
BioMed CentralBMC Bioinformatics

ss
Open AcceReview
Graphs in molecular biology
Wolfgang Huber*1, Vincent J Carey2, Li Long3, Seth Falcon4 and
Robert Gentleman4

Address: 1European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge CB10 1SD, UK, 2Channing Laboratory, Brigham
and Women's Hospital, 75 Francis Street, Boston MA 02115, USA, 3Vital-IT Center, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
and 4Fred Hutchinson Cancer Research Center, Computational Biology Group, 1100 Fairview Avenue North – M2-B876, P.O. Box 19024, Seattle
WA 98109-1024, USA

Email: Wolfgang Huber* - huber@ebi.ac.uk; Vincent J Carey - stvjc@channing.harvard.edu; Li Long - lilong@isb-sib.ch;
Seth Falcon - sfalcon@fhcrc.org; Robert Gentleman - rgentlem@fhcrc.org

* Corresponding author

Abstract
Graph theoretical concepts are useful for the description and analysis of interactions and
relationships in biological systems. We give a brief introduction into some of the concepts and their
areas of application in molecular biology. We discuss software that is available through the
Bioconductor project and present a simple example application to the integration of a protein-
protein interaction and a co-expression network.

Introduction
Molecular biology is concerned with enumerating and
characterizing all the building blocks of living systems, as
well as with their relationships, how the properties and
the activity of one element affects those of another. For
example, certain proteins have the capability of binding to
particular regions of a cell's DNA, thereby activating or
inhibiting the transcription of messenger RNA that codes
for another protein, or even for that protein itself. Many
proteins have the capability of binding to other proteins,
forming a complex that can perform actions that none of
the individual constituent proteins would be able to do.
There are thousands, perhaps millions of different types
and states of proteins in a living organism, and the
number of possible interactions between them is enor-
mous. The language of graph theory offers a mathematical
abstraction for the description of such relationships. The
beauty and usefulness of this abstraction is that it allows
to develop concepts and tools independent of the con-
crete application. Many scientists and engineers are famil-

iar with the benefits of abstraction that lie in linear
algebra, calculus or probability theory; the goal of this
article is to demonstrate some of the scope and power of
the theory of graphs for the biology of gene regulation.

A graph consists of a set of nodes and a set of edges that
connect the nodes. The nodes are the entities of interest
and the edges represent relationships between the entities.
For example, the entities may be a set of proteins in a cell,
and the relationship modeled may be the existence of a
physical interaction between two proteins. A graph is
specified by the set of nodes V the set of edges E. Each ele-
ment of E contains a pair of elements of V. Edges can be
assigned weights, directions, and types. Sometimes, spe-
cialized forms of graphs such as multigraphs, bipartite
graphs and hypergraphs [1,2] are useful.

We will use the terms graph and network interchangeably,
the former stressing the mathematical concept, the latter
the applications.

Published: 27 September 2007

BMC Bioinformatics 2007, 8(Suppl 6):S8 doi:10.1186/1471-2105-8-S6-S8
<supplement> <title> <p>Otto Warburg International Summer School and Workshop on Networks and Regulation</p> </title> <editor>Peter F Arndt and Martin Vingron</editor> <note>Reviews</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/8/S6/S8

© 2007 Huber et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/S6/S8
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
Applications
Graphs play roles in three complementary areas. First,
graphs provide a data structure for knowledge representa-
tion. Examples include regulatory, signal transduction, or
metabolic networks that are represented in graph form.
This might be either in the informal way of the familiar
bubbles and arrows cartoons of molecular biology text
books, or more formally in knowledge databases such as
Reactome [3]. Graphs are also used for knowledge repre-
sentation in the Gene Ontology (GO) [4], and bipartite
graphs between biological concepts and scientific papers
that are written about them [5] are another form of
knowledge representation.

A second application of graphs to molecular biology is to
model measured data. Many types of molecular biological
experiments produce data that convey relationships
between molecules. For example, in a Yeast-Two-Hybrid
screen, the data is the observation that a pair of proteins
worked together to create a transcription initiation com-
plex. In a chromatin immuno-precipitation microarray
experiment (ChIP-chip), the data is the strength of the
binding of the pulled down protein to the queried DNA
regions, which themselves may be linked to one or several
genes whose transcription is regulated through them.

A further role for graphs is in statistical modeling. For exam-
ple, one might want to fit a model that describes which
sets of proteins can assemble together to form a protein
complex, given some data consisting of (usually imperfect
and incomplete) observations of pairwise interactions or
of the co-precipitation of proteins [6]. Different models
might apply to fit the data, and the usual questions of
model fitting and discrimination and of hypothesis test-
ing arise. Another example is the question whether inter-
acting proteins are also transcriptionally co-regulated.
This might be answered by looking at the respective net-
works, the protein-protein interaction graph and the co-
expression graph, and testing whether and how the over-
lap of these graphs is more than would be expected by
chance [7].

Graphical models [8] can also be used to model compli-
cated multivariate probability distributions with a limited
number of parameters. Nodes in a graphical model repre-
sent random variables, and the lack of an arc between
nodes represents an assumption of conditional independ-
ence. In an undirected graphical model (sometimes this is
also called a Markov random field), two (sets of) nodes U
and V are conditionally independent given a third set, W,
if all paths between the nodes in U and V are separated by
a node in W. In a directed graphical model (sometimes
this is also called a Bayesian network), a node is inde-
pendent of its ancestors given its parents, where the ances-

tor/parent relationship is with respect to some fixed
topological ordering of the nodes.

