sites: regulatory modules"
then the prior probability for a particular configuration c,
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which has n(w, c) sites for WM w and n(b, c) bases in back-
ground, is proportional to

If we denote the set of sites for WM w in configuration c
by Sw and the set of background nucleotides as B(c) we
obtain for the likelihood of the data given the configura-
tion

where for each group of sites the probability P(Sw) is given
in complete analogy with (50) by

where n(w) is the total number of sites in group Sw and

(Sw) is the number of times base α occurs at position k

of the sites in Sw.

The posterior probability P(c|D) of a configuration is sim-
ply proportional to the product of (60) and (61), i.e.
P(c|D) ∝ P(D|c)P(c|{π}). To sample from the posterior
probability P(c|D) over all possible configurations we
need a more extensive set of 'moves' then the one
described in the Gibbs sampler above. This can be done in
a number of ways [24]. One possibility is to pick a
sequence at random, to remove all sites currently located
in it, and to sample from all ways of putting a new set of
sites in, see [25] for details. The set of moves implemented
by the PhyloGibbs algorithm [23] is illustrated in Fig. 5.
These moves are:

1. Resampling a segment: Pick a sequence m at random
and a random position im in it. Check if there is a site over-
lapping the region from im + 1 to im + l in the current con-
figuration c. If so, do nothing, i.e. move from c to c. If the
region is free (or a site occurs precisely at im + 1 through im
+ l) calculate the probabilities P(c'|D) for all configura-
tions c' that are obtained by putting a site for any of the
WMs w at im, including putting no site at all or putting a
site for a new motif. Finally, sample one of these configu-
rations c' with probability proportional to P(c'|D).

2. Moving a site: Pick one of the sites occurring in c and
remove it creating configuration c-. Find all sequence seg-
ments s of length l in c- that are not overlapping any site.
Calculate the probability P(c'|D) for all configurations
that can be obtained by placing a new site for the same
WM at any of the free segments s. Sample one of these
configurations c' in proportion to P(c'|D).

3. Shifting a site group: Pick one of the sets of sites Sw at
random. Check how far the sites in Sw can be shifted to the
left and right without colliding with other sites in the cur-
rent configuration c. Denote these maximal shifts by lmax
and rmax. For every shift h between h = lmax and h = rmax cal-
culate the probability P(c'|D) of the configuration that
would result if all sites in Sw were shifted by an amount h.
Sample one of the configurations c' in proportion to prob-
ability P(c'|D).

One of the main advantages of the motif sampling
approach over EM algorithms is that it is much less likely
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Illustration of the steps of the Gibbs sampling algorithmFigure 4
Illustration of the steps of the Gibbs sampling algo-
rithm. The red profile indicates the posterior probability 
P(im|D, i-) and in the last step a new position is sampled from 
this distribution.
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to get stuck in local optima. In particular, one can sample
multiple motifs without becoming trapped in bad local
optima. Another advantage is that one can obtain rigor-
ous posterior probabilities for sites appearing at different
positions which allows for a more reliable separation of
trustworthy predictions from spurious ones (see [23]). As
for the single motif, i.e. our discussion below equation
(50), we can here also use 'informative' priors for each of
the motifs. That is, if we have a set motifs for which
known sites are available we can use the base counts in

these sites as 'pseudocounts'  of priors for correspond-

ing motifs in the binding sites configurations. That is,
apart from inferring multiple new motifs, we can use
informative priors to discover new sites for known motifs
at the same time. This can be especially useful when we
are trying to find a new motif in a set of sequences that
also contains sites for a number of known motifs. If we
were to search this data for a single motif then it is quite
likely that the search would return one of the known
motifs. By searching for multiple motifs at the same time
and using informative priors for each of the known motifs
we can make sure that known sites will automatically

associate with the known motifs, and that the remaining
motifs are indeed new motifs. Finally, under the sampling
approach one can use arbitrarily complicated priors P(c)
on configurations, including priors that demand that cer-
tain combinations of sites occur at certain specified dis-
tances of each other, in particular orientations, etcetera. In
the EM approach such complex priors would typically
cause the dynamic programming solution to summing
over all configurations to break down.

The main disadvantage of the motif sampling approach is
of course speed. To obtain accurate statistics one needs to
sample for a long time, and the time necessary grows with
the product of the size of the data-set D, the total number
of sites, and the number of motifs. In contrast, the
dynamic programming approaches outlined in section
"Finding WM matches" allow for efficient computation of
sums over all possible configurations even for very large
input data, allowing one to search very large sequences for
matches to sets of WMs, which is computationally infeasi-
ble with motif sampling algorithms.

As mentioned already, motif sampling was introduced
more than a decade ago [20]. Since then a significant

γα
k

Illustration of a general configuration with varying site numbers for multiple motifs (upper left) and examples of moves used to sample all possible configurationsFigure 5
Illustration of a general configuration with varying site numbers for multiple motifs (upper left) and examples 
of moves used to sample all possible configurations. In 1 a randomly chosen segment is 'recolored', leaving it either 
blank (background), coloring with any of the existing motifs, or coloring it with a new color (new motif). In 2 a colored seg-
ment is chosen at random and moved to another location. In 3 all segments in a motif are shifted by the same amount.
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number of algorithms has been developed including
[21,26-28], and probably many more. The PhyloGibbs
algorithm [23] introduces several extensions such as sim-
ulated annealing to find the configuration with maximal
probability, simultaneously sampling multiple motifs,
and taking the phylogenetic relationships between the
sequences into account (discussed below).

Clustering sites and motifs
There are several situations in which we may want to clus-
ter sets of binding sites. This demand for instance arises
whenever we have obtained a set of sequence segments
that are thought to each have regulatory function, without
knowing the specific function of any of the segments. For
example, several researchers have used so-called 'phyloge-
netic footprinting', the identification of short overly con-
served segments in alignments of orthologous intergenic
regions from related genomes, to gather large collections
of putative regulatory sites [29-32]. It is reasonable to
assume that most of these short segments contain a regu-
latory site for some regulatory factor, but we do not know
which sites are sites for the same factor nor how many dif-
ferent regulatory factors are represented in data.

Formally, given a dataset D of sequence segments, we
want to partition this dataset into subsets such that all seg-
ments within a subset contain a regulatory site for a com-
mon regulatory factor, and different subsets correspond to
different regulatory factors. In addition, we want to multi-
ply align all the segments within each subset. Thus, for
this problem the set of hypotheses is all possible ways in
which the set D can be partitioned into subsets, and all
possible ways in which the sequences in each subset can
be multiply aligned. Let us denote possible configurations
by C. Each configuration C consists of a set of subsets c ∈
C that each consist of a collection of sequences from D.
The union of these subsets c of course equals D. In addi-
tion C specifies, for each subset c, an alignment Sc of
sequence segments that are taken from the sequences in c.
For simplicity we will assume that all these sequence seg-
ments are of fixed length l in all subsets. That is, C speci-
fies a partition of the sequences in D into subsets c, and it
specifies where in each of the sequences the regulatory site
of length l occurs, thereby specifying length-l alignments
Sc for each subset c. We now want to calculate the proba-
bility P(D|C) of the data given a configuration C. We can
generally separate P(D|C) into a contribution of the sites
(those segments from the sequences in hypothesized reg-
ulatory sites) and the bases outside these segments that
are scored according to a background model.

P(D|C)= P(Dsites|C)P(Dbg|C). (63)

For simplicity we will use a background model that
assigns a probability 1/4 to each base (extensions to more

complex background models are straight forward). In that
case the contribution P(Dbg|C) is constant, i.e. does not
depend on C and we just consider P(Dsites|C). This proba-
bility can be written as a product of independent contri-
butions from each subset

where Sc is the alignment of sites in subset c. The probabil-
ity P(Sc) is just the probability that all sequence segments
in Sc derive from a common WM. The probability P(Sc) is
simply given by replacing Si with Sc in the right-hand side
of equation (50).

To obtain the posterior probability

we also need a prior P(C) over partitions. The simplest
prior is of course to assign a uniform prior P(C) = con-
stant. Note however that, a uniform prior over partitions
may correspond to a very peaked prior with respect to the
number of clusters. That is, given a dataset with 100
sequences there are astronomically more partitions of the
data into, say, 30 subsets than there are partitions of the
data into, say, 2 subsets. If one wants a uniform prior over
the number of clusters one needs to assign a probability

P(C) ∝ 1/ , where |D| is the total number of sequences

in D, |C| is the number of subsets in C, and  is the

number of possible partitions of |D| objects into |C| sub-
sets, which is called a Stirling number of the second kind
[33]. Note that with this prior a particular configuration C
with, say, 2 subsets will have a much higher a priori prob-
ability than a configuration with, say, 30 subsets. That is,
it is impossible to be a priori completely ignorant about
partitions in general and about the number of subsets at
the same time. Again there is no easy way to find the con-
figuration C with maximal posterior probability. A fast
procedure for determining a state C with high posterior
probability is through hierarchical clustering. One starts
out with each sequence in D forming a subset on its own.
For every pair of sequences s, and s' one then calculates the
probability of the configuration C(s, s', i, i') that is
obtained when the subsets s and s' are joined into a clus-
ter, putting the hypothesized sites at positions i and i'
respectively. We then find the combination (s, s', i, i) with
maximal P(C(s, s', i, i')|D) and create the corresponding
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state C(s, s', i, i'). This procedure is repeated, i.e. at each
iteration two subsets are fused so as to maximize P(C|D).
The iteration stops when there is no more subset merger
that would increase P(C|D). The great disadvantage of this
procedure is that it generally leads to highly suboptimal
local optima in P(C|D).