Definitions
The presentation and notation here is based on that used
in [9]. The treatment is not comprehensive, and we refer
to more complete references such as [1,9,10].

A graph is specified by the set of nodes (the term vertex is
also sometimes used) V and the set of edges E. Each ele-
ment of E contains a pair u, v of elements of V. It is
allowed that u = v, in which case one also speaks of a self-
loop. The relationships modeled by the edges may be
dichotomous (the edge is there or it is not there) or we
may consider a more general interpretation of E as a two-
place function f : V × V → F with discrete or continuous
range F. If F ⊂ �, then the value f(u, v) is called the weight
of the edge from u to v. F can also extend over different
discrete categories, for example, a graph with genes as
nodes can simultaneously model the homology between
genes and their co-citation in the medical literature.

In some cases, such as in transcription factor networks, the
relationships between the nodes in the graph are directed.
A graph can simultaneously contain directed and undi-
rected relationships.

An edge is said to be incident at a node if the node is an
endpoint for the edge. A proper edge is an edge that is not
a self-loop, and a multi-edge is a set of two or more edges
that have the same endpoints. A directed edge is an edge
where one endpoint is designated the head and the other
the tail. Directed edges join the tail node to the head node
but not vice versa. A directed graph, or digraph, is a graph
where all edges are directed. The underlying graph of a
digraph is the graph that results from making all directed
edges undirected edges.

Two nodes are said to be adjacent if they are joined by an
edge. Two edges are adjacent if they are joined by a node.
The adjacency matrix of a graph is a square matrix A whose
rows and columns correspond to the nodes and whose
element Aij denote the presence (and possibly, weight or
type) of an edge from node i to j. For undirected graphs,
the adjacency matrix is symmetric.

The degree of node v is denoted deg(v) and is equal to the
number of proper edges incident at v plus twice the
number of v's self-loops. For directed graphs we define in-
degree to be the number of edges directed at the node and
out-degree to be the number of edges that go out from the
node. A complete graph is a graph such that every pair of
nodes is joined by an edge.
Page 2 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
In Figure 1, node p has a self-loop, and there is no edge
between nodes p and r. The other edges are all directed, as
there are arrowheads only on one end.

A walk from node v0 to node vn is an alternating sequence
of nodes and edges,

W = �v0, e1, v1,�, vn-1, en, vn�

such that the endpoints of ei are vi-1 and vi for i = 1,..., n. In
a digraph we refer to the analogous structure as a directed
walk. The length of a walk when no edge weights are
defined is the number of edges traversed. If edge weights
are defined, the length will be computed by summing the
edge weights. A walk is closed if v0 = vn.

A node v is said to be reachable from node u if there is a
walk from u to v. A graph is said to be connected if there is
a walk between every pair of nodes in the graph. A digraph
is said to be weakly connected if its underlying graph is con-
nected. Two nodes w and z in a digraph are said to be
mutually reachable if there is a directed walk from w to z
and a directed walk from z to w. A digraph is said to be
strongly connected if every pair of nodes in the digraph are
mutually reachable.

The distance between two nodes u and v is the length of the
shortest walk containing them. For a digraph the directed
distance is the length of the shortest directed walk. Note
that the distance function so defined for digraphs may not
be symmetric in its arguments. We define a trail to be a
walk with no repeated edges and a path to be a walk with
no repeated nodes, except possibly the first and last. A
non-trivial closed path is called a cycle.

For a graph G = (V, E) the connectivity is defined to be the
minimum number of edges whose removal results in a
disconnected graph. This number is denoted k(G). If k(G)
= l, then G is said to be l-connected. A cut in G is a set of
edges whose removal disconnects the graph. A minimum
cut is a cut with the minimum number of edges. If C is a
minimum cut of a non-trivial graph G, then |C| = k(G).
The connectivity of the graph in Figure 1 is 2.

Connectivity properties can also be described in terms of
nodes. Sometimes there is interest in those nodes whose
deletion from a connected graph G results in a discon-
nected graph. A cut-set is a node set U such that G\U has
more components (defined below) than G.

A subgraph of G = (V, E) is a graph H = (W, F) where W is
a subset of V, and F is a subset of E, and all edges in F have
their endpoints in W. An induced subgraph is a subgraph
that is defined in terms of a node set W ⊂ V and contains
all edges from E that have both endpoints in S. If G is a

directed graph, then so are all subgraphs. Subgraphs can
also be induced by edge sets in an analogous manner.

A clique is a subset of the nodes in V such that every pair
of nodes in the subset is joined by an edge. If the clique is
not a proper subset of any other clique, then we call it a
maximal clique. A node adjacent to a node v is said to be a
neighbor of v. A component of a graph G is a maximal con-
nected subgraph. In a graph G we refer to the component
of a node v as the set of nodes that are reachable from v
and denote this C(v). Cliques are one type of cohesive
subgroup, a term for sets of nodes for which there is a high
degree of relatedness as demonstrated by the existence of
many edges. For applications, the clique will often be too
restrictive a notion of cohesive subgroup, and we will con-
sider more general definitions below.