A better alternative is to use Markov chain Monte-Carlo
sampling and simulated annealing. A simple and effective
move-set is as follows

1. Select one of the sequences in D at random and remove
it from its current subset thereby creating a configuration
C-.

2. For each of the subsets in C- consider the configuration
C(c, i) when the removed sequence s is put into subset c
and the length-l site is s is started at position i. Also con-
sider the configuration C(0) which is obtained by putting
the sequence s in a subset of its own. Calculate P(C|D) for
all these configurations and sample one of the configura-
tions in proportion to these probabilities.

These steps are illustrated in Fig. 6.

By repeating these two steps one can sample from the pos-
terior distribution P(C|D) over all possible configura-
tions. Through simulated annealing, i.e. sampling from
P(C|D)βand slowly increasing β, one can attempt to locate
the configuration C* which globally maximizes P(C|D).
The PROCSE software [34] implements such a Markov
chain Monte-Carlo scheme for simultaneously clustering
and aligning sets of sequences that are thought to contain
regulatory sites and it has been used to predict regulons in
bacteria genome-wide. It has also been used to automati-
cally curate sets of experimentally determined binding
sites [35]. PROCSE first determines a 'reference configura-
tion' C* through simulated annealing and then performs
another sampling run, i.e. with β = 1, to determine the
posterior probabilities of the clusters that occur in the ref-
erence state C*.

An almost identical procedure as just described can be
used to cluster motifs or arbitrary combinations of motifs
and sequences. Application of different motif finding
algorithms to the same dataset, or application of the same
algorithm to related datasets, often results in sets of
inferred motifs that show clear commonalities. One is
thus often interested in analyzing sets of motifs to identify
which motifs are really different, and which motifs might
represent a common underlying WM.

As we have seen in section "Finding WM matches" all our
information about a motif, i.e. a WM w, can be repre-

sented by counts  that represent the number of obser-

vations of base α at position k of the sites. So more
generally, we will assume that when we are given 'a motif'
this information can always be represented by a set of

counts . For example, when we are given WM compo-

nents  then we transform this into a set of counts 

by specifying the pseudocounts  of a prior, and the

effective total number of observations n on which the 

are based:

Without loss of generality we can thus think of these

counts  as deriving from an alignment S of sites for the

motif. That is, we can generally specify our knowledge
about a 'motif' by specifying an alignment S of sites drawn
from the motif WM.

Such alignments S can be clustered and aligned with each
other completely analogously to the procedure just
described for single sequences. That is, one can think of an
alignment S as a set of individual sequences s that have
already been clustered and aligned with each other. When
multiple such alignments S are mutually aligned and clus-
tered into a larger alignment Sc then we calculate the prob-
ability P(Sc) that all sequences in Sc derive from a
common WM exactly like we did before, i.e. equation
(49). Thus, the only difference between clustering and
aligning single sequences, and clustering and aligning
'motifs' is that motifs are represented by sets of multiply
aligned sequences, and that these motif alignments are so
to speak 'glued together' in that these sequences will never
be repartitioned during the sampling. The PROCSE soft-
ware also allows for such pre-clustered and pre-aligned
sequences to be submitted as input. In this way arbitrary
combinations of single sequences and motifs can be
aligned and clustered simultaneously.

Incorporating phylogeny
In all our approaches so far we have assumed that differ-
ent sequences that contain binding sites can be considered
independent samples from a WM w. In addition, the motif
finding approaches that we discussed all presume that one
is given sets of sequences that are likely to contain sites for
common regulatory factors. In many cases researchers use
independent biological evidence, such as expression data,
to collect such sets of sequences that appear 'co-regulated'
[27,36]. Apart from expression data, more recently ChIP-
on-chip techniques have been used to collect sets of
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sequences that appear to be bound by a common regula-
tory factor, see e.g. [37,38].

Another possibility is to collect sets of orthologous inter-
genic regions from related species. It is often reasonable to
assume that many of the regulatory sites occurring in the
ancestor of these species have been maintained and are
shared by all or most of the descendants. Therefore,
orthologous intergenic sequences can generally be
expected to contain sites for common regulatory factors.
However, in contrast to sites in collections of upstream
regions of genes from a single species, these sites cannot
be considered independent samples from a common WM.
That is, the orthologous sites are related evolutionary, and
their sequences will therefore generally be more correlated
than independent samples from a WM. Therefore, to cor-
rectly analyze orthologous intergenic regions we need to
take the phylogenetic relationships of the species into
account.

Binding site evolution
Let us consider a single position in a regulatory site whose
WM has components wα at that position. We now want to
calculate the probabilities Pαβ(w, t) that over an evolution-
ary time t this position in the site evolves from base β to
base α.