For the sake of simplicity, we now diverge somewhat from
the standard graph theoretic terminology for concepts of
graph unions and intersections. In many applications, the
node and edge sets of the graphs we need to consider are
subsets of a large, but limited set of nodes and edges, for
example all annotated genes in a genome. We define the
union of two graphs G and H to be the graph F satisfying
V(F) = V(G) <Math4font>½ V(H) and E(F) = E(G)
<Math4font>½ E(H). The intersection graph is defined
analogously, substituting � for <Math4font>½. The
union and intersection of two graphs are themselves
graphs. The complement of a graph G = (V, E) is the graph
G' = (V, E') where E' are those edges in the complete graph
on V that are not in E. These concepts are presented in Fig-
ure 2.

Cohesive subgroups
In application, the identification of maximal cliques is
often of limited interest as the requirement of complete
connectivity is so restrictive. When dealing with imperfect
systems or with experimental data, we may need to con-
sider more general notions of cohesive subgroups. Our
description here follows that of [11]. They consider differ-
ent notions of cohesive subgroups that include n-cliques,
k-plexes and λ-sets.

An n-clique is a subgraph with nodes Vs such that the dis-
tance d(v, u) between nodes v and u is less than or equal
to n for all nodes v, u ∈ Vs. A 1-clique is the same as a
clique.

A k-plex is a maximal subgraph Vs containing vs nodes, in
which each node is adjacent to no fewer than vs - k nodes.
Let degs(u) denote the number of edges from u to nodes of
the subgraph Vs. Then a k-plex is a subgraph Vs such that
degs(u) ≥ vs - k, for all u ∈ Vs, and such that there is no node
w in V\Vs such that degs(w) ≥ vs - k. A 1-plex is a maximal
clique. For valued relationships, the requirement may be
Page 3 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
changed to require the existence of edges with value
greater than δ.

One way to view this definition is that we are allowing up
to k false negative edges per node. False positive edges, if
infrequent, are unlikely to cause problems, because the
probability that all nodes within a subgraph have a false
positive edge to the same node tends to be negligible.
There are exceptions, however, and in some cases the
experimental technology being used may induce corre-
lated false positive, or false negative, edges.

A k-core is defined similarly to a k-plex, with the main dif-
ference being that for a k-core, the minimum number of
edges that must exist is specified, rather than the maxi-
mum number that can be missing.

λ-sets: another way to think of a cohesive subgroup is as a
set of nodes that are more related to each other than they

are to the other nodes. When viewed in this manner, one
might look for regions of the graph in which the concen-
tration of edges between nodes in that region is larger
than the concentration of edges from that region to the
rest of the graph. These ideas have been embodied in the
notions of λ-sets [12]. Let λ(w, u) denote the minimum
number of edges that must be removed so that there is no
path between nodes w and u. For any graph G = (V, E), a
set of nodes W ⊂ V is a λ-set if for all u, v, w ∈ W and l ∈
V\W λ(u, v) ≥ λ(w, l). Borgatti et al. note that the members
of a λ-set do not need to be adjacent [12]. They can be
quite distant from each other.

Distances
The length of paths between nodes in a graph can be used
to induce a distance between nodes. In many cases, the
shortest path will be used, but other alternatives may be
appropriate for applications. If the graph has weighted
edges, then these can easily be accommodated. Multi-
graphs (graphs with multiple types of edges) can have dif-
ferent distances determined by the different types of
edges. Other notions of distance, such as the number of
paths that exist between two points [13], or the number of
edge-cuts required to separate two nodes, can also be
used.

For example, the Gene Ontology [4] is represented by
three different directed acyclic graphs, for "biological
process", "cellular process" and "molecular function".
Each of the three graphs has a root, and the three roots
may be considered to have one overall common root
node. Various methods for assessing similarity based on
GO have been used, among these [14]: (i) the similarity
between subgraph gi and subgraph gj, s(gi, gj) is computed
as the length of the shortest shared path to the root node,
and (ii) the similarity between subgraph gi and subgraph
gj, s(gi, gj) is computed as |gi � gj| divided by |gi
<Math4font>½ gj|. We note though that the relations in
the GO graph are not designed to imply distances between
the terms.

Once a decision has been made about a distance measure
for objects organized in a graph, standard tools for cluster
analysis or multidimensional scaling can be applied to the
inter-object distances. Naturally, the choice of the dis-
tance measure is essential for outcome of the analysis, and
the choice should not be driven by mathematical or com-
putational convenience, but rather by a good understand-
ing of the biological question.

Special types of graphs
There are special types of graphs that deserve attention
because they play important roles in applications. The
main ones are bipartite graphs, hypergraphs, and directed
acyclic graphs (DAGs).

A simple graphFigure 1
A simple graph. An example for a simple directed graph.

s

p

q

r

Page 4 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
Bipartite Graphs
If the nodes of a graph G = (V, E) can be partitioned into
two sets U and W such that every edge in E is an undi-
rected relationship between one node in U and one node
in W, then G is said to be a bipartite graph. Note that there
can be no edges between the elements of U or between the
elements of W. Thus relationships between nodes in U are
mediated through the nodes in W and vice versa.

Two graphs called one mode graphs can be derived from a
bipartite graph. If U and W are the node partitions of a
bipartite graph G, then the edges in the one mode graph
on U (resp. W) are determined by whether or not the two
nodes both have edges in G to a common element of W
(resp. U). If A is the |U| × |W| adjacency matrix of the
bipartite graph, then the one mode graph for the node set
U can be obtained by A � At and the one mode graph for
W by At � A. Here, � represents matrix multiplication

under the Boolean algebra 0 + 0 = 0 × 0 = 1 × 0 = 0 × 1 =
0 and 1 + 0 = 0 + 1 = 1 + 1 = 1 × 1 = 1.

The mode of a network is the number of partitions of the
node set determined by some general node property. For
example, a two-mode network can be used to describe the
relationships between transcription factors and target
genes, or between proteins and protein complexes. In
each of these cases, the node set can be partitioned by
node type. Two-mode graphs are often referred to as affil-
iation networks.

In social network analysis, the two types of nodes are
often referred to as actors and events. Among the basic
ideas that are represented by such graphs is the concept
that relationships between actors are mediated by the
events that they attend (in that application domain, for
example, the clubs or social groups that they belong to).

Set operations on graphsFigure 2
Set operations on graphs. Set operations on two undirected graphs ug1 and ug1.

ug1

a b

c

d

complement(ug1)

a

b

c d

ug2

a b

c

d
complement(ug2)

a

b c d

intersection(ug1, ug2)

a b c

d

union(ug1, ug2)

a b

c

d

Page 5 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
It is worth noting that adjacency in the one-mode graphs
means that both nodes have an edge to (at least one) com-
mon node in the other node set. However, accessibility is
less easy to interpret. Two nodes that are accessible, but not
adjacent have a connection or relationship that is less
direct – they are connected by a sequence of related actors
and events but do not themselves share memberships
directly.

Hypergraphs
Hypergraphs are closely related to bipartite graphs [1,2].
Hypergraphs generalize the graph concept, allowing for
the specification of relationships that are one to many and
many to many.

A hypergraph G is defined as a pair (V, E), where V is a set
of nodes, and E is a set of hyperedges. Each hyperedge is a
set of vertices, Ei = {u, v,...} ⊂ V.

The hyperedges in a directed hypergraph are directed, and
each hyperedge is an ordered pair, Ei = (X, Y), of disjoint
subsets of nodes; X is the tail of Ei while Y is the head. A
path P from a node u to a node v is a sequence (V0 ≡ u, E1,
V1,..., En, Vn ≡ v) of alternating nodes and hyperedges
where each hyperedge Ei is distinct, and for i ∈ {1,..., n},
Vi-1 = tail(Ei) and Vi = head(Ei).

Directed acyclic graphs
An important class of directed graphs are the directed acy-
clic graphs (DAGs), which are simply directed graphs with
no cycles. We note that a tree is a connected graph that has
no cycles. DAGs have found many uses in statistics. They
form the basis for graphical models [8,15]. They also play
important roles in structuring concepts, both GO and
MeSH are represented as DAGs. In the Section Case Strudy,
we demonstrate some of their uses in different specific
problems.

Uncertainty and missing edges
Using graphs as models for data analysis and data repre-
sentation poses a number of challenges. In many cases,
the reported graphs are imperfect.

While the presence of an edge between two nodes has usu-
ally a well-defined interpretation, for non-edges the inter-
pretation is often less clear. We can distinguish between
two cases: the existence of the edge was tested and not
found, or it was never tested in the first place. Both cases
are usually reported by the absence of an edge, but their
interpretation is quite different.

The error rates in binary data are often described by the
concepts of false positives and negatives, but in many
applications we will need to address the following three
categories:

false positives – relationships that appear in the experi-
mental data, but are not real;

false negatives – relationships that are real and were
probed experimentally, but were erroneously not
detected; and

untested relationships – where no measurement was
attempted and hence no information is available.

In order to make appropriate use of the data, we will need
to keep these issues in mind as we explore the resultant
graphs. Uncertainty is usually not part of a purely mathe-
matical approach to graph theory, but it cannot be
ignored in the context of experimental data. Uncertainty
affects how we use and think about graphs or networks.
Uncertainty of relationships being modeled also impacts
the design of software, the choice of algorithms, and the
interpretation of the output.

Particular attention is due to the fact that the three sources
of error mentioned above do often not occur "randomly",
but may be associated with properties of the nodes. For
example, more research has been directed towards genes
that are known to be implicated in human diseases, hence
it should come as no surprise that literature-based interac-
tion networks are more dense, and may indeed contain
more false positives and less untested relationships in
regions around these genes and than around less popular
genes.

Computational aspects
Representation
An abstract graph can be represented for computational
purposes in many different ways. Among the common
representations are

node and edge list – a list whose elements correspond to
the nodes in the graph, and each element consists of two
objects: the name of a node, and the list of other nodes to
which it is connected.

adjacency matrices – a square matrix whose elements can
be Boolean, real-valued or categorical variables and
denote the existence, weight or type of an edge.

from-to matrices – a matrix with two or more columns,
each row contains start and end nodes of an edge and pos-
sibly weights, types, etc.

For bipartite graphs with node sets U, W, the adjacency
matrix simplifies into a |U| × |W| matrix A.

The representation used for a graph can have a profound
effect on the running time of algorithms that are applied
Page 6 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
to it. It is advisable to make timing comparisons on differ-
ent representations before committing to a particular one.
The most appropriate or efficient strategy for representing
the graph will depend on many factors such as the size of
the graph and the types of operations that are going to be
applied to it. The graph package of the Bioconductor soft-
ware system offers methods to translate between represen-
tations, a process sometimes referred to as "coercion." We
also note that there is a close relationship between the
node and edge list representation and that of sparse matri-
ces.

Algorithms
There are many existing, well-tested and high-quality
implementations of graph algorithms. It is inefficient and
often more error-prone to reimplement algorithms for
which good implementations already exist. Bioconductor
provides interfaces to many of the algorithms coded in the
open source Boost graph library [16].