There is a long history of such models for the evolution of
amino acids, e.g. see [39,40]. For our application to nucle-
otide evolution a general treatment of this problem was
given by the model of Halpern and Bruno [41]. The rate
uαβ at which base β is substituted by base α during evolu-
tion is written as the product of an instantaneous rate of
mutation μαβ from β to α, and the probability fαβ that a
mutation from β to α will be fixed in the population
(which depends on selection), i.e.

uαβ = fαβμαβ. (67)

Under this general model the probabilities P(α|β, w, t) are
the solution of the differential equations

Note that in the limit of long time the probabilities Pαβ(w,
t) become independent of time, i.e. memory of the start
state is lost, and by the definition of the WM components
the probabilities Pαβ(w, t) limit to wα, i.e.

Assuming that the rates μαβ are given one can then solve
[41] for the substitution rates uαβ that will lead to the limit
distribution (69):

To solve equation (68) we note that it can be written as a
matrix equation. Define the rate matrix U through

In terms of this matrix U equation (68) becomes
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Illustration of the move-set for binding site clusteringFigure 6
Illustration of the move-set for binding site cluster-
ing. Starting from a configuration C with three clusters, the 
top sequence in the blue cluster is chosen for resampling. It 
is removed from its cluster to produce configuration C-. 
Probabilities are then calculated for all configurations that 
would be obtained by inserting the sequence into any of the 
clusters or a new cluster (gray sequences), and finally one of 
these (C') is sampled. In this example the sequence was 
placed in a new cluster. For illustration purposes we have 
assumed all sequences in D have precisely the length l of the 
hypothesized site, so that each sequence can only be aligned 
in one way with any cluster. In general the sequences in D 
will be longer than l and one would also sample over all ways 
that the sequence can be aligned with each of the clusters.
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with matrix P(t) having components Pαβ(t). Using the
boundary condition Pαβ(0) = δαβ the solution is given by

Pαβ (t) = (eUt)αβ . (73)

In this general model one thus solves for Pαβ(w, t) by first
determining U using equation (70), and determining its
eigenvalues and eigenvectors. However, note that in gen-
eral the solution is a complicated function of the WM
components wα which is not easily amenable to further
analysis.

To allow more analytic flexibility we have developed a
simpler model of the evolution of binding sites [23,42]
that assumes that all mutations are introduced at the same
rate, i.e. μαβ = μ, and that the probability of fixation fαβ
depends only on the target base α i.e. fαβ = wα. Under these
assumption the differential equations become

This equation can be easily solved to give

Pαβ(w, t) = δαβe-μt + wα(1- e-μt). (75)

Note that e-μt is the probability that no mutations have
taken place during time t. We call this no-mutation-prob-
ability the proximity q = e-μt between the ancestor and the
descendant [23]. In terms of the proximity the solution
becomes

Pαβ(w, q) = δαβq + (1 - q)wα. (76)

This expression has a nice simple interpretation. With
probability q no mutations have taken place in going from
β to α and the bases are identical. With probability (1 - q)
one or more mutations took place and the probability
that one then ends up with base α is simply the WM com-
ponent wα.

Probability of an orthologous set of bases
Assume that we have a set of orthologous intergenic
regions and assume that we know the phylogenetic tree T
that relates the species from which the regions derive.
Consider now a set of orthologous bases S from these
intergenic regions. That is, the bases in S have evolved
from a common ancestor base in the common ancestor of
the species according to the tree T. We now calculate the
probability P(S|T, w) that, when evolving from a common
ancestor under one of the evolutionary models just dis-
cussed, and according to the given phylogenetic tree T, the
set of bases S will result at the leafs of the tree.

Note that the set S only specifies the bases at the leafs of
the tree T, i.e. the bases at the internal nodes are
unknown. If we also knew all the bases at the internal
nodes we could calculate P(S|T, w) simply by multiplying
the probabilities Pαβ(w, t) for each branch, i.e.

where the product is over all nodes n, sn is the base at node
n, a(n) is the ancestor of node n, and tn is the length of the
branch from a(n) to n. This is illustrated in the left panel
of Fig. 7.