However, good implementations for many of the algo-
rithms required in bioinformatics are still needed. Algo-
rithms adapted to deal with incompleteness and
uncertainty are of particular interest. For example,
Scholtens and Gentleman [6] developed a special form of
clique that is appropriate for protein complex data where
different forms of uncertainty are prevalent. For hyper-
graphs, Krishnamurthy et al. describe an extension of
depth first search [17], and Klamt and Gilles developed an
analog of the mincut algorithm for biochemical reaction
networks [18].

Software from the Bioconductor project
Bioconductor is an open source and open development
software project for the analysis and comprehension of
genomic data [19]. It provides a large collection of soft-
ware for the analysis of functional genomics data and
among that, software for working with graphs. The soft-
ware is organized into functions and packages. Functions
are the basic unit of functionality and documentation.
Packages contains sets of related functions for a particular
domain, and they are the basic unit of authoring, version-
ing, dependency, distribution and deployment.

Among the graphs-related packages, it is worth differenti-
ating between packages that are mainly infrastructure (sets
of tools that can be used to create other pieces of software)
and packages that are designed to provide an end-user
application. The packages graph, RBGL and Rgraphviz are
infrastructure packages. Basic data structure definitions
and methods are provided in the Bioconductor package
graph. The package RBGL is currently the primary source of
software for graph algorithms. Package Rgraphviz provides
graph visualization. Software developers may use these

packages to construct tools aimed at specific applications
areas, such as the GOstats or apComplex packages.

The graph package is entirely a creation of the Bioconduc-
tor core. The package RBGL is an interface to the Boost
Graph Library [16], a C++ library devoted to portable
implementation of Standard Template Library (STL) con-
cepts for graph computations. In addition further algo-
rithms, for example the cohesive subgroup algorithms
used in the example below, were implemented by the
authors (L.L.). Rgraphviz is an interface to Graphviz [20],
a C/C++ library devoted to layout and visualization of
graphs encountered in telecommunications research. We
greatly appreciate the fact that the Boost and Graphviz
groups have produced high-quality software with suffi-
ciently open licenses to meet our requirements.

Case study: using graphs for comparing
transcription and interaction data
As a very simple example, we demonstrate how graph con-
cepts can be used to do an analysis that relates gene
expression data to protein interaction data.

Proteins that form a functional complex need to be
expressed concurrently, hence we expect that something
can be learned from comparing co-expression and protein
complex co-membership. In particular, we consider the
question is whether genes in a protein complex are more
likely to have a similar pattern of gene expression than
genes in different complexes.

The analysis that we demonstrate in the following was
reported by Balasubramanian et al. [14] and is based on
the work of Geone et al. [7]. Balasubramanian et al. used
two graphs defined on a common set of nodes: the genes
present in yeast. The relationship represented by the edges
in the first graph is co-membership in a cluster of corre-
lated expression, while the edges in the second graph rep-
resent co-membership in a protein complex.

For concreteness, we will show the R programming code
to perform this analysis. Figures 3, 4, 5, 6, 7 are generated
from the results of these computations, and the Sweave
source document for this article includes all the R code for
analysis and graphics displays. It is available as additional
file 1.

We set up the comparison by creating the two graphs as
objects in the R language and counting how many edges
they have in common. To see whether this number is sig-
nificantly above what could be expected by chance if there
were no relationship between protein complex co-mem-
bership and co-expression. There are some subtleties in
the definition by what we mean by by chance, as we will
discuss below.
Page 7 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
The Data
The R package yeastExpData contains the gene expression
data from a yeast cell-cycle time course [21], including an
assignment of the genes into co-expressed clusters in the
dataframe ccyclered, and protein-protein interaction
(PPI) data extracted from published papers (litG).

> library("yeastExpData")

> data("ccyclered")

> ccyclered [1:2, 1:8]

The largest connected component of the PPI graphFigure 3
The largest connected component of the PPI graph. Layout of the connected component sG1 of the protein-protein
interaction graph litG.

YDR382W

YER009W

YFL039C

YLR229C

YLR340W

YDL127W

YER111C YGR109C

YGR152C

YJL187C

YKL042W

YKL101W

YLR212C

YLR313C

YMR199W

YNL289W

YPL256C

YPR120C

YOR160W

YDR388W

YJL157C

YOR036W

YPL031C

YCL027W

YLL024C

YOR027W

YOR185C

YPL240C

YMR294W

YNL004W

YNL243W

YOL039W

YOR098C

YAL040C

YBR200W

YGR108W

YPL242C

YPR119W

YCL040W

YAL005C

YLR216C

YBR133C

YER114C

YDL179W

YHR005C

YJL194W

YLR079W

YLR319C

YMR109W

YDR432W

YDR356W

YEL003W

YHR061C

YHR172W

YLL021W
YNL126W

YPL016W

YDR085C

YHR102W

YOL016C

YBR160W

YMR308C

YHL007C

YKL068W

YAL029C

YBR109C

YGL016W

YLR293C

YML065W

YLR200W

YML094W

YMR092C

YMR186W

YDR309C

YHR129C

YAL041W

YBL016W

YBL079W

YOR127W

YPL174C

YDR103W

YDR323C

YDR184C

YHR069C

YOL021C

YOR181W

YBR155W

YPL140C
Page 8 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
> table(ccyclered$Cluster)
> data("litG")

> litG

Cluster Distance Y. name SGDID GENE Chromosome Start End

1 1 0.38 YBL0072C S0000168 RPS8A II 89116 88514

2 1 0.75 YBL083C S0000179 II 70128 669703

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

157 185 103 169 151 100 101 148 146 78 94 79 996 73 113 98 81

18 19 20 21 22 23 24 25 26 27 28 28 20

96 73 84 68 83 63 83 74 49 63 667 51 59

The second-largest connected component of the PPI graphFigure 4
The second-largest connected component of the PPI graph. Layout of the connected component sG2 of the protein-
protein interaction graph litG.

YBR009C

YBR010W

YNL030W

YNL031C

YOL139C

YAR007C

YBR073W

YER095W

YJL173C

YNL312W

YBL084C
YDR146C

YLR127C

YNL172W

YLR134W

YMR284W

YER179WYIL144W

YML104C

YOR191W

YDL008W

YDL030W

YDL042C

YDR004W

YGR162W

YMR117C

YDR386W

YDR485C

YDL043C

YDR118W

YMR106C

YML032C

YDR076W

YDR180W

YDL013W

YDR227W
Page 9 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
A graphNEL graph with undirected edges

Number of Nodes = 2885

Number of Edges = 315

The code above shows the first two rows (genes) of ccy-
clered, the sizes of the 30 clusters, and a summary of the
graph object litG.

Exploration of the PPI graph
To explore the graph litG, we can employ the functionality
of the package RBGL. First, we find the connected compo-
nents.

> library("RBGL")

> cc = connectedComp(litG)

> table(listLen(cc))

cc is a list of the connected components of litG. There are
2587 singletons (connected components of size 1), and
the largest connected component has size 88. Let us plot
the two largest components using the Rgraphviz package.
We first determine the indices of the ordered components,

> ord = order(listLen(cc), decreasing = TRUE)

select the largest subgraph,

> sG1 = subGraph(cc [[ord[1]]], litG)

lay it out using the function agopen, which is an interface
to the graphviz graph layout library, and plot it. There are
many options for node color, line color and type, node
shape etc., for which we refer to the vignette of the Rgraph-
viz package.

> lsG1 = agopen(sG1, layoutType = "neato", nodeAttrs = mak-
eNodeAttrs(sG1, + fillcolor = "steelblue2"), name = "sG1")

> plot(lsG1)

The graph is shown in Figure 3. Similarly, Figure 4 shows
the second-largest connected component sG2.

> sG2 = subGraph(cc [[ord[2]]], litG)

Construction of the cluster graph
There is a specialized graph class clusterGraph that can be
used to represent clusters. The 30 clusters of the 2885
genes in the ccyclered dataset are represented by 30 sub-
graphs which are fully connected within themselves and
unconnected with each other.

> clusts = with(ccyclered, split(Y. name, Cluster))

> clG = new("clusterGraph", clusters = clusts)

Statistical analysis of the graph overlap
It is now easy to determine how many pairs of genes have
both a protein-protein interaction and are found in the
same expression cluster. We find the intersection of the
cluster-graph and the literature graph using the R function
intersection.

> commonG = intersection(clG, litG)

A graphNEL graph with undirected edges

Number of Nodes = 2885

Number of Edges = 42

We find that 42 edges are in common, now we will try to
determine whether this number is statistically interesting,
i. e. different from what could be expected by chance. We
will do this by generating a null distribution via permuta-
tion of node labels on the observed graph. The following
function implements this.

1 2 3 4 5 6 7 8 12 13 36 88

2587 29 10 7 1 1 2 1 1 1 1 1

Statistical significance of the overlap between PPI and co-expression graphsFigure 5
Statistical significance of the overlap between PPI
and co-expression graphs. The x-position of the vertical
line is the number of edges of the intersection graph between
litG, the literature-curated protein-protein interaction graph,
and clG, the cell cycle co-expression graph. The histogram
shows of the permutation distribution obtained by random
node label permutations. We conclude that the observed
overlap is larger than what would be expected by chance.

Histogram of nPdist

nPdist

F
re
qu

en
cy

0 10 20 30 40

0
20

40
60

80
10

0

Page 10 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
> nodePerm = function(g, h, B = 500) {

+ n = nodes(g)

+ sapply(1:B, function(i) {

+ nodes(g) <- sample(n)

+ numEdges(intersection(g, h))

+ })

+ }

> nPdist = nodePerm(clG, litG)

Figure 5 shows the histogram of nPdist together with a
vertical line at 42, the number of edges of the intersection

graph. The largest number of common edges in the per-
mutation distribution is 24. We conclude that the overlap
between litG and clG is statistically significant. In the next
section, we will do some data exploration to investigate
some of the biological significance.

Cohesive subgroups
Let us look at cohesive subgroups of the intersection graph
commonG. First, we remove the singleton nodes,

> sel = names(which(degree(commonG) >= 1))

> commonG = subGraph(sel, commonG)

then we use the functions from the RBGL package to iden-
tify the different types of cohesive subgroups that were
defined above.

2-cliques in the overlap graphFigure 6
2-cliques in the overlap graph. Layout of the overlap graph commomnG. There are three 2-cliques, each of size 4, marked
by node color. Two nodes are part of two different 2-cliques, marked in a darker color.