However, as we do not know the identities of the bases at
the internal nodes, we thus have to sum over all possibil-
ities. This can be done using a dynamic programming
scheme first presented by Felsenstein [43]. We denote by
Dα(n, w) the probability to observe all bases of S that are
descendants of node n of the tree given that node n has
base α. For nodes n that are leafs, i.e. bases of S, we of
course have Dα(n, w) = δαsn. We can determine Dα(n, w)
for all nodes using the following recursion relation

where c(n) is the set of children of node n, and tm is the
length of the branch connecting m to its parent n. This
basic recursion is illustrated in the middle panel of Fig. 7.
Starting from the leafs we can use (78) to calculate Dα(n,
w) for all nodes up to the root of the tree. Finally the prob-
ability P(S|T, w) for the whole tree is obtained by sum-
ming over the bases of the root node r, noting that the
prior probability that root r has base α is wα. This gives

In complete analogy we can calculate the probability
P(S|T, b) of the column of bases S assuming that they
evolved under a background model b. which is given by
background probabilities bα. To obtain P(S|T, b) we just
replace Pαβ(w, t) with Pαβ(b, t) for each branch of the tree
in equation (78) and replace wα with bα in (79). Finally,
we can also easily accommodate cases in which the regu-
latory site has been maintained in some but not all spe-
cies. That is, we can have some branches of the tree T
evolve according to the background model b whereas
other branches evolve according to the WM column w,
simply by using Pαβ(w, t) for each branch evolving accord-
ing to the WM, and using Pαβ(b, t) for each branch evolv-
ing according to the background. An example of such a
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more complicated 'selection pattern' is shown in the right
panel of Fig. 7.

Finding sites and modules in multiple alignments
To apply the probabilities P(S|T, w) and P(S|T, b) to a set
of orthologous intergenic regions we of course first have
to identify which sets of bases in these sequences form
orthologous groups. That is, we have to produce a multi-
ple alignment of the orthologous intergenic regions.
Given a multiple alignment we can then assume that every
column of the alignment corresponds to a set of ortholo-
gous bases. The problem of producing accurate multiple
alignments of non-coding sequences is extremely chal-
lenging and is beyond the scope of this article. There are
now a number of algorithms available that focus specifi-
cally on alignment of non-coding DNA [44-46], although
our personal experience is that consistency based methods
[47,48] and evolutionary explicit progressive alignment
[49] often outperform these methods significantly. From
this point on we will assume that a global multiple align-
ment of the orthologous intergenic regions is given and
that we can assume that vertically aligned bases in this
alignment are orthologous.

We can use the probabilities P(S|T, w) and P(S|T, b) that
we derived above to extend the formalism of sections
"Finding WM matches" and "Finding clusters of binding
sites: regulatory modules" to multiple alignments. The
simplest way of doing this is to take one of the sequences
in the multiple alignment as a reference sequence and to
consider all binding site configurations for this reference
sequence. This is often natural since in many cases we are
really only interested in finding regulatory sites in one
particular species and it is thus natural to take this species
as a reference.

Let s[i,l] denote a segment of length l in this reference
sequence, and let S[i,l] denote the corresponding block in
the multiple alignment. To calculate the probability that a
regulatory site occurs at s[i,l] we will now calculate the
probabilities of observing the alignment segment S[i,l]
under different assumptions for the selection that was
operating at each branch of the tree T relating the species
in the alignment. The simplest assumptions about the
selection are that either all sequences in S[i,l] evolved
according to the background model, i.e. using expression
P(S|T, b) for each column S in S[i,l], or that all sequences
evolved according to WM w, i.e. using P(S|T, w) for each
column S in S[i,l]. Many algorithms [23,50,51] in fact
restrict themselves to these two possibilities. However,
there are many other possibilities. If there are B branches
in the tree then there are in principle 2B possible ways of
assigning selection to the branches, i.e. either WM w or
background b for each branch. Formally, to calculate the
probability that a regulatory site occurs at s[i,l] we would

want to consider all 2B - 1 'selection patterns' σ for which
s[i,l] is under selection of the WM w. We would want to
assign prior probabilities P(σ) to all 2B possible selection
patterns σ, and calculate the probabilities P(S[i,l]|T, σ) for
each. Finally, by summing P(S[i,l]|T,σ)P(σ) over all selec-
tion patterns for which s[i,l] is under selection of the WM w
one would obtain the total probability of the data S[i,l]
under the assumption that a regulatory site occurs at s[i,l].
Unfortunately, there is no simple way of determining a
reasonable distribution P(σ) and the sum would generally
involve a large number of terms.  This author is not aware
of any algorithm that currently implements this general
scheme.

In the MotEvo algorithm [35] a single selection pattern σ*
is chosen that best fits the alignment and the sequences in
it. Note first that, since WMs have a fixed width, a site in
the reference species can only occur in another species if
the corresponding segment in that species is gaplessly
aligned with the site in the reference species. Therefore, we
first check which of the other sequences in S[i,l] are gap-
lessly aligned with the reference sequence and which are
not. For those sequences not gaplessly aligned with the
reference we assign the background evolution model to
the branches leading to these sequences. For each of the
other sequences s in S[i,l] we calculate the probability
P(s|w) of the sequence under the WM w, and the probabil-
ity P(s|b) of the sequence under the background model b.
Whenever P(s|w) > P(s|b) we assign the WM model to the
branch leading to s, and for all others we assign the back-
ground model. Finally, we assume that an internal node
evolved according to the WM if any of its descendants do.
This defines a unique selection pattern σ for S[i,l] and we
calculate P(S|T, w) using this selection pattern. The proce-
dure is illustrated in Fig. 8.

We also calculate P(S[i,l]|T, b) assuming all branches
evolved according to background. Finally, if we assign a
prior probability π that a site occurs at S[i,l] the posterior
probability P(site|S[i,l]) that the reference species has a
functional site at i becomes

This is essentially the expression used by the MotEvo algo-
rithm [35] to find regulatory sites. The MONKEY algo-
rithm finds regulatory sites in a very similar manner.
Instead of the simple evolutionary model (76) MONKEY
uses the more general Halpern/Bruno model (70). How-
ever, MONKEY does not consider the possibility that the
site is conserved in some but not all of the aligned species,
i.e. it assumes that either all branches of the tree evolve

P S
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P S T w P S T bi l
i l

i l i l
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according to the WM, or all branches evolve according to
background.

Instead of looking at one sequence segment at a time, we
can of course also use this formalism to calculate sums of
the probabilities of all possible binding site configura-
tions as in section "Finding WM matches". Instead of cal-
culating the probability P(s[i,l]|w) of a single sequence
segment under the WM we instead calculate the probabil-
ity P(S[i,l]|w) of the ungapped alignment block at that loca-
tion using the procedure just outlined. That is, for every
segment s[i,l] we find which other sequences are ungapped
at the segment and choose which of these are evolving
according to the WM based on the probabilities of the
individual sequence segments under the WM. The gener-
alization of equation (20) is then simply

Note that position n here always refers to the nth base in
the reference sequence.

Finally, using this formalism we can of course also search
for regulatory modules in multiple alignments in com-
plete analogy with the equations in section "Finding clus-

ters of binding sites: regulatory modules".  

This procedure has been implemented for two-species
alignments in the Stubb algorithm [42]. Applying the
Stubb algorithm to predict developmental regulatory
modules in Drosophila it was shown in [52] that using two-
species alignments improves predictions of the locations
of regulatory modules over the single species algorithms.

Motif finding incorporating phylogeny
In section "Motif finding" we discussed two approaches to
motif finding, one based on maximizing the probability
P(D|w) of the data given a WM w using expectation maxi-
mization, and one using Markov chain Monte-Carlo sam-
pling to find the site configuration c that maximizes the
posterior P(c|D). These methods can also be extended in
a straightforward way to multiple alignments and we now
discuss these in turn.

Motif EM incorporating phylogeny
The PhyME algorithm implements an extension of the
MEME algorithm to multiple alignments of orthologous
intergenic sequences from related species. It uses a refer-
ence species and considers all configurations of binding
sites that can be assigned to the reference species in the
same way as discussed in the previous section, i.e. it uses
equation (81) to calculate the overall likelihood P(D|w)

F F P S T b F P S T wn n n n l n l l w
w

w w w
= +− − − −∑1 11( | , ) ( | , ) .[ , ] [ , ]π πbg

(81)

The evolution of a set of orthologous bases along a phylogenetic treeFigure 7
The evolution of a set of orthologous bases along a phylogenetic tree. In the left panel the expression (77) is illus-
trated. For notational simplicity we write Pαβ for Pαβ(w, t). The middle panel illustrates the recurion relations (78) with c and c' 
the children of node n, Sc the set of bases in S that descend from c and Sc' the set of bases in S that descend from c'. The right 
panel shows expression (77) for a more complex selection pattern with branches evolving according to the WM in red, and 
those evolving to the background in black.
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of the alignment given the WM w. The evolutionary model
that is used by PhyME to score ungapped alignment
blocks P(S[i,l]|w) is precisely the simplified model of equa-
tion (76). However, like MONKEY and in contrast to
MotEvo, PhyME assumes that either all branches in the
tree evolved according to the WM model, or that all
evolved according to background.

To maximize P(D|w) with respect to the WM PhyMe needs
to solve, for each column k in the WM, the equations

Note that for the single sequence case, the derivative of P(s|w)

with respect to the WM components , was very simple, i.e.

see (43). In contrast,the derivative dP(S[i,l]T, w)/d  is a

much more complicated function of the WM components

 which needs to be calculated recursively just as

P(S[i,l]|T, w) itself. Here it becomes particularly advanta-

geous that in the simplified model (76) the probability
Pαβ(w,t) is such a simple function of the WM components.

We do not discuss the mathematical details of solving
(82) here except for mentioning the fact that it involves an
iterative procedure similar to EM that leads to a local opti-
mum in P(D|w).