YBR009C YBR010W
YDR382W

YFL039C

YJL190C

YLR075W

YLR340W

YLR367W
YML074C

YNL030W

YNL031C

YPR102C

YAR007C

YBL035C

YBR088C

YDL003W

YDL102W

YFL008W

YGR188C

YJL173C

YJR006W

YJR043C
YNL102W

YNL312W

YOR026W

YPR135W

YLL024C YOR027W
YPL240C

YBL023C YBR202W
YEL032W

YGR092W
YIL106W

YBR126C
YDR074W

YNL037C
YOR136W

YOR219C
YOR357C

YBR081C
YBR198C

YDR392W
YER148W

YDR113C

YDR356W

YGR098C

YHR172W

YJL176C

YNL126W

YOR290C

YAL029C
YBR109C YDL035C

YER020W

YLR200W
YML094W

YNL082W
YOL090W

YJR050W
YML046W YDL077C

YDR080W

YHR069C
YOL021C
Page 11 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
> kcliq = kCliques(commonG)

> kcore = kCores(commonG)

> lambd = lambdaSets(commonG)

kcliq, the return value of kCliques is a list whose k-th entry
is a list of all the k-cliques in the graph. We can get all the
2-cliques of size >= 4,

> listSel = function(x, n) x[listLen(x) >= n]

> kc2 = listSel(kcliq[[2]], 4)

> kc2

[[1]]

[1] "YBR009C" "YBR010W" "YNL030W" "YNL031C"

[[2]]

[1] "YBL035C" "YJR043C" "YNL102W" "YPR135W"

[[3]]

[1] "YBR088C" "YDL102W" "YJR006W" "YJR043C"
"YNL102W"

Remember that a 2-clique is a subgraph in which the dis-
tance between each pair of nodes is ≤ 2. Any subgraph of
size ≤ 3 satisfies this requirement trivially, hence we con-
sider those with size ≥ 4. They are shown in Figure 6.
Using the gene annotation data provided in the metadata

k-cores in the overlap graphFigure 7
k-cores in the overlap graph. Layout of the overlap graph commonG. Three 2-cores are marked by node color.

YBR009C YBR010W
YDR382W

YFL039C

YJL190C

YLR075W

YLR340W

YLR367W
YML074C

YNL030W

YNL031C

YPR102C

YAR007C

YBL035C

YBR088C

YDL003W

YDL102W

YFL008W

YGR188C

YJL173C

YJR006W

YJR043C
YNL102W

YNL312W

YOR026W

YPR135W

YLL024C YOR027W
YPL240C

YBL023C YBR202W
YEL032W

YGR092W
YIL106W

YBR126C
YDR074W

YNL037C
YOR136W

YOR219C
YOR357C

YBR081C
YBR198C

YDR392W
YER148W

YDR113C

YDR356W

YGR098C

YHR172W

YJL176C

YNL126W

YOR290C

YAL029C
YBR109C YDL035C

YER020W

YLR200W
YML094W

YNL082W
YOL090W

YJR050W
YML046W YDL077C

YDR080W

YHR069C
YOL021C
Page 12 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
package YEAST, we can look at the names and descrip-
tions of the 4 genes in the second 2-clique.

> library("YEAST")

> mget(kc2[[2]], YEASTGENENAME)

> mget(kc2[[2]], YEASTDESCRIPTION)

YBL035C YJR043C YNL102W YPR135W

"POL12" "POL32" "POL1" "CTF4"

YBL035C

B subunit of DNA polymerase alpha-primase complex,
required for initiation of DNA replication during mitotic
and premeiotic DNA synthesis; also functions in telomere
capping and length regulation

YJR043C

Third subunit of DNA polymerase delta, involved in chro-
mosomal DNA replication; required for error-prone DNA
synthesis in the presence of DNA damage and processiv-
ity; interacts with Hys2p, PCNA (Pol30p), and Pol1p

YNL102W

Catalytic subunit of the DNA polymerase alpha-primase
complex, required for the initiation of DNA replication
during mitotic DNA synthesis and premeiotic DNA syn-
thesis

YPR135W

Chromatin-associated protein, required for sister chroma-
tid cohesion; interacts with DNA polymerase alpha
(Pol1p) and may link DNA synthesis to sister chromatid
cohesion

The first 2-clique is a duplicated pair of histone proteins:

> sapply(kc2[[1]], function(i) YEASTGENENAME [[i]])

YBR009C YBR010W YNL030W YNL031C

"HHF1" "HHT1" "HHF2" "HHT2"

A k-core is a subgraph in which every node is connected to
at least k other nodes within the subgraph. The 2-cores of
commonG are shown in Figure 7. lambd represents the λ-
sets of commonG. It has 2 elements, the first one is the
maximum degree kmax in the graph, the second is a list of
length 3 with the λ-sets for k = 0, 1, and 2, respectively.

> lambd[[1]]

[1] 2

> names(lambd[[2]])

[1] "lambda-0 sets" "lambda-1 sets" "lambda-2 sets"

> lambd[[2]] [[3]]

[[1]]

[1] "YBR009C" "YBR010W" "YNL030W" "YNL031C"

[[2]]

[1] "YDL102W" "YJR006W" "YJR043C"

[[3]]

[1] "YDR356W" "YHR172W" "YNL126W"

In this particular example, we note that the λ-sets for k = 2
are the same as the 2-cores in Figure 7, hence there is no
need for an extra figure.

Discussion
There are many ways in which graphs play a role in com-
putational molecular biology, among these the represen-
tation and integration of experimental datasets as graphs;
the interactive navigation and visualization of these large
and complex datasets by a human researcher; the compu-
tation of solutions to problems such as cliques and cohe-
sive subgroups, graph alignment, optimal paths or path-
sets; the estimation of and statistical inference on an
underlying ("hidden") graph from noisy observational
data.