Motif sampling incorporating phylogeny
We now discuss extending the motif sampling approach
of section "Motif sampling" to alignments of phylogenet-
ically related sequences. Remember that in the motif sam-
pling approach, instead of summing over all possible
binding site configurations to calculate the probability
P(D|w) conditioned on the WM, we condition on a partic-
ular binding site configuration c and calculate the proba-
bility P(D|c) by integrating over all possible WMs w.

dP D w

dwk

( | )

α
α.= ∀constant (82)

wk
α

wk
α

wk
α

Probability for an alignment block assuming a site occurs in the reference sequenceFigure 8
Probability for an alignment block assuming a site occurs in the reference sequence. In the top right an alignment 
segment S[i,l] is shown for the species S. cerevisiae (the reference), S. paradoxus, S. mikatae, and S. bayanus. First we check which 
sequences are gaplessly aligned with the reference. In this case S. mikatae contains a gap and the background model is assigned 
to this sequence. The reference has the WM model assigned by default (indicated in red). In the left the probabilities of the 
sequences from S. paradoxus and S. bayanus are compared with the WM (shown as a logo). It turns out the S. paradoxus 
sequence scores better for the WM than for background but the S. bayanus sequence scores better to background than to the 
WM, because of some mismatches to the WM consensus (bases in purple). Finally, on the bottom right the phylogenetic tree is 
indicated with the branches that evolve according to the WM in red, and those evolving according to the background in black.
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Instead of a set of single sequences the input will now gen-
erally consist of a set of multiple alignments of ortholo-
gous non-coding sequences or a combination of multiple
alignments and single sequences. As in section "Motif
sampling" we want to consider all possible configurations
c of binding sites that can be assigned to the input data D,
and calculate the probability of the data P(D|c) for each
possible configuration. Whereas for single sequences the
space of all possible configurations existed simply of all
ways in which sets of non-overlapping windows can be
assigned to the sequences, i.e. see Fig. 2, for multiple
alignments the situation is a bit more complicated and
illustrated in Fig. 9.

Above we assumed that a reference sequence s is given for
each multiple alignment and that the set of binding ste
configurations for the alignment is simply the set of all
binding site configurations for the reference species. In the
PhyloGibbs algorithm [23] there is no reference sequence
and each sequence in the multiple alignment is treated the
same. A site can be hypothesized to occur at any position
of any of the sequences. By definition the algorithm
assumes that, whenever a site occurs in one species, it will
also occur in all other species that are gaplessly aligned
with it at that location. That is, sites are automatically
extended to all species that are mutually gaplessly aligned
at that position, see Fig. 9. The algorithm makes sure to
only allow configurations in which none of the sites over-
lap.

Next we need to calculate P(D|c) for every possible such
configuration c. This probability P(D|c) is given by an
equation essentially identical to equation (61). However,

instead of single background bases σ with probability bσ
we will now have alignment columns S with probability
P(S|T, b) as calculated in section "Probability of an orthol-
ogous set of bases". The set of sequences Sw assigned to a

WM w will now generally consist of several ungapped seg-
ments from the multiple alignments, i.e. alignment
blocks, and possibly some single sequences as well, see
Fig. 9. The probability P(Sw) will again be an integral over

all possible WMs but the integrand in this case will be
considerably more complicated. For simplicity let's focus
on a single column from the set Sw of sequence segments

and alignment blocks. For simplicity assume that this col-

umn from Sw contains two independent columns S, and

from the multiple alignments, see Fig. 9. The probability
P(Sw) would then be formally given by

where T is the phylogenetic tree of alignment column S,

 the phylogenetic tree of alignment column , and the

expressions P(S|T,w) and P( | ,w) are given as in equa-
tions (78) and (79). To calculate the integral notice that,
formally, the expression P(S|T,w) is a polynomial in the
WM components of the following form

where the prefactors ck depend on the branch lengths in

the tree and the  are sets of integers. The expression

P( | ,w) can of course also be written in this form.

Denote its prefactors , and its exponents . Using

this the integral can be rewritten as

Note that each monomial term of the form

 can be easily integrated using the

general expression (31). We then obtain for the integral

So in principle we can analytically determine the value of
the integral P(Sw) in this way. However, the number of
terms in the above sum grows exponentially both with the
number of sequences in each alignment and, more impor-
tantly, with the number of alignments under the integral.
That is, if the configuration c contains 10 multiple align-
ment segments for WM w, then even if there were only 10
terms for each alignment column P(S|T, w), there would
still be 1010 terms in total. In practice we thus have to
resort to approximations of the above integral. The
approach that is taken in the PhyloGibbs algorithm is to
approximate the expression P(S|T, w) with a monomial
for each alignment column, i.e.

where the xα may be non-integer. The prefactor c and the
exponents xα are set such that the first moments of the

S
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approximation match those of P(S|T, w). That is, we
demand that

and

for all β. As shown in [23] this fixes c and the relative sizes
of the xα but leaves ∑α xα still free. The absolute magnitude
of the xα we set so as to approximate the second moments,
i.e. such that

for all combinations of β and γ. With these approxima-
tions the integral for P(Sw) becomes simply

c w dw P S T w dwx( ) ( | , ) .α
α

α∏ ∫∫ = (88)

c w w dw w P S T w dwx
β α
α

β
α( ) ( | , )∏ ∫∫ = (89)

c w w w dw w w P S T w dwx
β γ α

α
β γ

α( ) ( | , ) .∏ ∫∫ ≈

(90)

An input data-set consisting of the multiple alignments of 3 sets of orthologous intergenic regions from S. cerevisiae, S. para-doxus, S. mikatae, and S. bayanusFigure 9
An input data-set consisting of the multiple alignments of 3 sets of orthologous intergenic regions from S. cer-
evisiae, S. paradoxus, S. mikatae, and S. bayanus. A binding site configuration c with sites for three motifs (red, green, and 
blue) is indicated. Note that each site is extended over all sequences that are locally gaplessly aligned. Most columns in the data 
are scored according to the background model in this configuration. On the lower right one example of an aligment column S' 
that is scored according to the background is shown. On the lower left the alignment Sw of sequences assigned to the red motif 

w is shown. A single column from this alignment consists of two independent columns, S and , that derive from the multiple 
alignments of intergenic regions 2 and 3 respectively. The trees on the left show that under this configuration, the columns S 

and  are both assumed to have evolved according to the same WM w, as indicated by the red branches on their phylogenetic 

trees T and .

S

S

T
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where x = ∑α xα and the variables with a tilde are those of

the approximation to P( | , w). The crucial point of this
approximation procedure is that, at the start of the algo-
rithm, we can determine these approximations, i.e. the
values of the xα, for every multiple alignment column S

that occurs in the input data once and store the results. We
thus replace the complex expression P(S|T, w) with the

simple expression  for each alignment col-

umn S. After that, when we are sampling different config-
urations, the expression P(Sw) can be as efficiently

calculated as for single sequences. That is, we can simply

use equation (62), where (Sw) is now the sum over the

xα of all the alignment segments that occur in Sw.

For the prior over configurations P(c) PhyloGibbs uses the
same priors (60) as for configurations over single
sequences. PhyloGibbs uses Markov chain Monte-Carlo
sampling to sample the space of all binding site configu-
rations. The move-set employed when sampling binding
site configurations in multiple alignments is essentially
the same as the move-set for binding site configurations in
single sequences illustrated in Fig. 5. The only difference
is that 'sites' now typically extend over multiple aligned
sequences, as illustrated in Fig. 9. Simulated annealing is
used to find a configuration c* that maximizes the poste-
rior probability P(c|D). Finally, a further sampling run is
used to calculate the posterior probabilities of the sites in
configuration c*. PhyloGibbs reports both the configura-
tion c* and the inferred WMs of the motifs in c*, as well as
posterior probabilities for all sites occurring in c*. In [23]
we demonstrate the performance of PhyloGibbs on syn-
thetic data, on individual multiple alignments of ortholo-
gous intergenic regions from yeast, and on sets of multiple
alignments of intergenic regions from yeast that are
bound by a common regulatory factor [38]. These tests
show that taking phylogeny into account significantly
improves the performance in motif finding.

Finally, it is important to distinguish the motif finding
methods that rigorously incorporate phylogeny by proba-
bilistically modeling the evolution of binding sites, such
as the PhyME and PhyloGibbs algorithms just discussed,
from more ad hoc algorithms that use comparative
genomic information in various ways in motif finding.
This includes for example methods that simply identify
significantly conserved sequence segments in multiple
alignments, [30-32]. These conserved segments can then

be post-processed to search for over-represented motifs.
In other approaches, e.g. [29,53], orthologous upstream
regions are searched in the same way as set of upstream
regions of co-regulated genes from a single species would
be searched, i.e. ignoring the evolutionary relationships
between the sequences. In other algorithms [54,55] one
only takes the topology of the phylogenetic tree into
account and searches for length-l segments that occur in
all orthologous sequences, such that the minimal number
of mutations necessary to relate the length-l segments, i.e.
the parsimony score, is under some prespecified cut-off.
Another approach is to first search for significantly con-
served segments in orthologous intergenic regions, and to
then multiply align conserved segments from the
upstream regions of co-regulated genes. This approach is
taken by the PhyloCon algorithm [56] which, in spite of
its name, ignores the phylogenetic relations between the
species.

The biggest challenge for incorporating comparative
genomic information in motif finding that is currently
outstanding is the treatment of the multiple alignment. It
is clear that errors in the multiple alignment can have very
deleterious effects on the performance of algorithms such
as PhyME, PhyloGibbs, and MotEvo. Ideally one would
simultaneously search the space of all multiple align-
ments and all binding site configurations. However, this
space is very large and it is currently unclear if and how it
can be effectively searched, especially for large data-sets.
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