There is a substantial body of existing methodology in
graph theory that is relevant to these questions, and it is a
challenging and exciting task to establish the most appro-
priate and effective models. There is a need for theoretical
development of the field, but also for software that inte-
grates data analytic and statistical inference capabilities
with methods for querying and manipulating graphs.

We have produced an approach to such an environment
in Bioconductor. We made extensive use of existing soft-
ware in particular from the Graphviz [20] and Boost
Graph Library [16] projects, connecting them together
using the R system with its powerful computational
engine and elegant programming language. However,
much remains to be done.
Page 13 of 14
(page number not for citation purposes)

BMC Bioinformatics 2007, 8(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/8/S6/S8
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Additional material

Acknowledgements
W.H. and R.G. acknowledge support from HFSP research grant RGP0022/
2005-C. L.L. was supported by a grant from Intel Corp. to the Vital-IT
Center. We are thankful to the Boost and Graphviz groups for providing
their software.

This article has been published as part of BMC Bioinformatics Volume 8 Sup-
plement 6, 2007: Otto Warburg International Summer School and Work-
shop on Networks and Regulation. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2105/8?issue=S6

References
1. Berge C: Graphs and Hypergraphs Amsterdam: North-Holland; 1973.
2. Gallo G, Longo G, Nguyen S, et al.: Directed hypergraphs and

applications. Discrete Applied Mathematics 1993, 42:177-201.
3. Joshi-Tope G, Gillespie M, Vastrik I, et al.: Reactome: a knowl-

edgebase of biological pathways. Nucleic Acids Res 2005:428-432.
4. Gene Ontology Consortium: Gene ontology: tool for the unifica-

tion of biology. Nature Genetics 2000, 25:25-29.
5. Nelson SJ, Schopen M, Savage AG, Schulman JL, Arluk N: The MeSH

Translation Maintenance System: Structure, Interface
Design, and Implementation. In Proceedings of the 11th World
Congress on Medical Informatics, San Francisco, CA Edited by: Fieschi Mea.
Amsterdam: IOS Press; 2004:67-69.

6. Scholtens D, Gentleman R: Making sense of high-throughput
protein-protein interaction data. Statistical Applications in Genet-
ics and Molecular Biology 2004, 3:Article 39.

7. Ge H, Liu Z, Church G, et al.: Correlation between transcrip-
tome and interactome mapping data from Saccharomyces
cerevisiae. Nature Genetics 2001, 29:482-486.

8. Lauritzen SL: Graphical Models Clarendon Press; 1996.
9. Gross J, Yellen J: Graph Theory and its Applications CRC Press; 1999.
10. Sedgewick R: Algorithms 3rd edition. Boston: Addison Wesley; 2002.
11. Wasserman S, Faust K: Social Network Analysis, Methods and Applica-

tions Cambridge: Cambridge University Press; 1994.
12. Borgatti SP, Everett MG, Shirey PR: LS sets, lambda sets and

other cohesive subsets. Social Networks 1990, 12:337-357.
13. Leicht EA, Holme P, Newman MEJ: Vertex similarity in networks.

Physical Review E 2006, 73:026120. [doi:10.1103/Phys-
RevE.73.026120].

14. Balasubramanian R, LaFramboise T, Scholtens D, et al.: A graph the-
oretic approach to testing associations between disparate
sources of functional genomics data. Bioinformatics 2004,
20:3353-3362.

15. Edwards D: Introduction to Graphical Modelling New York: Springer-Ver-
lag; 2000.

16. Siek JG, Lee LQ, Lumsdaine A: The Boost Graph Library 2002.
17. Krishnamurthy L, Nadeau J, Ozsoyoglu G, et al.: Pathways database

system: an integrated system for biological pathways. Bioin-
formatics 2003, 19:930-937.

18. Klamt S, Gilles ED: Minimal cut sets in biochemical reaction
networks. Bioinformatics 2004, 20:226-234.

19. Gentleman RC, Carey VJ, Bates DM, et al.: Bioconductor: Open
software development for computational biology and bioin-
formatics. Genome Biology 2004, 5:R80 [http://genomebiology.com/
2004/5/10/R80].

20. Gansner ER, North SC: An open graph visualization system and
its applications to software engineering. Software Practice and
Experience 1999, 30:1203-1233.

21. Cho R, Campbell M, Winzeler E, et al.: A genome-wide transcrip-
tional analysis of the mitotic cell cycle. Molecular Cell 1998,
2:65-73.

Additional File 1
Sweave source code of the article. The Sweave markup of this paper,
including the text in LATEX format and the program code for the example
analysis in the Case Study and the generation of all figures.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-S6-S8-S1.latex]
Page 14 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-S6-S8-S1.latex
http://www.biomedcentral.com/1471-2105/8?issue=S6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14734314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14734314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://genomebiology.com/2004/5/10/R80
http://genomebiology.com/2004/5/10/R80
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9702192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9702192
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Introduction
	Applications
	Definitions
	Cohesive subgroups
	Distances

	Special types of graphs
	Bipartite Graphs
	Hypergraphs
	Directed acyclic graphs

	Uncertainty and missing edges
	Computational aspects
	Representation
	Algorithms
	Software from the Bioconductor project

	Case study: using graphs for comparing transcription and interaction data
	The Data
	Exploration of the PPI graph
	Construction of the cluster graph
	Statistical analysis of the graph overlap
	Cohesive subgroups

	Discussion
	Additional material
	Acknowledgements
	References

